
SPARTA Users Manual
8 Sep 2016 version

http://sparta.sandia.gov - Sandia National Laboratories
Copyright (2014) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
SPARTA Documentation...1

8 Sep 2016 version..1
Version info:...1

1. Introduction...3
1.1 What is SPARTA..3
1.2 SPARTA features..3
General features..4
Models...4
Geometry...4
Gas-phase collisions and chemistry..4
Surface collisions and chemistry..4
Performance..4
Diagnostics..5
Output...5
Pre- and post-processing...5
1.3 Grids and surfaces in SPARTA..5
1.4 Open source distribution...7
1.5 Acknowledgments and citations...8

2. Getting Started...9
2.1 What's in the SPARTA distribution..9
2.2 Making SPARTA..9
2.3 Making SPARTA with optional packages..15
2.4 Building SPARTA as a library...16
2.5 Running SPARTA..18
2.6 Command-line options..19
2.7 SPARTA screen output...21

3. Commands...23
3.1 SPARTA input script..23
3.2 Parsing rules..24
3.3 Input script structure...25
3.4 Commands listed by category...26
3.5 Individual commands..27
Fix styles...27
Compute styles..27
Collide styles...27
Surface collide styles..28

4. How-to discussions..29
6.1 2d simulations...29
4.2 Axisymmetric simulations..29
4.3 Running multiple simulations from one input script..30
4.4 Output from SPARTA (stats, dumps, computes, fixes, variables)...31
4.5 Visualizing SPARTA snapshots...34
4.6 Library interface to SPARTA...35
4.7 Coupling SPARTA to other codes..36
4.8 Details of grid geometry in SPARTA...37
4.9 Details of surfaces in SPARTA..40
4.10 Restarting a simulation...41
4.11 Using the ambipolar approximation..42

SPARTA Users Manual

i

Table of Contents
5. Example problems...45
5. Performance & scalability...46
7. Additional tools...47

dump2cfg tool...47
dump2xyz tool..48
grid_refine tool..48
log2txt tool..48
logplot tool..48
paraview tools...49
stl2surf tool...49
surf_create tool..49
surf_transform tool..49

8. Modifying & extending SPARTA...50
8.1 Compute styles..51
8.2 Fix styles...52
8.3 Region styles...52
8.4 Collision styles..52
8.5 Surface collision styles...53
8.6 Chemistry styles..53
8.7 Dump styles..53
8.8 Input script commands..54

9. Python interface to SPARTA..55
9.1 Building SPARTA as a shared library..56
9.2 Installing the Python wrapper into Python..56
9.3 Extending Python with MPI to run in parallel..57
9.4 Testing the Python-SPARTA interface...58
9.5 Using SPARTA from Python..60
9.6 Example Python scripts that use SPARTA...62

10. Errors...63
10.1 Common problems..63
10.2 Reporting bugs..64
10.3 Error & warning messages..64
Errors:...64
Warnings:..86

11. Future and history..88
11.1 Coming attractions..88
11.2 Past versions..88

adapt_grid command...89
balance_grid command..94
bound_modify command...97
boundary command...99
clear command...101
collide command...102
collide_modify command..105
compute command...108
compute boundary command..110
compute count command...113
compute distsurf/grid command..115

SPARTA Users Manual

ii

Table of Contents
compute eflux/grid command..117
compute grid command...119
compute ke/particle command...124
compute lambda/grid command..125
compute pflux/grid command..128
compute property/grid command..131
compute reduce command...133
compute sonine/grid command..136
compute surf command...139
compute temp command..143
compute thermal/grid command..144
compute tvib/grid command..147
create_box command...149
create_grid command..150
create_particles command...154
dimension command..159
dump command...160
dump image command..160
dump image command..167
dump movie command..167

Rendering of particles...170
Rendering of grid cells..171
Rendering of surface elements..171

dump_modify command..177
echo command...187
fix command..188
fix adapt command..190
fix ambipolar command...192
fix ave/grid command..194
fix ave/histo command..197
fix ave/histo/weight command..197
fix ave/surf command..202
fix ave/time command...205
fix balance command...210
fix emit/face command..213
fix emit/face/file command..217
fix emit/surf command..223
fix grid/check command..227
fix move/surf command...228
fix print command...230
global command..232
group command...236
if command..239
include command...242
jump command..243
label command...245
log command...246
mixture command..247

SPARTA Users Manual

iii

Table of Contents
move_surf command...251
next command...253
partition command...255
print command...256
quit command..258
react command...259
react_modify command...264
read_grid command...265
read_particles command..268
read_restart command...269
read_surf command...272
region command..278
remove_surf command..280
reset_timestep command...281
restart command..282
run command...284
scale_particles command...287
seed command...288
shell command...289
species command...291
stats command...293
stats_modify command..294
stats_style command..296
surf_collide command...300
surf_modify command...303
surf_react command..305
timestep command...308
uncompute command...309
undump command...310
unfix command..311
units command...312
variable command...314

Math Operators...319
Math Functions...319
Special Functions..321
Particle Vectors...322
Compute References...322
Fix References..322
Surface Collision and Surface Reaction Model References...323
Variable References..323

write_grid command..327
write_restart command..329
write_surf command..331

SPARTA Users Manual

iv

SPARTA Documentation

8 Sep 2016 version

Version info:

The SPARTA "version" is the date when it was released, such as 3 Mar 2014. SPARTA is updated continuously.
Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of the WWW
site. Each dated copy of SPARTA contains all the features and bug-fixes up to and including that version date.
The version date is printed to the screen and logfile every time you run SPARTA. It is also in the file src/version.h
and in the SPARTA directory name created when you unpack a tarball, and at the top of the first page of the
manual (this page).

If you browse the HTML doc pages on the SPARTA WWW site, they always describe the most current
version of SPARTA.

•

If you browse the HTML doc pages included in your tarball, they describe the version you have.•
The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of very patch.

•

At some point, there also will be a Developer.pdf file in the doc directory, which describes the internal
structure and algorithms of SPARTA. NOTE: as of 21 Apr 2015, this file is not yet available.

•

SPARTA stands for Stochastic PArallel Rarefied-gas Time-accurate Analyzer.

SPARTA is a Direct Simulation Montel Carlo (DSMC) simulator designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with funding
from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public License (GPL), or
sometimes by request under the terms of the GNU Lesser General Public License (LGPL).

The primary developers of SPARTA are Steve Plimpton, and Michael Gallis who can be contacted at
sjplimp,magalli at sandia.gov. The SPARTA WWW Site at http://sparta.sandia.gov has more information about
the code and its uses.

The SPARTA documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPARTA documentation.

Once you are familiar with SPARTA, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPARTA commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPARTA
1.2 SPARTA features
1.3 Grids and surfaces in SPARTA
1.4 Open source distribution
1.5 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPARTA distribution
2.2 Making SPARTA
2.3 Building SPARTA with optional packages
2.4 Building SPARTA as a library

2.

1

http://sparta.sandia.gov/bug.html
http://sparta.sandia.gov/bug.html
http://www.sandia.gov/~sjplimp
http://sparta.sandia.gov
http://www.easysw.com/htmldoc

2.5 Running SPARTA
2.6 Command-line options
2.7 Screen output
Commands
3.1 SPARTA input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

How-to discussions
4.1 2d simulations
4.2 Axisymmetric simulations
4.3 Running multiple simulations from one input script
4.4 Output from SPARTA
4.5 Visualizing SPARTA snapshots
4.6 Library interface to SPARTA
4.7 Coupling SPARTA to other codes
4.8 Details of grid geometry in SPARTA
4.9 Details of surfaces in SPARTA
4.10 Restarting a simulation
4.11 Using the ambipolar approximation

4.

Example problems5.
Performance & scalability6.
Additional tools7.
Modifying & extending SPARTA8.
Python interface
9.1 Extending Python with a serial version of SPARTA
9.2 Creating a shared MPI library
9.3 Extending Python with a parallel version of SPARTA
9.4 Extending Python with MPI
9.5 Testing the Python-SPARTA interface
9.6 Using SPARTA from Python
9.7 Example Python scripts that use SPARTA

9.

Errors
10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

10.

Future and history
11.1 Coming attractions
11.2 Past versions

11.

2

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

1. Introduction

These sections provide an overview of what SPARTA can do, describe what it means for SPARTA to be an
open-source code, and acknowledge the funding and people who have contributed to SPARTA.

1.1 What is SPARTA
1.2 SPARTA features
1.3 Grids and surfaces in SPARTA
1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is SPARTA

SPARTA is a Direct Simulation Montel Carlo code that models rarefied gases, using collision, chemistry, and
boundary condition models. It uses a hierarchical Cartesian grid to track and group particles for 3d or 2d or
axisymmetric models. Objects emedded in the gas are represented as triangulated surfaces and cut through grid
cells.

For examples of SPARTA simulations, see the SPARTA WWW Site.

SPARTA runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines as well as commodity clusters.

SPARTA can model systems with only a few particles up to millions or billions. See Section 6 for information on
SPARTA performance and scalability, or the Benchmarks section of the SPARTA WWW Site.

SPARTA is a freely-available open-source code, distributed under the terms of the GNU Public License, or
sometimes by request under the terms of the GNU Lesser General Public License (LGPL), which means you can
use or modify the code however you wish. The only restrictions imposed by the GPL or LGPL are on how you
distribute the code further. See Section 1.4 below for a brief discussion of the open-source philosophy.

