Magnetohydrodynamic structure of a plasmoid in low beta plasmas

Seiji Zenitani

National Astronomical Observatory of Japan

Collaborators: Takahiro Miyoshi (Hiroshima U) Michael Hesse, Alex Klimas (NASA/GSFC)

Motivation (1/2)

- Reconnection expels fast outflow jet
- How does the jet interacts with the outer environments in a large-scale system?

• MHD approximation is useful to explore large-scale evolution of plasma systems

Motivation (2/2): low-beta plasmas

- Upstream plasmas control the reconnection
- The plasma beta β =2p/B² is usually low in the upstream region in reconnection environments, but the influence of low-beta plasmas is unclear.

MHD equations

- Resistive MHD equations in a conservative form
- We develop a new HLL-type MHD code to solve the equations.

$$egin{aligned} &rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v}) = 0, \ &rac{\partial
ho oldsymbol{v}}{\partial t} +
abla \cdot (
ho oldsymbol{v} oldsymbol{v} + p_T oldsymbol{I} - oldsymbol{B} oldsymbol{B}) = 0, \ &rac{\partial e}{\partial t} +
abla \cdot ((e + p_T) oldsymbol{v} - (oldsymbol{v} \cdot oldsymbol{B}) oldsymbol{B} + \eta oldsymbol{j} imes oldsymbol{B}) = 0, \ &rac{\partial oldsymbol{B}}{\partial t} +
abla \cdot ((e + p_T) oldsymbol{v} - (oldsymbol{v} \cdot oldsymbol{B}) oldsymbol{B} + \eta oldsymbol{j} imes oldsymbol{B}) = 0, \end{aligned}$$

• Ohm's law is incorporated in the eqs.

$$oldsymbol{E} + oldsymbol{v} imes oldsymbol{B} = \eta oldsymbol{j}$$

Modern MHD code

- Finite volume, High Resolution Shock Capturing (HRSC) code
- Numerical flux
 - HLL method (Harten, Lax, van Leer, 1983)
- Spacial discretization
 - 2nd order MC limiter (van Leer, 1977)
 - 2nd order discretization of the current (Tóth 2008)
- Time marching
 - 2nd order TVD Runge-Kutta method (Shu & Osher 1988)
- Solenoidal condition (div B=0)
 - Hyperbolic divergence cleaning (Dedner et al. 2002)

System configuration

- A Harris-sheet with anti-parallel fields
- Domain: [0, 200] x [0, 150] (6000 x 4500 cells)
- Low beta in the upstream: $\beta = 2p/B^2 = 0.2$
- Localized resistivity

Rankine-Hugoniot Analysis

- The shock normal (n) is computed by a minimum variance method
- Shock velocity vs MHD velocities in the normal direction (**n**)
- Unclassified cases could be improved by Roe/HLLD schemes

TABLE I. Rankine-Hugoniot analysis. The subscripts 1 and 2 denote the upstream and downstream quantities. The locations (x, z) in the simulation domain [see also Fig. 1(b)], the shock normal vector \hat{n} , the shock velocity v_{sh} , the angle between \hat{n} and the upstream magnetic field B_1 , the upstream plasma beta, flow Mach numbers to fast, intermediate (Alfvén), and slow-mode speeds, and the temperature ratio. The asterisk sign (*) indicates unreliable results (see Sec. III F). The letter (S) indicates a slow shock, (F) is a fast shock, and (U) is unclassified.

