Three-Dimensional Effects, or the Lack Thereof, in Asymmetric Collisionless Magnetic Reconnection

P. L. Pritchett - UCLA F. S. Mozer - UC Berkeley

Reconnection in the Earth's Magnetosphere

I. Magnetotail: Conditions across current sheet nearly symmetric.
II. Dayside Magnetopause: Strong gradients in magnetic field, plasma density, and temperature across current sheet. Asymmetric reconnection.

3D PIC Simulations:

- x : conducting or driven BC ($\operatorname{sech}^{2}(z / L)$ Ey field)
- y : periodic
- z: open

Remove particles, inject thermal
Maxwellian with initial $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{e}} ; \mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}}=2$

- $\mathrm{m}_{\mathrm{i}} / \mathrm{m}_{\mathrm{e}}=200$ in 3D,
- Half thickness: $\lambda=1.0 \mathrm{c} / \omega_{\text {pi }}$
- No Guide Field
- Reference Alfven speed based on B_{0} and $\mathrm{n}_{0}: \mathrm{c}_{\mathrm{c}} / \mathrm{v}_{\mathrm{A}}=20$
- Unit electric field $\mathrm{v}_{\mathrm{A}} \mathrm{B}_{0}$ typically $20-30 \mathrm{mV} / \mathrm{m}$
- System size $25.6 \mathrm{c} / \omega_{\mathrm{pi}} \times 12.8 \mathrm{c} / \omega_{\mathrm{pi}} \times 25.6 \mathrm{c} / \omega_{\mathrm{pi}}$

Overview of Time Development

(b) $\Omega_{\mathrm{io}} \mathrm{t}=40$

(c) $\Omega_{\mathrm{io}} \mathrm{t}=59$

Mode 2I: $\mathrm{k}_{\mathrm{y}} \rho_{\mathrm{e}}=0.52$
Mode I2: $\mathrm{k}_{\mathrm{y}}\left(\rho_{\mathrm{e}} \rho_{\mathrm{i}}\right)^{1 / 2}=\mathrm{I} .1$

Early Time

 peak of density gradient. Then structures start to break up, in part due to differential in drift velocities.

Intermediate Time ($\Omega_{\text {iot }}=22$)

Reconnection Stage $\Omega_{\text {iot }}=56$

Average reconnection rate is not modified from standard 2D result. Intense E fields do not appear to play important role in reconnection dynamics.

D_{e} : Lorentz invariant dissipation in electron rest frame (Zenitani et al., 201I)

Frequency Spectrum

Electric field structures drift dawnward at $\approx 0.2 \mathrm{v}_{\mathrm{A}}$, wavelength $=0.61 \mathrm{di}$, giving apparent frequency of $2.1 \Omega_{\mathrm{io}}$

Power spectrum shows peaks at $2.7 \Omega_{\mathrm{io}}$ and $5.3 \Omega \mathrm{i} 0$.
The frequency and wavenumber appear to scale inversely with ρ_{e}. Thus for true electron mass of $\mathrm{m}_{\mathrm{p}} / 1836$, expect a frequency 3.0 times as large or 8 and $16 \Omega_{\mathrm{i} 0}(8$ and 16 Hz with proton cyclotron frequency of I Hz).

Compare with THEMIS observations at the subsolar magnetopause.

SUMMARY

- Intense ($\sim 50-100 \mathrm{mV} / \mathrm{m}$) electric field modes exist on magnetospheric edge of magnetopause current sheet.
- Consistent with LHDI - trapped in the density gradient region and satisfy $\mathbf{k} \cdot \mathbf{B}=0$. Frequency ~ 20\% - 40\% of lower hybrid frequency.
- The modes are persistent, but there can be significant fluctuations in frequency.
- Modes saturate, do not do much to alter the density profile.
- Modes remain coherent, do not evolve into turbulence.
- Modes do not appear to directly impact the reconnection process, and they are not a source of anomalous resistivity.
- Existence of $\sim 100 \mathrm{mV} / \mathrm{m}$ E fields on magnetospheric side of reconnecting magnetopauses confirmed by THEMIS observations.
- Observations suggest that the modes persist in the presence of a moderate guide field; such a field would only alter the orientation of the $\mathbf{k} \cdot \mathbf{B}=0$ surface.