SPARTA is designed to be easy to modify or extend with new capabilities, such as new collision or chemistry
models, boundary conditions, or diagnostics. See Section 8 for more details.

SPARTA is written in C++ which is used at a hi-level to structure the code and its options in an object-oriented
fashion. The kernel computations use simple data structures and C-like code for effciency. So SPARTA is really
written in an object-oriented C style.

SPARTA was developed with internal funding at Sandia National Laboratories, a US Department of Energy lab.
See Section 1.5 below for more information on SPARTA funding and individuals who have contributed to
SPARTA.

1.2 SPARTA features

This section highlights SPARTA features, with links to specific commands which give more details. The next
section illustrates the kinds of grid geometries and surface definitions which SPARTA supports.

3

http://sparta.sandia.gov
http://sparta.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://sparta.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://www.sandia.gov

If SPARTA doesn't have your favorite collision model, boundary condition, or diagnostic, see Section 8 of the
manual, which describes how it can be added to SPARTA.

General features

runs on a single processor or in parallel•
distributed-memory message-passing parallelism (MPI)•
spatial-decomposition of simulation domain for parallelism•
open-source distribution•
highly portable C++•
optional libraries used: MPI•
easy to extend with new features and functionality•
runs from an input script•
syntax for defining and using variables and formulas•
syntax for looping over runs and breaking out of loops•
run one or multiple simulations simultaneously (in parallel) from one script•
build as library, invoke SPARTA thru library interface or provided Python wrapper•
couple with other codes: SPARTA calls other code, other code calls SPARTA, umbrella code calls both•

Models

3d or 2d or 2d-axisymmetric domains•
variety of global boundary conditions•
create particles within flow volume•
emit particles from simulation box faces due to flow properties•
emit particles from simulation box faces due to profile defined in file•
emit particles from surface elements due to normal and flow properties•
ambipolar approximation for ionized plasmas•

Geometry

Cartesian, heirarchical grids with multiple levels of local refinement•
create grid from input script or >read from file•
embed :triangulated (3d) or line-segmented (2d) surfaces in grid, read in from file•

Gas-phase collisions and chemistry

collisions between all particles or pairs of species groups within grid cells•
collision models: VSS (variable soft sphere), VHS (variable hard sphere), HS (hard sphere)•
chemistry models: TCE, QK•

Surface collisions and chemistry

for surface elements or global simulation box boundaries•
collisions: specular or diffuse•
reactions•

Performance

grid cell weighting of particles•
adaptation of the grid cells between runs•
on-the-fly adaptation of the grid cells•

4

static load-balancing of grid cells or particles•
dynamic load-balancing of grid cells or particles•

Diagnostics

global boundary statistics•
per grid cell statistics•
per surface element statistics•
time-averaging of global, grid, surface statistics•

Output

log file of statistical info•
dump files (text or binary) of per particle, per grid cell, per surface element values•
binary restart files•
on-the-fly rendered images and movies of particles, grid cells, surface elements•

Pre- and post-processing

Various pre- and post-processing serial tools are packaged with SPARTA; see Section 7 of the manual.•
Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for SPARTA simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

•

1.3 Grids and surfaces in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track particles and to co-locate particles in
the same grid cell for performing collision and chemistry operations. SPARTA uses a Cartesian hierarchical grid.
Cartesian means that the faces of a grid cell are aligned with the Cartesian xyz axes. Hierarchical means that
individual grid cells can be sub-divided into smaller cells, recursively. This allows for flexible grid cell
refinement in any region of the simulation domain. E.g. around a surface, or in a high-density region of the gas
flow.

An example 2d hierarchical grid is shown in the diagram, for a circular surface object (in red) with the grid
refined on the upwind side of the object (flow from left to right).

5

http://pizza.sandia.gov
http://www.python.org
http://pizza.sandia.gov

Objects represented with a surface triangulation (line segments in 2d) can also be read in to define objects which
particles flow around. Individual surface elements are assigned to grid cells they intersect with, so that
particle/surface collisions can be efficiently computed.

As an example, here is coarsely triangulated representation of the space shuttle (only 616 triangles!), which could
be embedded in a simulation box. Click on the image for a larger picture.

6

See Sections 4.9 and 4.10 for more details of both the grids and surface objects that SPARTA supports and how to
define them.

1.4 Open source distribution

SPARTA comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the SPARTA distribution.

Here is a summary of what the GPL means for SPARTA users:

(1) Anyone is free to use, modify, or extend SPARTA in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPARTA, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of SPARTA.

(3) If you release any code that includes SPARTA source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

7

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(4) If you give SPARTA files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making SPARTA better. You
can send email to the developers on any of these topics.

Point prospective users to the SPARTA WWW Site. Mention it in talks or link to it from your WWW
site.

•

If you find an error or omission in this manual or on the SPARTA WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

•

If you find a bug, Section 10.1 describes how to report it.•
If you publish a paper using SPARTA results, send the citation (and any cool pictures or movies) to add
to the Publications, Pictures, and Movies pages of the SPARTA WWW Site, with links and attributions
back to you.

•

The tools sub-directory of the SPARTA distribution has various stand-alone codes for pre- and
post-processing of SPARTA data. More details are given in Section 7. If you write a new tool that others
will find useful, it can be added to the SPARTA distribution.

•

SPARTA is designed to be easy to extend with new code for features like boundary conditions, collision
or chemistry models, diagnostic computations, etc. Section 8 of the manual gives details. If you add a
feature of general interest, it can be added to the SPARTA distribution.

•

The Benchmark page of the SPARTA WWW Site lists SPARTA performance on various platforms. The
files needed to run the benchmarks are part of the SPARTA distribution. If your machine is sufficiently
different from those listed, your timing data can be added to the page.

•

Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

•

1.5 Acknowledgments and citations

SPARTA development has been funded by the US Department of Energy (DOE).

If you use SPARTA results in your published work, please cite the paper(s) listed under the Citing SPARTA link
of the SPARTA WWW page, and include a pointer to the SPARTA WWW Site (http://sparta.sandia.gov):

The Publications link on the SPARTA WWW page lists papers that have cited SPARTA. If your paper is not
listed there, feel free to send us the info. If the simulations in your paper produced cool pictures or animations,
we'll be pleased to add them to the Pictures or Movies pages of the SPARTA WWW site.

The core group of SPARTA developers is at Sandia National Labs:

Steve Plimpton, sjplimp at sandia.gov•
Michael Gallis, magalli at sandia.gov•

8

http://sparta.sandia.gov/authors.html
http://sparta.sandia.gov
http://sparta.sandia.gov
http://sparta.sandia.gov/authors.html
http://sparta.sandia.gov
http://sparta.sandia.gov
http://www.doe.gov
http://sparta.sandia.gov/cite.html
http://sparta.sandia.gov
http://sparta.sandia.gov/papers.html
http://sparta.sandia.gov/pictures.html
http://sparta.sandia.gov/movies.html

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

2. Getting Started

This section describes how to build and run SPARTA, for both new and experienced users.

2.1 What's in the SPARTA distribution
2.2 Making SPARTA
2.3 Making SPARTA with optional packages
2.4 Building SPARTA as a library
2.5 Running SPARTA
2.6 Command-line options
2.7 Screen output

2.1 What's in the SPARTA distribution

When you download SPARTA you will need to unzip and untar the downloaded file with the following
commands:

gunzip sparta*.tar.gz
tar xvf sparta*.tar

This will create a SPARTA directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
bench benchmark problems
data files with species, collision, and reaction parameters
doc documentation
examples simple test problems
python Python wrapper
src source files
tools pre- and post-processing tools

2.2 Making SPARTA

This section has the following sub-sections:

Read this first•
Steps to build a SPARTA executable•
Common errors that can occur when making SPARTA•
Additional build tips•
Building for a Mac•
Building for Windows•

Read this first:

Building SPARTA can be non-trivial. You may need to edit a makefile, there are compiler options to consider,
additional libraries can be used (MPI, JPEG).

9

http://sparta.sandia.gov

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Linux
platform, or running an MPI job on your machine, please find a local expert to help you.

If you have a build problem that you are convinced is a SPARTA issue (e.g. the compiler complains about a line
of SPARTA source code), then please send an email to the developers.

If you succeed in building SPARTA on a new kind of machine, for which there isn't a similar Makefile in the
src/MAKE directory, send it to the developers and we'll include it in future SPARTA releases.

Steps to build a SPARTA executable:

Step 0

The src directory contains the C++ source and header files for SPARTA. It also contains a top-level Makefile and
a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory, type
"make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make g++
or
gmake mac

Note that on a multi-core platform you can launch a parallel make, by using the "-j" switch with the make
command, which will build SPARTA more quickly.

If you get no errors and an executable like spa_g++ or spa_mac is produced, you're done; it's your lucky day.

Note that by default none of the SPARTA optional packages are installed. To build SPARTA with optional
packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. Copy an
existing src/MAKE/Makefile.* as a starting point. The only portions of the file you need to edit are the first line,
the "compiler/linker settings" section, and the "SPARTA-specific settings" section.

Step 2

Change the first line of src/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other options it
will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Linux systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

10

http://sparta.sandia.gov/authors.html
http://sparta.sandia.gov/authors.html
http://www.intel.com/software/products/noncom

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. Note that when you
build SPARTA for the first time on a new platform, a long list of *.d files will be printed out rapidly. This is not
an error; it is the Makefile doing its normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean", which will describe different clean options.

