A new measure of the dissipation region in collisionless magnetic reconnection: Theory, simulation, and observation

Seiji Zenitani

National Astronomical Observatory of Japan

Princeton, 24 May 2012

Collaborators

• NASA/GSFC

- JAXA/ISAS
- Tokyo Tech
- NAOJ
- Nagoya U
- UNH

Michael Hesse Alex Klimas Carrie Black Masha Kuznetsova Iku Shinohara Tsugunobu Nagai Hiroyuki Takahashi Makoto Takamoto Naoki Bessho

Outline

- 1. Introduction
 - Recent debates on the electron dissipation region
- 2. Theory
 - Introducing a new measure D_{e}
- 3. Simulations
 - 2D kinetic PIC simulations in various configurations
 - Reconsidering multi-scale dissipation regions
- 4. Observation
 - Geotail observation in the magnetotail

1. Introduction

The dissipation region

- The ideal condition $oldsymbol{E} + oldsymbol{v}_s imes oldsymbol{B} = 0$
- We expected a multi-scale structure

- We are interested in the innermost EDR
 - It is traditionally identified by $E'_y = (E + v_e \times B)_y \neq 0$

Elongated "EDRs"

- Large-scale PIC simulations [Since Daughton+ 2006]
- Two-scale substructure
 - Inner region near the X-point
 - Outer region elongated with a fast electron jet

controversial

From a different angle [Hesse+ 2008]

EDR in asymmetric Rx

Something is wrong

- $E + v_e x B \neq 0$ may not identify the critical region.
 - The controversial outer EDR
 - No EDR signature in asymmetric reconnection

Something is wrong

- $E + v_e x B \neq 0$ may not identify the critical region.
 - The controversial outer EDR
 - No EDR signature in asymmetric reconnection

2. Theory

A new measure "D"

• Let us construct a new measure "D" to identify the critical region.

$$D_e = \gamma_e \big[\boldsymbol{j} \cdot (\boldsymbol{E} + \boldsymbol{v}_e imes \boldsymbol{B}) -
ho_c (\boldsymbol{v}_e \cdot \boldsymbol{E}) \big]$$

• We derive our formula, considering three basic requirements.

Desirable conditions for "D" (1/3)

- 1. Magnetic energy consumption
- Scalar quantity
 Insensitive to observer motion

Desirable conditions for "D" (2/3)

- 1. Magnetic energy consumption
- 2. Scalar quantity
- 3. Insensitive to observer motion

• A scalar quantity is rotation-free: The Y direction or the Y' direction do not matter.

Desirable conditions for "D" (3/3)

- 1. Magnetic energy consumption
- 2. Scalar quantity
- 3. Insensitive to observer motion

 Relative motion between the observer (satellite) and the reconnection site

Desirable conditions

- 1. Magnetic energy consumption
- 2. Scalar quantity
- 3. Insensitive to observer motion

"The reconnection measure D should be a Lorentz-invariant." A. Einstein

A Lorentz-invariant measure

The electron-frame dissipation measure

$$egin{array}{rcl} D_e &=& J_\mu F^{\mu
u} u_{e,
u} = \gamma_e ig[m{j} \cdot (m{E} + m{v}_e imes m{B}) -
ho_c (m{v}_e \cdot m{E}) ig] \ & \longleftrightarrow & D_e &=& m{j}' \cdot m{E}' & {}^{ ext{Charge}} \ & ext{density} \end{array}$$

- The prime sign (') : quantitie

Ohmic dissipation in the electron's moving frame

Desirable conditions

- 1.
 - 1. Magnetic energy consumption
 - 2. Scalar quantity
 - 3. Insensitive to observer motion

3. Two-dimensional PIC simulations

 "Ion DR" is non-dissipative. Oblique projection of an ion current sheet explains (E+vi xB)y ≠ 0 (Hesse+ 2008).

4. Observation

GEOTAIL satellite

$$egin{array}{rcl} D_e &=& \gamma_eig[oldsymbol{j}\cdot(oldsymbol{E}+oldsymbol{v}_e imesoldsymbol{B})-
ho_c(oldsymbol{v}_e\cdotoldsymbol{E})ig] \ &pprox&oldsymbol{j}\cdot(oldsymbol{E}+oldsymbol{v}_e imesoldsymbol{B}) \end{array}$$

- $\mathbf{J} = e n_i (\mathbf{v}_i \mathbf{v}_e) \leftarrow LEP$ moment data
- v_e \leftarrow LEP moment data
- E_x, E_y ← EFD raw data (some sub-spin noises dropped)

2003-05-15 event [Nagai+ 2011]

One more thing 5. Astrophysical extension

Reconnection with [special] relativity

• A milestone in relativistic reconnection research!

Summary

• We have introduced the electron-frame dissipation measure.

$$D_e = \gamma_e \big[\boldsymbol{j} \cdot (\boldsymbol{E} + \boldsymbol{v}_e imes \boldsymbol{B}) -
ho_c (\boldsymbol{v}_e \cdot \boldsymbol{E}) \big]$$

- Energy transfer in the electron's frame
- Lorentz invariant scalar
- Nonideal energy conversion
- Traditional DR picture needs to be reconsidered
- First in situ detection of the DR in a planetary magnetotail
- Ready for the relativistic regime

We propose to redefine the dissipation region by D_e

Thank you for your attention!!