2012 US-Japan Workshop on Magnetic Reconnection @ Princeton University, 23-25 May 2012

Hinode observations of microflares and plasma ejections in the solar chromosphere and corona

Toshifumi SHIMIZU (ISAS/JAXA)

Topics of this talk

In the solar atmosphere, magnetic reconnection takes place in two different plasma layers:

- Corona fully ionized, collisionless plasma
- Chromosphere weakly ionized, collisional plasma
- How does the magnetic reconnection release the magnetic energy, heat up the plasma and generate hot (>1MK) coronal plasma?
- From viewpoints of observations, a variety of heating signatures exist.
 - Observed only in chromospheric data.
 - Observed not only in chromosphere but also in coronal data.
 - A variety of heating events in coronal data.
 - What makes a large variety of heating signatures?

Two different heating & ejections with similar magnetic configuration

Intermittent & recurrent chromospheric ejections in sunspot light bridge

Chromospheric ejections and coronal microflaring in the elongated structure appeared during sunspot formation

Hinode SOT Ca II H

2012.5.24

Chromosphere: Ca II H

(Shimizu et al. 2009, ApJ, 696, L66)

Corona: soft X-ray (Shimizu, Ichimoto & Suematsu 2012, ApJL 747, L18)

Helical flux loops in umbral fields "component MR"

Temporal evolution of intensities

- More transient nature in soft Xray coronal flux, compared to in Ca II H data.
- The both intensity is gradually increased after starting the emergence (~16UT on 30 Dec). Then the intensity is gradually decreased with relaxing the magnetic complex in the leading sunspot.
- Each of spikes in the SXR plot correspond to transient brightenings (microflares). They may produce >5 MK plasma (Shimizu 1995, Yohkoh).

Chromosphere: Ca II H

Corona: soft X-ray

Investigate coronal plasma heated by microflares

- Intensity of EUV spectral lines from different temperature plasma (from Hinode EIS) are compared with soft X-ray flux (from Hinode XRT).
 - The intensity averaged over the emerging flux region (100" x 80") for simple analysis.
 - XRT's soft X-ray flux represents the temporal behaviors of >3 MK plasma.

Intensity Correlation

Microflare example: Intensity map comparisons (event A)

Microflaring signals are quite different. In this case, brightening loops are bright in soft X-ray image, whereas brightening loops are not well visible in Fe XV line. "SXR rich & Fe XV poor" event

EIS OVI 184.14A	EIS FeX 185.54A	EIS FeXII 195.12A
31-Dec-09 00:44:02-00:49:40	31-Dec-09 00:44:02-00:49:40	31-Dec-09 00:44:02 -00:49:40
EIS FeXV 284.16A	EIS FeXXIII 263.69A	XRT Ti_Poly
31-Dec-09 00:44:02-00:49:40	31-Dec-09 00:44:02 -00:49:40	2009-12-31T00:46:47.196

MR2012

2012.5.24

Dynamics near loop footpoints (Doppler shift and width)

- Brightening loops are not well visible in Fe XV line.
- Even in such case, Doppler shift and/or line width data show that dynamical plasma flows are excited near the footpoints of brightening loops, which is more related to energy release by magnetic reconnection.

Line fitting results

Magnitude of dynamics near loop footpoints in the FeXV-SXR correlation

XRT Ti Poly (x10²DN/s/pixel)

Discussions

MR2012

- Excitation of plasma flows (upflow, downflow, and/or non-thermal line broadening) at loop footpoint
 - Bi-directional plasma flows excited by reconnection?
 - Non-thermal line broadening may appear when both an upflow and an downflow exist simultaneously.
 - Hot plasma bulk flows are created by chromospheric evaporation. They may be observed as upflows.
 - When hot plasma is formed in the brightening loops, the strong heat conduction flows toward the chromosphere. They may be observed as downflows.
- Numerical simulations, including heat conduction and evaporation, for understanding dynamics excited at loop footpoints.

Summary

- A large variety of heating signatures by reconnection events has been observed in the solar atmosphere.
- Using coronal intensities as a function of time, we studied the behaviors of different temperatures' plasma generated by microflares (MR).
- Large deviation in the correlation between Fe XV (2MK plasma) and SXR (>3MK plasma); Two extremes exist in microflares,
 - "SXR rich & Fe XV poor" and "SXR poor & Fe XV rich".
- Dynamics, i.e., Doppler shifts and non-thermal line broadening, are more observed in the SXR rich & Fe XV poor events.
- Whether or not dynamics is exited at loop footpoints create different nature of heated plasma.
- How does the excitation of dynamical plasma flows happen at loop footpoints with energy release by magnetic reconnection?

2012.5.24

Recent observations: common dynamics

Hinode SOT Chromospheric Ca II H filter AR11402, 24-25 Jan 2012, 1-day long movie

2012.5.24