The SPA_INC variable is used to include options that turn on ifdefs within the SPARTA code. The options that
are currently recogized are:

-DSPARTA_GZIP•
-DSPARTA_JPEG•
-DSPARTA_PNG•
-DSPARTA_FFMPEG•
-DSPARTA_MAP•
-DSPARTA_UNORDERED_MAP•
-DSPARTA_SMALL•
-DSPARTA_BIG•
-DSPARTA_BIGBIG•
-DSPARTA_LONGLONG_TO_LONG•

The read_data and dump commands will read/write gzipped files if you compile with -DSPARTA_GZIP. It
requires that your Linux support the "popen" command.

If you use -DSPARTA_JPEG and/or -DSPARTA_PNG, the dump image command will be able to write out JPEG
and/or PNG image files respectively. If not, it will only be able to write out PPM image files. For JPEG files, you
must also link SPARTA with a JPEG library, as described below. For PNG files, you must also link SPARTA
with a PNG library, as described below.

If you use -DSPARTA_FFMPEG, the dump movie command will be available to support on-the-fly generation of
rendered movies the need to store intermediate image files. It requires that your machines supports the "popen"
function in the standard runtime library and that an FFmpeg executable can be found by SPARTA during the run.

If you use -DSPARTA_MAP, SPARTA will use the STL map class for hash tables. This is less efficient than the
unordered map class which is not yet supported by all C++ compilers. If you use
-DSPARTA_UNORDERED_MAP, SPARTA will use the unordered_map class for hash tables and will assume it
is part of the STL (e.g. this works for Clang++). The default is to use the unordered map class from the "tri1"
extension to the STL which is supported by most compilers. So only use either of these options if the build
complains that unordered maps are not recognized.

Use at most one of the -DSPARTA_SMALL, -DSPARTA_BIG, -DSPARTA_BIGBIG settings. The default is
-DSPARTA_BIG. These refer to use of 4-byte (small) vs 8-byte (big) integers within SPARTA, as described in
src/spatype.h. The only reason to use the BIGBIG setting is if you have a regular grid with more than ~2 billion
grid cells or a hierarchical grid with enough levels that grid cell IDs cannot fit in a 32-bit integer. In either case,
SPARTA will generate an error message for "Cell ID has too many bits". See Section 4.8 of the manual for details
on how cell IDs are formatted. The only reason to use the SMALL setting is if your machine does not support
64-bit integers.

11

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion particles per processor (2^31), which should not normally be a restriction since such a problem
would have a huge per-processor memory and would run very slowly in terms of CPU secs/timestep.

The -DSPARTA_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will use that data type.

Step 5

The 3 MPI variables are used to specify an MPI library to build SPARTA with.

If you want SPARTA to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build, you should be able to leave these 3 variables blank; the MPI
wrapper knows where to find the needed files. If not, and MPI is installed on your system in the usual place
(under /usr/local), you also may not need to specify these 3 variables. On some large parallel machines which use
"modules" for their compile/link environements, you may simply need to include the correct module in your build
environment. Or the parallel machine may have a vendor-provided MPI which the compiler has no trouble
finding.

Failing this, with these 3 variables you can specify where the mpi.h file is found (via MPI_INC), and the MPI
library file is found (via MPI_PATH), and the name of the library file (via MPI_LIB). See Makefile.serial for an
example of how this can be done.

If you are installing MPI yourself, we recommend MPICH 1.2 or 2.0 or OpenMPI. MPICH can be downloaded
from the Argonne MPI site. OpenMPI can be downloaded the OpenMPI site. If you are running on a big parallel
platform, your system admins or the vendor should have already installed a version of MPI, which will be faster
than MPICH or OpenMPI, so find out how to build and link with it. If you use MPICH or OpenMPI, you will
have to configure and build it for your platform. The MPI configure script should have compiler options to enable
you to use the same compiler you use for the SPARTA build, which can avoid problems that can arise when
linking SPARTA to the MPI library.

If you just want to run SPARTA on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. You will also need to build the
STUBS library for your platform before making SPARTA itself. From the src directory, type "make mpi-stubs",
or from within the STUBS dir, type "make" and it should create a libmpi.a suitable for linking to SPARTA. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() function rolls over after an hour or so, and is therefore insufficient for timing long
SPARTA simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which SPARTA uses (for performing 1d FFTs) when
built with its FFT package, which contains commands that invoke FFTs.

SPARTA supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, SPARTA will use the open-source KISS FFT library, which is included in the SPARTA
distribution. This library is portable to all platforms and for typical SPARTA simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the FFT package in your build, you can also leave

12

http://www-unix.mcs.anl.gov/mpi
http://www.open-mpi.org
http://kissfft.sf.net

the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW2 library.
Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make. Note that on some platforms FFTW2 has
been pre-installed, and uses renamed files indicating the precision it was compiled with, e.g. sfftw.h, or dfftw.h
instead of fftw.h. In this case, you can specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB you must also manually specify the correct
library, namely -lsfftw or -ldfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs, which can
speed-up the calculation, particularly in parallel or on GPUs. Fourier transform and related PPPM operations are
somewhat insensitive to floating point truncation errors and thus do not always need to be performed in double
precision. Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory use and parallel
communication costs for transposing 3d FFT data. Note that single precision FFTs have only been tested with the
FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which SPARTA uses when writing out
JPEG or PNG files via the dump image command. These can be left blank if you do not use the
-DSPARTA_JPEG or -DSPARTA_PNG switches discussed above in Step 4, since in that case JPEG/PNG output
will be disabled.

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so and has an associated header file
jpeglib.h. Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

A standard PNG library usually goes by the name libpng.a or libpng.so and has an associated header file png.h.
Whichever PNG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default none of the SPARTA optional packages are installed. To build SPARTA with optional
packages, see this section below, before proceeding to Step 9.

Step 9

13

http://www.fftw.org

That's it. Once you have a correct Makefile.foo, and you have pre-built any other needed libraries (e.g. MPI), all
you need to do from the src directory is type one of the following:

make foo
make -j N foo
gmake foo
gmake -j N foo

The -j or -j N switches perform a parallel build which can be much faster, depending on how many cores your
compilation machine has. N is the number of cores the build runs on.

You should get the executable spa_foo when the build is complete.

Errors that can occur when making SPARTA:

IMPORTANT NOTE: If an error occurs when building SPARTA, the compiler or linker will state very explicitly
what the problem is. The error message should give you a hint as to which of the steps above has failed, and what
you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and
linker need to find the appropriate files and those files need to be compatible with SPARTA source files. When a
make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated
Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make -f Makefile.list g++
gmake -f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build SPARTA.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not support
"long long" integers. Try using the -DSPARTA_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips:

(1) Building SPARTA for multiple platforms.

You can make SPARTA for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-foo" will delete *.o object files created when SPARTA is built, for either
all builds or for a particular machine.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the Makefile.mac file.

14

Building for Windows:

At some point we may provide a pre-built Windows executable for SPARTA. Until then you will need to build an
executable from source files.

One way to do this is install and use cygwin to build SPARTA with a standard Linux make, just as you would on
any Linux box.

You can also import the *.cpp and *.h files into Microsoft Visual Studio. If someone does this and wants to
provide project files or other Windows build tips, please send them to the developers and we will include them in
the distribution.

2.3 Making SPARTA with optional packages

This section has the following sub-sections:

Package basics Including/excluding packages

Package basics:

The source code for SPARTA is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, the KOKKOS package
for versions of SPARTA kernels that run on GPUs or the Intel KNL processor.

You can see the list of all packages by typing "make package" from within the src directory of the SPARTA
distribution. This also lists various make commands that can be used to manipulate packages.

If you use a command in a SPARTA input script that is part of a package, you must have built SPARTA with that
package, else you will get an error that the style is invalid or the command is unknown. Every command's doc
page specfies if it is part of a package.

Including/excluding packages:

To use (or not use) a package you must include it (or exclude it) before building SPARTA. From the src directory,
this is typically as simple as:

make yes-fft
make g++

or

make no-fft
make g++

NOTE: You should NOT include/exclude packages and build SPARTA in a single make command using multiple
targets, e.g. make yes-fft g++. This is because the make procedure creates a list of source files that will be
out-of-date for the build if the package configuration changes within the same command.

Some packages have individual files that depend on other packages being included. SPARTA checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

15

http://sparta.sandia.gov/authors.html

If you will never run simulations that use the features in a particular packages, there is no reason to include it in
your build.

When you download a SPARTA tarball, no packages are pre-installed in the src directory.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = fft for the FFT package. You can also type "make yes-all", or "make
no-all" to include/exclude all packages. Type "make package" to see all of the package-related make options.

NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the main src
directory and sub-directories with the package name (e.g. src/FFT, src/KOKKOS), so that the files are seen or not
seen when SPARTA is built. After you have included or excluded a package, you must re-build SPARTA.

Additional package-related make options exist to help manage SPARTA files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing SPARTA
files.

Typing "make package-update" or "make pu" will overwrite src files with files from the package sub-directories if
the package has been included. It should be used after a patch is installed, since patches only update the files in
the package sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the
package sub-directories with src files.

Typing "make package-status" or "make ps" will show which packages are currently included. For those that are
included, it will list any files that are different in the src directory and package sub-directory. Typing "make
package-diff" lists all differences between these files. Again, type "make package" to see all of the
package-related make options.

2.4 Building SPARTA as a library

SPARTA can be built as either a static or shared library, which can then be called from another application or a
scripting language. See Section 4.7 for more info on coupling SPARTA to other codes. See Section 9 for more
info on wrapping and running SPARTA from Python.