No.	Location	(n_x, n_z)	$v_{\rm sh}$	$ \theta_{BN} $	β_1	\mathcal{M}_{f1}	\mathcal{M}_{i1}	\mathcal{M}_{s1}	\mathcal{M}_{f^2}	\mathcal{M}_{i2}	\mathcal{M}_{s2}	T_2/T_1	
1	(40.0, 1.35)	(-0.03, 1.00)	0.0	86.3	0.22	0.06	0.98	2.49	0.04	0.69	0.69	2.72	(S) Petschek shock
2	(55.0, 1.75)	(-0.04, 1.00)	-0.013	86.3	0.098	0.06	0.88	3.22	0.04	0.58	0.58	4.58	(S) Petschek shock
3	(61.2, 0)	(-1.00, 0.00)	-0.40	90	303	1.41			0.77			1.38	(F) Reverse shock
4	(51.0, 6.0)	(1.00, -0.04)	0.31	9.4	0.12	0.41	0.42	1.34	0.33	0.34	0.78	1.33	(S) Postplasmoid vertical shock
5	(80.0, 8.4)	(-0.18, 0.98)	-0.06	86.5	0.16	0.05	0.85	2.47	0.03	0.56	0.65	2.54	(S) Outer shell
6	(110.0, 6.5)	(0.24, 0.97)	0.19	84.9	0.21	0.06	0.76	1.99	0.05	0.53	0.64	2.06	(S) Outer shell
7	(101.2, 10.0)	(0.94, 0.33)	0.54	25.2	0.23	0.43	0.49	1.15	0.39	0.44	0.87	1.15	(S) Forward vertical shock
8	(110.0, 1.5)	(-0.06, -1.00)	0.10	87.8	1.1	0.12	4.5*	6.5*	0.12	3.9*	4.0*	1.55	(U) Intermediate shock?
9	(120.0, 1.9)	(0.13, -0.99)	0.13	87.1	0.49	0.09	2.0*	3.8*	0.08	1.7*	1.9*	1.86	(U) Slow shock?
10	(120.9, 1.0)	(0.64, -0.77)	0.50	46.8	2.63	1.22	3.00	3.40	0.88	2.66	3.06	1.18	(F) Oblique shock

Why do we see vertical slow-shocks?

- From a simple algebra, $c_A > c_s \iff \beta < 1$
- Reconnection system travels faster than the local slow-mode in the stationary upstream plasmas: slow shock stands there
- We'll see one or two pairs of slow-shocks in low-beta plasmas

Analogy: transsonic bump problem

Vertical shocks in previous research

Magnetic Field

Velocity

Current Density

Electric Field

 We finally understand that they were vertical slow-shocks (+ offset by a shear-flow).

- Combined effect
 - 1. New Rankine-Hugoniot condition across the SS
 - 2. Adiabatic acceleration of the supersonic flow (Shimizu & Ugai 2000, 2003)

- Shock diamonds / Mach disk (airplane)
- Recollimation shock (jet)
- Diamond-chain (reconnection)

1,37

1,07

0,78

0,48

0,188

0.10

t= 195.0

-2

-4

Kelvin-Helmholtz instability inside the plasmoid (b) t = 24

- Plasmas are hit and reflected by the reconnection jet front
- The reflected flow is KH-unstable

Corrugation instability?

A complete catalog of plasmoid structures

- A. reconnection inflow
- B. outflow jet
- C. post-plasmoid backward flow
- D. internal flow
- E. flapping jet (KH instability)

- 1. Petschek slow shock (Petschek 1964)
- 2. outer shell = slow shock (Ugai 1995 PoP)
- 3. intermediate shock (Abe & Hoshino 2001 EPS)
- 4. fast shock (Forbes & Priest 1983 SoP)
- 5. loop-top front (Ugai 1987 GRL)
- 6. tangential discontinuity
- 7. post-plasmoid vertical slow shock (SZ et al. 2010 ApJ)
- 8. outer vertical slow shock (SZ & Miyoshi 2011 PoP)
- 9. fast-mode wave front (Saito et al. 1995 JGR)
- 10. shock-reflection (diamond-chain) (SZ et al. 2010 ApJ)
- 11. contact discontinuity (SZ & Miyoshi 2011 PoP)
- 12. contact discontinuity (Hoshino et al. 2000 JGR)

Zenitani & Miyoshi 2011 PoP

Maximum outflow

Zenitani et al. 2010 ApJL

Relativistic shock condition

• The same shock condition

$$v_{jet} \approx c_A > c_s$$

• In the magnetically dominated regimes, Alfvénic outflow jet is always supersonic.

$$\sigma_{\varepsilon} > \frac{1}{2} \qquad c_A > \frac{c}{\sqrt{3}} > c_s$$

• Shock-capturing code is essential for high-sigma regime of our interest

Summary

- Large-scale MHD evolution of an extreme plasmoid in reconnection in low beta [and relativistic] plasmas
- Complex structures
 - Vertical slow shocks
 - Diamond chain
 - Super-Alfvénic adiabatic acceleration
 - KH instability in the plasmoid and many more
- Modern HRSC code is essential to explore shockdominated MHD phenomena
- References:
 - [1] S. Zenitani, T. Miyoshi, Phys. Plasmas, **18**, 022105 (2011)
 - [2] S. Zenitani, M. Hesse, and A. Klimas, Astrophys. J., **716**, L215 (2010)