

Anisotropy of Particle Acceleration and Associated Radiation in Relativistic Pair Reconnection

<u>Dmitri Uzdensky</u> (University of Colorado)

with B. Cerutti, G. Werner, M. Begelman

US-Japan Reconnection Workshop, Princeton, May 25, 2012

<u>OUTLINE</u>

- Astrophysical motivation: pulsars, AGN jets, GRBs
- New themes in relativistic pair reconnection:
 - *anisotropy* of particle acceleration
 - *radiative signatures* of reconnection:
 - anisotropy,
 - spectrum,
 - variability.
- Summary

Pair Reconnection: Astrophysical Applications

- Pulsars:
 - magnetospheres,
 - (striped) winds,
 - Pulsar Wind Nebulae.
- AGN (e.g., blazar) jets, radio-lobes
- Gamma-Ray Bursts (GRBs)
- Magnetar flares

Crab

GRB

New themes, new questions...

- How do we describe accelerated particle population?
 - (most generally --- distribution in 6D phase space)
 - energy spectrum provides only partial information
 - what is angular distribution of accelerated particles?
- How does a reconnection look like, literally?
 - what are (prompt) radiative signatures of reconnection, as seen by an <u>outside observer</u>:
 - observable photon spectrum;
 - light curve

Particle Energy Spectrum

Still an open issue...

Jaroschek et al. 2004

SIRONI & SPITKOVSKY

Zenitani & Hoshino 2007

New Themes in Relativistic Pair Reconnection:

I. Particle Anisotropy

- All previous numerical studies focused on particle *energy* distribution f(γ) ... but ignored *angular distribution*.
- Ultra-relativistic particles emit in their direction of motion
 Particle anisotropy translates directly into anisotropy of radiation.
- Hence, *particle anisotropy* is important for understanding prompt radiative signatures of reconnection.
- This is especially at highest energies, since

$$- \tau_{rad,cool} = \gamma m_e c^2 / P_{rad} \sim \gamma^{-1}$$

$$- \tau_{iso} \sim \Omega_c^{-1} \sim \gamma$$

<u>Particle anisotropy in PIC simulations</u> of relativistic pair reconnection (Cerutti et al. 2012)

- <u>Preliminary simulations</u>:
 - sims by G. Werner; data analysis by B. Cerutti;
 - relativistic PIC code VORPAL;
 - 2D, no guide field;
 - double periodic boundary conditions;
 - $n_{\rm b}/n_{\rm d} = 0.1; \ \ T_{\rm b} = 0.15 \ m_{\rm e}c^2; \ \ T_{\rm d} = 1 \ m_{\rm e}c^2.$
 - $360 \rho_c \times 360 \rho_c , \quad \rho_c = m_e c^2 / eB_0;$
 - 2.7×10^8 particles; 2048² grid cells;
 - (bigger simulations are in progress!)

<u>Particle anisotropy in PIC simulations</u> of relativistic pair reconnection (Cerutti et al. 2012)

<u>Main result</u>:

energetic particle population is highly anisotropic!

 Particle anisotropy is highly energy-dependent, with stronger focusing for highest energy particles.

New Themes in Relativistic Pair Reconnection:

II. Radiative Signatures

- Radiation is our only observational probe into astrophysical reconnection.
- <u>Fundamental question</u>: How does a reconnection layer **look like**? What are the observable **radiative signatures** (spectrum, light curve) of reconnection?
- Radiation can also affect reconnection process itself:
 - Radiative losses may inhibit particle acceleration, especially for highest-energy particles near radiation-reaction limit (e.g., in Crab Nebula flares).
 - In the pulsar wind and near Light Cylinder, synchrotron cooling is strong even for bulk particles, limiting plasma temperature.

Synchrotron emission anisotropy in relativistic pair reconnection (Cerutti et al. 2012)

 $3.5E+03 < \nu/\nu_0 < 5.6E+03$

Astrophysical implications:

- flare energetics
 - flare statistics
 - different from traditional achromatic Doppler boosting

Rapid emission variability in

relativistic pair reconnection (Cerutti et al. 2012)

Energetic particles form highly focused beams that sway from side to side in the reconnection layer midplane.

<u>Rapid emission variability in</u> relativistic pair reconnection (Cerutti et al. 2012)

Swaying beams create rapid variability of radiation seen by external observer.

Simulated high-energy emission light curve

Summary

- How does a reconnection layer **look like**?
- Strong, energy-dependent **anisotropy** of energetic particles produced in relativistic pair reconnection.
- Observational appearance of reconnection layer:
 - strong anisotropy of radiation ("kinetic beaming").
 - implications for flare energetics and statistics;
 - rapid variability of observable emission.
- Applications for flares in pulsar winds/nebulae, AGN/blazar jets, Gamma-Ray Bursts....