Static library:

To build SPARTA as a static library (*.a file on Linux), type

make foo mode=lib

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPARTA, so that you can insure all dependencies are satisfied at compile time. This will use the ARCHIVE and
ARFLAGS settings in src/MAKE/Makefile.foo. The build will create the file libsparta_foo.a which another
application can link to. It will also create a soft link libsparta.a, which will point to the most recently built static
library.

Shared library:

To build SPARTA as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make foo mode=shlib

16

where foo is the machine name. This kind of library is required when wrapping SPARTA with Python; see
Section_python for details. This will use the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo
and perform the build in the directory Obj_shared_foo. This is so that each file can be compiled with the -fPIC
flag which is required for inclusion in a shared library. The build will create the file libsparta_foo.so which
another application can link to dyamically. It will also create a soft link libsparta.so, which will point to the most
recently built shared library. This is the file the Python wrapper loads by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPARTA, such as the dummy MPI
library in src/STUBS or any package libraries in lib/packages, since they are always built as shared libraries using
the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the shared library
build will generate an error. This means you will need to install a shared library version of the auxiliary library.
The build instructions for the library should tell you how to do this.

Here is an example of such errors when the system FFTW or provided lib/colvars library have not been built as
shared libraries:

/usr/bin/ld: /usr/local/lib/libfftw3.a(mapflags.o): relocation
R_X86_64_32 against `.rodata' can not be used when making a shared
object; recompile with -fPIC
/usr/local/lib/libfftw3.a: could not read symbols: Bad value

/usr/bin/ld: ../../lib/colvars/libcolvars.a(colvarmodule.o):
relocation R_X86_64_32 against `__pthread_key_create' can not be used
when making a shared object; recompile with -fPIC
../../lib/colvars/libcolvars.a: error adding symbols: Bad value

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /usr/local/lib/libmpich.so.

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/libsparta.so or src/libsparta_g++.so (for example) to
a place the system can find it by default, such as /usr/local/lib, or you may wish to add the SPARTA src directory
to LD_LIBRARY_PATH, so that the current version of the shared library is always available to programs that use
it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/sparta/src

Calling the SPARTA library:

Either flavor of library (static or shared) allows one or more SPARTA objects to be instantiated from the calling
program.

17

http://www-unix.mcs.anl.gov/mpi

When used from a C++ program, all of SPARTA is wrapped in a SPARTA_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See Section_howto 4.7 of the manual for ideas on how to couple SPARTA to other codes via its library interface.
See Section_python of the manual for a description of the Python wrapper provided with SPARTA that operates
through the SPARTA library interface.

The files src/library.cpp and library.h define the C-style API for using SPARTA as a library. See Section_howto
4.6 of the manual for a description of the interface and how to extend it for your needs.

2.5 Running SPARTA

By default, SPARTA runs by reading commands from standard input. Thus if you run the SPARTA executable by
itself, e.g.

spa_g++

it will simply wait, expecting commands from the keyboard. Typically you should put commands in an input
script and use I/O redirection, e.g.

spa_g++ <in.file

For parallel environments this should also work. If it does not, use the '-in' command-line switch, e.g.

spa_g++ -in in.file

Section 3 describes how input scripts are structured and what commands they contain.

You can test SPARTA on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run one of the benchmarks on a Linux box, using mpirun to launch a parallel job:

cd src
make g++
cp spa_g++ ../bench
cd ../bench
mpirun -np 4 spa_g++ <in.free

See this page for timings for this and the other benchmarks on various platforms.

The screen output from SPARTA is described in the next section. As it runs, SPARTA also writes a log.sparta file
with the same information.

Note that this sequence of commands copies the SPARTA executable (spa_g++) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch spa_g++ on its own and not
under mpirun). If that happens, SPARTA will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

18

http://sparta.sandia.gov/bench.html

If SPARTA encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section 10 for a discussion of the various kinds of errors
SPARTA can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPARTA can run a problem on any number of processors, including a single processor. The random numbers
used by each processor will be different so you should only expect statistical consistency if the same problem is
run on different numbers of processors.

SPARTA can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, SPARTA recognizes several optional command-line switches which may be used in any order. Either
the full word or a one-or-two letter abbreviation can be used:

-e or -echo•
-i or -in•
-h or -help•
-l or -log•
-p or -partition•
-pl or -plog•
-ps or -pscreen•
-sc or -screen•
-v or -var•

For example, spa_g++ might be launched as follows:

mpirun -np 16 spa_g++ -v f tmp.out -l my.log -sc none <in.sphere
mpirun -np 16 spa_g++ -var f tmp.out -log my.log -screen none <in.sphere

Here are the details on the options:

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-in file

Specify a file to use as an input script. This is an optional switch when running SPARTA in one-partition mode. If
it is not specified, SPARTA reads its input script from stdin - e.g. spa_g++ < in.run. This is a required switch
when running SPARTA in multi-partition mode, since multiple processors cannot all read from stdin.

-help

Print a list of options compiled into this executable for each SPARTA style (fix, compute, collide, etc). SPARTA
will print the info and immediately exit if this switch is used.

-log file

19

Specify a log file for SPARTA to write status information to. In one-partition mode, if the switch is not used,
SPARTA writes to the file log.sparta. If this switch is used, SPARTA writes to the specified file. In
multi-partition mode, if the switch is not used, a log.sparta file is created with hi-level status information. Each
partition also writes to a log.sparta.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log
command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-partition 8x2 4 5 ...

Invoke SPARTA in multi-partition mode. When SPARTA is run on P processors and this switch is not used,
SPARTA runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P processors
are split into separate partitions and each partition runs its own simulation. The arguments to the switch specify
the number of processors in each partition. Arguments of the form MxN mean M partitions, each with N
processors. Arguments of the form N mean a single partition with N processors. The sum of processors in all
partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual)
processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section 4.3 of the
manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.sparta) If this option is not used the log file for
partition N is log.sparta.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen) If this option is not used
the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

-screen file

Specify a file for SPARTA to write its screen information to. In one-partition mode, if the switch is not used,
SPARTA writes to the screen. If this switch is used, SPARTA writes to the specified file instead and you will see
no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-var name value1 value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as

20

${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command-line option is equivalent to putting the line "variable name index value1 value2 ..." at the
beginning of the input script. Defining an index variable as a command-line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re-defined. See the variable command
for more info on defining index and other kinds of variables and Section 3.2 for more info on using variables in
input scripts.

IMPORTANT NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new
switches. Thus you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric
value. It is OK if the first value1 starts with a "-", since it is automatically skipped.

2.7 SPARTA screen output

As SPARTA reads an input script, it prints information to both the screen and a log file about significant actions it
takes to setup a simulation. When the simulation is ready to begin, SPARTA performs various initializations and
prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of the
initial state of the system. During the run itself, statistical information is printed periodically, every few timesteps.
When the run concludes, SPARTA prints the final state and a total run time for the simulation. It then appends
statistics about the CPU time and size of information stored for the simulation. An example set of statistics is
shown here:

Loop time of 36.3787 on 8 procs for 100 steps with 10000000 particles

Particle moves = 1000000000 (1B)
Cells touched = 1395597726 (1.4B)
Particle comms = 3990284 (3.99M)
Boundary collides = 4003287 (4M)
Boundary exits = 0 (0K)
SurfColl checks = 0 (0K)
SurfColl occurs = 0 (0K)
Collide attempts = 93689476 (93.7M)
Collide occurs = 70166679 (70.2M)
Reactions = 847837 (848K)
Particles stuck = 0

Particle-moves/CPUsec/proc: 3.43607e+06
Particle-moves/step: 1e+07
Cell-touches/particle/step: 1.3956
Particle comm iterations/step: 1
Particle fraction communicated: 0.00399028
Particle fraction colliding with boundary: 0.00400329
Particle fraction exiting boundary: 0
Surface-checks/particle/step: 0
Surface-collisions/particle/step: 0
Collision-attempts/particle/step: 0.0936895
Collisions/particle/step: 0.0701667
Reactions/particle/step: 0.0008478

Move time (%) = 16.6921 (45.8842)
Coll time (%) = 11.9058 (32.7275)
Sort time (%) = 7.24376 (19.9121)
Comm time (%) = 0.17353 (0.47701)
Outpt time (%) = 0.363323 (0.998723)
Other time (%) = 0.000194222 (0.000533888)

Particles: 1.25e+06 ave 1.25283e+06 max 1.24835e+06 min
Histogram: 3 1 0 0 1 1 1 0 0 1
Cells: 125000 ave 125000 max 125000 min
Histogram: 8 0 0 0 0 0 0 0 0 0

21

GhostCell: 15608 ave 15608 max 15608 min
Histogram: 8 0 0 0 0 0 0 0 0 0
EmptyCell: 7957 ave 7957 max 7957 min
Histogram: 8 0 0 0 0 0 0 0 0 0

The first line gives the total CPU run time for the simulation, in seconds.

The next section gives some statistics about the run. These are total counts of particle moves, grid cells touched
by particles, the number of particles communicated between processors, collisions of particles with the global
boundary and with surface elements (none in this problem), as well as collision and reaction statistics.

The next section gives additional statistics, normalized by timestep or processor count.

The next to last section gives a breakdown of the CPU timing (in seconds) in 6 categories. The first four are
timings for particles moves, which includes interaction with surface elements, then particle collisions, then sorting
of particles (required to perform collisions), and communication of particles between processors. The percentage
of CPU time for each category is shown in parenthesis.

The last section is a histogramming across processors of various per-processor statistics: particle count, owned
grid cells, processor, ghost grid cells which are copies of cells owned by other processors, and empty cells which
are ghost cells without surface information (only used to pass particles to neighboring processors).

The ave value is the average across all processors. The max and min values are for any processor. The 10-bin
histogram shows the distribution of the value across processors. The total number of histogram counts is equal to
the number of processors.

22

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

3. Commands

This section describes how a SPARTA input script is formatted and what commands are used to define a
SPARTA simulation.

3.1 SPARTA input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPARTA input script

SPARTA executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPARTA exits. Each command causes SPARTA to take some action. It may set an internal variable, read in
a file, or run a simulation. Most commands have default settings, which means you only need to use the command
if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPARTA does not read your entire input script and then perform a simulation with all the settings. Rather, the
input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 secs) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 sec is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for the
2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot define the grid
overlaying the simulation box until the box itself has been defined. Likewise you cannot read in triangulated
surfaces until a grid has been defined to store them.

Many input script errors are detected by SPARTA and an ERROR or WARNING message is printed. Section 10
gives more information on what errors mean. The documentation for each command lists restrictions on how the
command can be used.

23

http://sparta.sandia.gov

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPARTA commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPARTA:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the single character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x".

How the variable is converted to a text string depends on what style of variable it is; see the variable doc page for
details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be
multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command.
The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string.

As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an
"immediate" variable and evaluated as an equal-style variable. This is a way to use numeric formulas in an input
script without having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt(v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by

region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE

so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other
variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = ${b$a}"

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is
valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how they
can be used in input script commands.

24

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. A long single argument enclosed in quotes can even span multiple lines if the "&" character is used, as
described above. E.g.

print "Volume = $v"
print 'Volume = $v'
variable a string "red green blue &
 purple orange cyan"
if "$steps > 1000" then quit

The quotes are removed when the single argument is stored internally.

See the dump modify format or print or if commands for examples. A "#" or "$" character that is between quotes
will not be treated as a comment indicator in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure

This section describes the structure of a typical SPARTA input script. The "examples" directory in the SPARTA
distribution contains sample input scripts; the corresponding problems are discussed in Section 5, and animated
on the SPARTA WWW Site.

A SPARTA input script typically has 4 parts:

Initialization1.
Problem definition2.
Settings3.
Run a simulation4.

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Initialization

Set parameters that need to be defined before the simulation domain, particles, grid cells, and surfaces are defined.

Relevant commands include dimension, units, and seed.

(2) Problem definition

These items must be defined before running a SPARTA calculation, and typically in this order:

create_box for the simulation box•

25

http://sparta.sandia.gov

create_grid or read_grid for grid cells•
read_surf for surfaces•
species for particle species properties•
create_particles for particles•

The first two are required. Surfaces are optional. Particles are also optional in the setup stage, since they can be
added as the simulation runs.

The system can also be load-balanced after the grid and/or particles are defined in the setup stage using the
balance_grid command. The grid can also be adapted before or betwee simulations using the adapt_grid
command.

(3) Settings

Once the problem geometry, grid cells, surfaces, and particles are defined, a variety of settings can be specified,
which include simulation parameters, output options, etc.

Commands that do this include

global timestep collide for a collision model react for a chemisty model fix for boundary conditions,
time-averaging, load-balancing, etc compute for diagnostic computations stats_style for screen output dump for
snapshots of particle, grid, and surface info dump image for on-the-fly images of the simulation

(4) Run a simulation

A simulation is run using the run command.

3.4 Commands listed by category

This section lists many SPARTA commands, grouped by category. The next section lists all commands
alphabetically.

Initialization:

dimension, seed, units

Problem definition:

boundary, bound_modify, create_box, create_grid, create_particles, mixture, read_grid, read_particles, read_surf,
read_restart, species,

Settings:

collide, collide_modify, compute, fix, global, react, react_modify, region, surf_collide, surf_modify, surf_react,
timestep, uncompute, unfix

Output:

dump, dump_image, dump_modify, restart, stats, stats_modify, stats_style, undump, write_grid, write_restart

Actions:

26

adapt_grid, balance_grid, run, scale_particles

Miscellaneous:

clear, echo, if, include, jump, label, log, next, partition, print, quit, shell, variable

3.5 Individual commands

This section lists all SPARTA commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists many of the same commands, grouped by category.

adapt_grid balance_grid boundary bound_modify clear collide
collide_modify compute create_box create_grid create_particles dimension

dump dump image dump_modify dump movie echo fix
global group if include jump label

log mixture move_surf next partition print
quit react react_modify read_grid read_particles read_restart

read_surf region remove_surf reset_timestep restart run
scale_particles seed shell species stats stats_modify

stats_style surf_collide surf_react surf_modify timestep uncompute
undump unfix units variable write_grid write_surf

write_restart

Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt ambipolar ave/grid ave/histo ave/histo/weight ave/surf
ave/time balance emit/face emit/face/file emit/surf grid/check

move/surf print

Compute styles

See the compute command for one-line descriptions of each style or click on the style itself for a full description:

boundary count distsurf/grid eflux/grid grid ke/particle
lambda/grid pflux/grid property/grid reduce sonine/grid surf
thermal/grid temp tvib/grid

Collide styles

See the collide command for one-line descriptions of each style or click on the style itself for a full description:

vss

27

Surface collide styles

See the surf_collide command for one-line descriptions of each style or click on the style itself for a full
description:

diffuse specular

28

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

4. How-to discussions

The following sections describe how to perform common tasks using SPARTA, as well as provide some
techinical details about how SPARTA works.

4.1 2d simulations
4.2 Axisymmetric simulations
4.3 Running multiple simulations from one input script
4.4 Output from SPARTA (stats, dumps, computes, fixes, variables)
4.5 Visualizing SPARTA snapshots
4.6 Library interface to SPARTA
4.7 Coupling SPARTA to other codes
4.8 Details of grid geometry in SPARTA
4.9 Details of surfaces in SPARTA
4.10 Restarting a simulation
4.11 Using the ambipolar approximation

The example input scripts included in the SPARTA distribution and highlighted in Section 5 of the manual also
show how to setup and run various kinds of simulations.

6.1 2d simulations

In SPARTA, as in other DSMC codes, a 2d simulation means that particles move only in the xy plane, but still
have all 3 xyz components of velocity. Only the xy components of velocity are used to advect the particles, so that
they stay in the xy plane, but all 3 components are used to compute collision parameters, temperatures, etc. Here
are the steps to take in an input script to setup a 2d model.

Use the dimension command to specify a 2d simulation.•
Make the simulation box periodic in z via the boundary command. This is the default.•
Using the create box command, set the z boundaries of the box to values that straddle the z = 0.0 plane.
I.e. zlo < 0.0 and zhi > 0.0. Typical values are -0.5 and 0.5, but regardless of the actual values, SPARTA
computes the "volume" of 2d grid cells as if their z-dimension length is 1.0, in whatever units are defined.
This volume is used with the global nrho setting to calculate numbers of particles to create or insert. It is
also used to compute collision frequencies.

•

If surfaces are defined via the read_surf command, use 2d objects defined by line segements.•

Many of the example input scripts included in the SPARTA distribution are for 2d models.

4.2 Axisymmetric simulations

In SPARTA, an axi-symmetric model is a 2d model. An example input script is provided in the
examples/axisymm directory.

An axi-symmetric problem can be setup using the following commands:

Set dimension = 2 via the dimension command.•

29

http://sparta.sandia.gov

Set the y-dimension lower boundary to "a" via the boundary command.•
The y-dimension upper boundary can be anything except "a" or "p" for periodic.•
Use the create_box command to define a 2d simulation box with ylo = 0.0.•

If desired, grid cell weighting can be enabled via the global weight command. The volume or radial setting can be
used for axi-symmetric models.

Grid cell weighting affects how many particles per grid cell are created when using the create_particles and fix
emit command variants.

During a run, it also triggers particle cloning and destruction as particles move from grid cell to grid cell. This can
be important for inducing every grid cell to contain roughly the same number of particles, even if cells are of
varying volume, as they often are in axi-symmetric models. Note that the effective volume of an axi-symmetric
grid cell is the volume its 2d area sweeps out when rotated around the y=0 axis of symmetry.

4.3 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
run 10000
run 10000
run 10000
run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPARTA. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
clear
read_grid data.grid2
create_particles 500000
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.flow

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_grid data.grid
create_particles 1000000
run 10000
shell cd ..

30

clear
next d
jump in.flow

would run 8 simulations in different directories, using a data.grid file in each directory. The same concept could
be used to run the same system at 8 different gas densities, using a density variable and storing the output in
different log and dump files, for example

variable a loop 8
variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 1.0e20 4.0e20 1.0e21 4.0e21
log log.$a
read data.grid
global nrho ${rho}
...
compute myGrid grid all n temp
dump 1 all grid 1000 dump.$a id c_myGrid
run 100000
clear
next rho
next a
jump in.flow

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPARTA on a single partition of processors. SPARTA can be run on multiple partitions via the
"-partition" command-line switch as described in Section 2.5 of the manual.

In the last 2 examples, if SPARTA were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next rho" and "next a" commands would need to be replaced with a single "next a rho" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.4 Output from SPARTA (stats, dumps, computes, fixes, variables)

There are four basic kinds of SPARTA output:

Statistical output, which is a list of quantities printed every few timesteps to the screen and logfile.•
Dump files, which contain snapshots of particle, grid cell, or surface element quantities and are written at
a specified frequency.

•

Certain fixes can output user-specified quantities directly to files: fix ave/time for time averaging, and fix
print for single-line output of variables. Fix print can also output to the screen.

•

Restart files.•

A simulation prints one set of statistical output and (optionally) restart files. It can generate any number of dump
files and fix output files, depending on what dump and fix commands you specify.

As discussed below, SPARTA gives you a variety of ways to determine what quantities are computed and printed
when the statistics, dump, or fix commands listed above perform output. Throughout this discussion, note that
users can also add their own computes and fixes to SPARTA (see Section 10) which can generate values that can
then be output with these commands.

The following sub-sections discuss different SPARTA commands related to output and the kind of data they
operate on and produce:

31

Global/per-particle/per-grid/per-surf data•
Scalar/vector/array data•
Statistical output•
Dump file output•
Fixes that write output files•
Computes that process output quantities•
Computes that generate values to output•
Fixes that generate values to output•
Variables that generate values to output•
Summary table of output options and data flow between commands•

Global/per-particle/per-grid/per-surf data

Various output-related commands work with four different styles of data: global, per particle, per grid, or per surf.
A global datum is one or more system-wide values, e.g. the temperature of the system. A per particle datum is one
or more values per partice, e.g. the kinetic energy of each particle. A per grid datum is one or more values per grid
cell, e.g. the temperature of the particles in the grid cell. A per surf datum is one or more values per surface
element, e.g. the count of particles that collided with the surface element.

Scalar/vector/array data

Global, per particle, per grid, and per surf datums can each come in three kinds: a single scalar value, a vector of
values, or a 2d array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify
both the style and kind of data it produces, e.g. a per grid vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f_" for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Statistical output

The frequency and format of statistical output is set by the stats, stats_style, and stats_modify commands. The
stats_style command also specifies what values are calculated and written out. Pre-defined keywords can be
specified (e.g. np, ncoll, etc). Three additional kinds of keywords can also be specified (c_ID, f_ID, v_name),
where a compute or fix or variable provides the value to be output. In each case, the compute, fix, or variable
must generate global values to be used as an argument of the stats_style command.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats:
dump particle, dump grid, dump surf, etc.

Each of these allows specification of what values are output with each particle, grid cell, or surface element.
Pre-defined attributes can be specified (e.g. id, x, y, z for particles or id, vol for grid cells, etc). Three additional
kinds of keywords can also be specified (c_ID, f_ID, v_name), where a compute or fix or variable provides the

32

values to be output. In each case, the compute, fix, or variable must generate per particle, per grid, or per surf
values for input to the corresponding dump command.

Fixes that write output files

Two fixes take various quantities as input and can write output files: fix ave/time and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the particle style which does not produce single values. Since a variable can refer to keywords
used by the stats_style command (like particle count), a wide variety of quantities can be time averaged and/or
output in this way. If the inputs are one or more scalar values, then the fix generates a global scalar or vector of
output. If the inputs are one or more vector values, then the fix generates a global vector or array of output. The
time-averaged output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the particle style. As explained above, variables themselves can contain references to global values
generated by stats keywords, computes, fixes, or other variables. Thus the fix print command is a means to output
a wide variety of quantities separate from normal statistical or dump file output.

Computes that process output quantities

The compute reduce command takes one or more per particle or per grid or per surf vector quantities as inputs and
"reduces" them (sum, min, max, ave) to scalar quantities. These are produced as output values which can be used
as input to other output commands.

Computes that generate values to output

Every compute in SPARTA produces either global or per particle or per grid or per surf values. The values can be
scalars or vectors or arrays of data. These values can be output using the other commands described in this
section. The doc page for each compute command describes what it produces. Computes that produce per particle
or per grid or per surf values have the word "particle" or "grid" or "surf" in their style name. Computes without
those words produce global values.

Fixes that generate values to output

Some fixes in SPARTA produces either global or per particle or per grid or per surf values which can be accessed
by other commands. The values can be scalars or vectors or arrays of data. These values can be output using the
other commands described in this section. The doc page for each fix command tells whether it produces any
output quantities and describes them.

Two fixes of particular interest for output are the fix ave/grid and fix ave/surf commands.

The fix ave/grid command enables time-averaging of per grid vectors. The user specifies one or more quantities
as input. These can be per grid vectors or ararys from compute or fix commands. If the input is a single vector,
then the fix generates a per grid vector. If the input is multiple vectors or array, the fix generates a per grid array.
The time-averaged output of this fix can also be used as input to other output commands.

The fix ave/surf command enables time-averaging of per surf vectors. The user specifies one or more quantities as
input. These can be per surf vectors or ararys from compute or fix commands. If the input is a single vector, then
the fix generates a per surf vector. If the input is multiple vectors or array, the fix generates a per surf array. The
time-averaged output of this fix can also be used as input to other output commands.

33

Variables that generate values to output

Variables defined in an input script generate either a global scalar value or a per particle vector (only
particle-style variables) when it is accessed. The formulas used to define equal- and particle-style variables can
contain references to the stats_style keywords and to global and per particle data generated by computes, fixes,
and other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from SPARTA. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command Input Output
stats_style global scalars screen, log file
dump particle per particle vectors dump file
dump grid per grid vectors dump file
dump surf per surf vectors dump file
fix print global scalar from variable screen, file
print global scalar from variable screen
computes N/A global or per particle/grid/surf scalar/vector/array
fixes N/A global or per particle/grid/surf scalar/vector/array
variables global scalars, per particle vectors global scalar, per particle vector
compute reduce per particle/grid/surf vectors global scalar/vector
fix ave/time global scalars/vectors global scalar/vector/array, file
fix ave/grid per grid vectors/arrays per grid vector/array
fix ave/surf per surf vectors/arrays per surf vector/array

4.5 Visualizing SPARTA snapshots

The dump image command can be used to do on-the-fly visualization as a simulation proceeds. It works by
creating a series of JPG or PNG or PPM files on specified timesteps, as well as movies. The images can include
particles, grid cell quantities, and/or surface element quantities. This is not a substitute for using an interactive
visualization package in post-processing mode, but on-the-fly visualization can be useful for debugging or making
a high-quality image of a particular snapshot of the simulation.

The dump command can be used to create snapshots of particle, grid cell, or surface element data as a simulation
runs. These can be post-processed and read in to other visualization packages.

A Python-based toolkit distributed by our group can read SPARTA particle dump files with columns of
user-specified particle information, and convert them to various formats or pipe them into visualization software

34

directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can convert SPARTA particle dump files
into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe SPARTA dump files directly into the Raster3d and
RasMol visualization programs. Pizza.py has tools that do interactive 3d OpenGL visualization and one that
creates SVG images of dump file snapshots.

Additional Pizza.py tools may be added that allow visualization of surface and grid cell information as output by
SPARTA.

4.6 Library interface to SPARTA

As described in Section 2.4, SPARTA can be built as a library, so that it can be called by another code, used in a
coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPARTA that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPARTA directly. The C++ code in the functions illustrates how to invoke
internal SPARTA operations. Note that SPARTA classes are defined within a SPARTA namespace
(SPARTA_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void sparta_open(int, char **, MPI_Comm, void **);
void sparta_close(void *);
void sparta_file(void *, char *);
char *sparta_command(void *, char *);

The sparta_open() function is used to initialize SPARTA, passing in a list of strings as if they were command-line
arguments when SPARTA is run in stand-alone mode from the command line, and a MPI communicator for
SPARTA to run under. It returns a ptr to the SPARTA object that is created, and which is used in subsequent
library calls. The sparta_open() function can be called multiple times, to create multiple instances of SPARTA.

SPARTA will run on the set of processors in the communicator. This means the calling code can run SPARTA on
all or a subset of processors. For example, a wrapper script might decide to alternate between SPARTA and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to SPARTA
and half to the other code and run both codes simultaneously before syncing them up periodically. Or it might
instantiate multiple instances of SPARTA to perform different calculations.

The sparta_close() function is used to shut down an instance of SPARTA and free all its memory.

The sparta_file() and sparta_command() functions are used to pass a file or string to SPARTA as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPARTA
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the sparta_command() calls with other calls to extract information from SPARTA, perform its own operations, or
call another code's library.

Other useful functions are also included in library.cpp. For example:

void *sparta_extract_global(void *, char *)
void *sparta_extract_compute(void *, char *, int, int)
void *sparta_extract_variable(void *, char *, char *)

This can extract various global quantities from SPARTA as well as values calculated by a compute or variable.

35

http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com

See the library.cpp file and its associated header file library.h for details.

Other functions may be added to the library interface as needed to allow reading from or writing to internal
SPARTA data structures.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPARTA and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can in principle access or change any SPARTA data you wish. The examples/COUPLE and python
directories have example C++ and C and Python codes which show how a driver code can link to SPARTA as a
library, run SPARTA on a subset of processors, grab data from SPARTA, change it, and put it back into
SPARTA.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

4.7 Coupling SPARTA to other codes

SPARTA is designed to allow it to be coupled to other codes. For example, a continuum finite element (FE)
simulation might use SPARTA grid cell quantities as boundary conditions on FE nodal points, compute a FE
solution, and return continuum flow conditions as boundary conditions for SPARTA to use.

SPARTA can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, SPARTA is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to SPARTA
as a library. See Section 8 of the documentation for info on how to add a new fix to SPARTA.

(2) Define a new SPARTA command that calls the other code. This is conceptually similar to method (1), but in
this case SPARTA and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a SPARTA run, but between runs. The SPARTA input script can be used to alternate
SPARTA runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPARTA thru files that the
command writes and reads.

See Section_modify of the documentation for how to add a new command to SPARTA.

(3) Use SPARTA as a library called by another code. In this case the other code is the driver and calls SPARTA
as needed. Or a wrapper code could link and call both SPARTA and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do
multiple short runs, driven by another program.

Examples of driver codes that call SPARTA as a library are included in the examples/COUPLE directory of the
SPARTA distribution; see examples/COUPLE/README for more details.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

36

Section 2.3 of the manual describes how to build SPARTA as a library. Once this is done, you can interface with
SPARTA either via C++, C, Fortran, or Python (or any other language that supports a vanilla C-like interface).
For example, from C++ you could create one (or more) "instances" of SPARTA, pass it an input script to process,
or execute individual commands, all by invoking the correct class methods in SPARTA. From C or Fortran you
can make function calls to do the same things. See Section_9 of the manual for a description of the Python
wrapper provided with SPARTA that operates through the SPARTA library interface.

The files src/library.cpp and library.h contain the C-style interface to SPARTA. See Section 4.6 of the manual for
a description of the interface and how to extend it for your needs.

Note that the sparta_open() function that creates an instance of SPARTA takes an MPI communicator as an
argument. This means that instance of SPARTA will run on the set of processors in the communicator. Thus the
calling code can run SPARTA on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPARTA and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPARTA and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPARTA to perform different
calculations.

4.8 Details of grid geometry in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track particles and to co-locate particles in
the same grid cell for performing collision and chemistry operations. Surface elements are also assigned to grid
cells they intersect with, so that particle/surface collisions can be efficiently computed.

SPARTA uses a Cartesian hierarchical grid. Cartesian means that the faces of a grid cell, at any level of the
hierarchy, are aligned with the Cartesian xyz axes. I.e. each grid cell is an axis-aligned pallelpiped or rectangular
box. The hierarchy of grid cells is defined in the following manner. The entire simulation box is a single "root"
grid cell at level 0 of the hierarchy. It is sub-divided into a regular Nx by Ny by Nz grid of cells, all at level 1 of
the hierarchy. "Regular" means all the Nx*Ny*Nz sub-divided cells within a parent cell are the same size. Each
Nx,Ny,Nz value >= 1 (although if Nx = Ny = Nz = 1 then obviously there is no sub-division). Any of the cells at
level 1 can be further sub-divided in the same manner to create cells at level 2, and recursively for levels 3, 4, etc.
The Nx,Ny,Nz values for sub-dividing an individual parent cell can be uniquely chosen. All level 2 cells do not
need to be sub-divided using the same Nx,Ny,Nz values. Grids for 2d and 3d simulations (see the dimension)
follow the same rules, except that Nz = 1 is required at every level of sub-division for 2d grids.

Note that this manner of defining a hierarchy allows for flexible grid cell refinement in any region of the
simulation domain. E.g. around a surface, or in a high-density region of the gas flow. Also note that a 3d oct-tree
(quad-tree in 2d) is a special case of the SPARTA hierarchical grid, where Nx = Ny = Nz = 2 is always used to
sub-divide a grid cell.

An example 2d hierarchical grid is shown in the diagram, for a circular surface object (in red) with the grid
refined on the upwind side of the object (flow from left to right). The first level coarse grid is 18x10. 2nd level
grid cells are defined in a subset of those cells with a 3x3 sub-division. A subset of the 2nd level cells contain 3rd
level grid cells via a further 3x3 sub-division.

37

In the rest of the SPARTA manual, the following terminology is used to refer to the cells of the hierarchical grid.
The flow region is the portion of the simulation domain that is "outside" any surface objects and is typically filled
with particles.

root cell = the simulation box itself•
parent cell = a grid cell at any level that is sub-divided further•
child cell = a grid cell that is not sub-divided further•
unsplit cell = a child cell not intersected by any surface elements•
cut cell = a child cell intersected by one or more surface elements, one resulting flow region•
split cell = a child cell intersected by two or more surface elemments, two or more resulting disjoint flow
regions

•

sub cell = one disjoint flow region portion of a split cell•

The list of parent cells in a simulation is stored by every processor and is read in by the read_grid command, or
defined by the create_grid command. Child cells are inferred by the same 2 commands and the union of all child
cells is the entire simulation domain. Child cells are distributed across processors, so that each child cell is owned
by exactly one processor, as discussed below.

When surface objects are defined via the read_surf command, they intersect child cells. In this contex
"intersection" by a surface element means a geometric overlap between the area of the surface element and the
volume of the grid cell (or length of element and area of grid cell in 2d). Thus an intersection includes a surface
triangle that only touches a grid cell on its face, edge, or at its corner point. When intersected by one or more
surface elements, a child cell becomes one of 3 flavors: unsplit, cut, or split. A child cell not intersected by any

38

surface elements is an unsplit cell. It can be entirely in the flow region or entirely inside a surface object. If a child
cell is intersected so that it is partitioned into two contiguous volumes, one in the flow region, the other inside a
surface object, then it is a cut cell. This is the usual case. Note that either the flow volume or inside volume can be
of size zero, if the surface only "touches" the grid cell, i.e. the intersection is only on a face, edge, or corner point
of the grid cell. The left side of the diagram below is an example, where red represents the flow region.
Sometimes a child cell can be partitioned by surface elements so that more than one contiguous flow region is
created. Then it is a split cell. Additionally, each of the two or more contiguous flow regions is a sub cell of the
split cell. The right side of the diagram shows a split cell with 3 sub cells.

The union of (1) unsplit cells that are in the flow region (not entirely interior to a surface object) and (2) flow
region portions of cut cells and (3) sub cells is the entire flow region of the simulation domain. These are the only
kinds of child cells that store particles. Split cells and unsplit cells interior to surface objects have no particles.

Every parent and child cell is assigned an ID by SPARTA. These IDs can be output in integer or string form by
the dump grid command, using its id and idstr attributes. The integer form can also be output by the compute
property/grid.

Here is how the grid cell ID is computed and stored by SPARTA. Say the 1st level grid is a 10x10x20
sub-division (2000 cells) of the root cell. The 1st level cells are numbered from 1 to 2000 with the x-dimension
varying fastest, then y, and finally the z-dimension slowest. Now say the 374th (out of 2000, 14 in x, 19 in y, 1 in
z) 1st-level cell has a 2x2x2 sub-division (8 cells), and consider the 4th 2nd-level cell (2 in x, 2 in y, 1 in z) within
the 374th cell. It could be a parent cell if it is further sub-divided, or a child cell if not. In either case its ID is the
same. The rightmost 11 bits of the integer ID are encoded with 374. This is because it requires 11 bits to represent
2000 cells (1 to 2000) at level 1. The next 4 bits are used to encode 1 to 8, specifically 4 in the case of this cell.
Thus the cell ID in integer format is 4*2048 + 374 = 8566. In string format it will be printed as 4-374, with dashes
separating the levels.

Note that a child cell has the same ID whether it is unsplit, cut, or split. Currently, sub cells of a split cell also
have the same ID, though that may change in the future.

The number of hierarchical levels a SPARTA grid can contain is limited to whether all cell IDs can be encoded in
an integer. By default cell IDs are stored in 32-bit integers. 64-bit integers can be used if SPARTA is compiled
with the -DSPARTA_BIGBIG option, as explained in Section 2.2.2.

For 32-bit cell IDs if every level uses a 2x2x2 sub-division which requires 4 bits (to store values from 1 to 8), then
a grid can have 7 levels. For 64-bit cell IDs, 15 levels could be defined.

39

The create_grid and balance and fix balance commands determine the assignment of child cells to processors. If a
child cell is assigned to a processor, that processor owns the cell whether it is an unsplit, cut, or split cell. It also
owns any sub cells that are part of a split cell.

Depending on how they the commands are used, the child cells assigned to each processor will either be
"clumped" or "dispersed".

Clumped means each processor's cells will be geometrically compact. Dispersed means the processor's cells will
be geometrically dispersed across the simulation domain and so they cannot be enclosed in a small bounding box.

An example of a clumped assignment is shown in this zoom-in of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid cells colored orange. A
compact bounding rectangle can be drawn around the orange cells which will contain only a few grid cells owned
by other processors. By contrast a dispersed assignment could scatter orange grid cells throughout the entire
simulation domain.

It is important to understand the difference between the two kinds of assignments and the effects they can have on
performance of a simulation. For example the create_grid and read_grid commands may produce dispersed
assignments, depending on the options used, which can be converted to a clumped assignment by the
balance_grid command.

Simulations typically run faster with clumped grid cell assignments. This is because the cost of communicating
particles is reduced if particles that move to a neighboring grid cell often stay on-processor. Similarly, some
stages of simulation setup may run faster with a clumped assignment. Examples are the finding of nearby ghost
grid cells and the computation of surface element intersections with grid cells. The latter operation is invoked
when the read_surf command is used.

If the spatial distribution of particles is highly irregular and/or dynamically changing, or if the computational
work per grid cell is otherwise highly imbalanced, a clumped assignment of grid cells to processors may not lead
to optimal balancing. In these scenarios a dispersed assignment of grid cells to processsors may run faster even
with the overhead of increased particle communication. This is because randomly assigning grid cells to
processors can balance the computational load in a statistical sense.

4.9 Details of surfaces in SPARTA

A SPARTA simulation can define one or more surface objects, each of which are read in via the read_surf. For 2d
simulations a surface object is a collection of connected line segments. For 3d simulations it is a collection of
connected triangles. The outward normal of lines or triangles, as defined in the surface file, points into the flow
region of the simulation box which is typically filled with particles. Depending on the orientation, surface objects
can thus be obstacles that particles flow around, or they can represent the outer boundary of an irregular shaped

40

region which particles are inside of.

See the read_surf doc page for a discussion of these topics:

Requirement that a surface object be "watertight", so that particles do not enter inside the surface or
escape it if used as an outer boundary.

•

Surface objects (one per file) that contain more than one physical object, e.g. two or more spheres in a
single file.

•

Use of geometric transformations (translation, rotation, scaling, inversion) to convert the surface object in
a file into different forms for use in different simulations.

•

Clipping a surface object to the simulation box to effectively use a portion of the object in a simulation,
e.g. a half sphere instead of a full sphere.

•

The kinds of surface objects that are illegal, including infinitely thin objects, ones with duplicate points,
or multiple surface or physical objects that touch or overlap.

•

The read_surf command assigns an ID to the surface object in a file. This can be used to reference the surface
elements in the object in other commands. For example, every surface object must have a collision model
assigned to it so that particle bounces off the surface can be computed. This is done via the surf_modify and
surf_collide commands.

As described in the previous Section 4.8, SPARTA overlays a grid over the simulation domain to track particles.
Surface elements are also assigned to grid cells they intersect with, so that particle/surface collisions can be
efficiently computed. Typically a grid cell size larger than the surface elements that intersect it may not desirable
since it means flow around the surface object will not be well resolved. The size of the smallest surface element in
the system is printed when the surface file is read. Note that if the surface object is clipped to the simulation box,
small lines or triangles can result near the box boundary due to the clipping operation.

The maximum number of surface elements that can intersect a single child grid cell is set by the global surfmax
command. The default limit is 100. The actual maximum number in any grid cell is also printed when the surface
file is read. Values this large or larger may cause particle moves to become expensive, since each time a particle
moves within that grid cell, possible collisions with all its overlapping surface elements must be computed.

4.10 Restarting a simulation

There are two ways to continue a long SPARTA simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to
disk using the restart command. At a later time, these binary files can be read via a read_restart command in a
new script.

Here is an example of a script that reads a binary restart file and then issues a new run command to continue
where the previous run left off. It illustrates what settings must be made in the new script. Details are discussed in
the documentation for the read_restart and write_restart commands.

Look at the in.collide input script provided in the bench directory of the SPARTA distribution to see the original
script that this script is based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran for 130 steps, one
at step 50, and one at step 100.

41

This script could be used to read the first restart file and re-run the last 80 timesteps:

read_restart tmp.restart.50

seed 12345
collide vss air ar.vss

stats 10
compute temp temp
stats_style step cpu np nattempt ncoll c_temp

timestep 7.00E-9
run 80

Note that the following commands do not need to be repeated because their settings are included in the restart file:
dimension, global, boundary, create_box, create_grid, species, mixture. However these commands do need to be
used, since their settings are not in the restart file: seed, collide, compute, fix, stats_style, timestep. The
read_restart doc page gives details.

If you actually use this script to perform a restarted run, you will notice that the statistics output does not match
exactly. On step 50, the collision counts are 0 in the restarted run, because the line is printed before the restarted
simulation begins. The collision counts in subsequent steps are similar but not identical. This is because new
random numbers are used for collisions in the restarted run. This affects all the randomized operations in a
simulation, so in general you should only expect a restarted run to be statistically similar to the original run.

4.11 Using the ambipolar approximation

The ambipolar approximation is a computationally efficient way to model low-density plasmas which contain
positively-charged ions and negatively-charged electrons. In this model, electrons are not free particles which
move independently. This would require a simulation with a very small timestep due to electon's small mass and
high speed (1000x that of an ion or neutral particle).

Instead each ambipolar electron is assumed to stay "close" to its parent ion, so that the plasma gas appears
macroscopically neutral. Each pair of particles thus moves together through the simulation domain, as if they
were a single particle, which is how they are stored within SPARTA. This means a normal timestep can be used.

There are two stages during a timestep when the coupled particles are broken apart and treated as an independent
ion and electron.

The first is during gas-phase collisions and chemistry. The ionized ambipolar particles in a grid cell are each split
into two particles (ion and electron) and each can participate in two-body collisions with any other particle in the
cell. Electron/electron collisions are actually not performed, but are tallied in the overall collision count. If
gas-phase chemistry is turned on, reactions involving ions and electrons can be specified, which include
dissociation, ionization, exchange, and recombination reactions. At the end of the collision/chemsitry operations
for the grid cell, there is still a one-to-one pairing between ambipolar ions and electrons. Each pair is recombined
into a single particle.

The second is during collisions with surface (or the boundaries of the simulation box) if a surface reaction model
is defined for the surface element or boundary. Just as with gas-phase chemistry, surface reactions involving
ambipolar species can be defined. For example, an ambipolar ion/electron pair can re-combine into a neutral
species during the collision.

42

Here are the SPARTA commands you can use to run a simulation using the ambipolar approximation. See the
input scripts in examples/ambi for an example.

Note that you will likely need to use two (or more mixtures) as arguments to various commands, one which
includes the ambipolar electron species, and one which does not. Example mixture commands for doing this are
shown below.

Use the fix ambipolar command to specify which species is the ambipolar electron and what (multiple) species are
ambipolar ions. This is required for all the other options listed here to work. The fix defines two custom
per-particles attributes, an integer vector called "ionambi" which stores a 1 for a particle if it is an ambipolar ion,
and a 0 otherwise. And a floating-point array called "velambi" which stores a 3-vector with the velocity of the
associated electron for each ambipolar ion or zeroes otherwise. Note that no particles should ever exist in the
simulation with a species matching ambipolar electrons. Such particles are only generated (and destroyed)
internally, as described above.

Use the collide_modify ambipolar yes command if you want to perform gas-phase collisions using the ambipolar
model. This is not required. If you do this, DO use a mixture which includes the ambipolar electron species, so
that electrons will participate in the collisions and reactions (if defined). You probably also want to specify a
mixture for the collide command which has two or more groups. One group is for the ambipolar electron species,
the other for ambipolar ions. Additional groups could exist for other species (e.g. neutrals), or those species could
be part of the ion group. Putting the ambipolar electron species in its own group should improve the efficiency of
the code due to the large disparity in electron versus ion/neutral velocities.

If you want to perform gas-phase chemistry for reactions involving ambipolar ions and electrons, use the react
command with an input file of reactions that include the ambipolar electron and ion species defined by the fix
ambipolar commmand. See the react command doc page for info the syntax required for ambipolar reactions.
Their reactants and products must be listed in specific order.

When creating particles, either by the create_particles or fix emit command variants, do NOT use a mixture that
includes the ambipolar electron species. If you do this, you will create "free" electrons which are not coupled to
an ambipolar ion. You can include ambipolar ions in the mixture. This will create ambipolar ions along with their
associated electron. The electron will be assigned a velocity consistent with its mass and the temperature of the
created particles. You can use the mixture copy and mixture delete commands to create a mixture that excludes
only the ambipolar electron species, e.g.

mixture all copy noElectron
mixture noElectron delete e

If you want ambipolar ions to re-combine with their electrons when they collide with surfaces, use the surf_react
command with an input file of surface reactions that includes recombination reactions like:

N+ + e -> N

See the surf_react doc page for syntax details. A sample surface reaction data file is provided in data/air.surf. You
assign the surface reaction model to surface or the simulation box boundaries via the surf_modify and
bound_modify commands.

For diagnositics and output, you can use the compute count and dump particle commands. The compute count
command generate counts of individual species, entire mixtures, and groups within mixtures. For example these
commands will include counts of ambipolar ions in statistical output:

compute myCount O+ N+ NO+ e
stats_style step nsreact nsreactave cpu np c_myCount

43

Note that the count for species "e" = ambipolar electrons should alwas be zero, since those particles only exist
during gas and surface collisions. The stats_style nsreact and nsreactave keywords print tallies of surface
reactions taking place.

The dump particle command can output the custom particle attributes defined by the fix ambipolar command. E.g.
this command

dump 1 particle 1000 tmp.dump id type x y z p_ionambi p_velambi

will output the ionambi flag = 1 for ambipolar ions, along with the vx,vy,vz of their associated ambipolar
electrons.

44

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

5. Example problems

The SPARTA distribution includes an examples sub-directory with several sample problems. Each problem is in a
sub-directory of its own. They are all small problems that run quickly, requiring at most a couple of minutes to
run on a desktop machine. Many are 2d so that they run more quickly and can be easily visualized. Each problem
has an input script (in.*) and produces a log file (log.*) when it runs. The data files they use for chemical species
or reaction parameters are copied from the data directory so the problems are self-contained.

Sample log file outputs on different machines and different numbers of processors are included in the directories
to compare your answers to. E.g. a log file like log.free.date.foo.P means it ran on P processors of machine "foo",
using the dated SPARTA version.

If the "dump image" lines in each script are uncommented, a series of image snapshots will be produced.
Animations of several of the examples can be viewed on the Movies section of the SPARTA WWW Site.

These are the sample problems in the examples sub-directories. See the examples/README file for more details.

chem = chemistry in a 3d box•
circle = 2d flow around a circular object•
collide = collisional motion in a 3d box•
free = free molecular motion in a 3d box•
sphere = 3d flow around a sphere•
spiky = 2d flow around a spiky circle•
step = 2d flow around a staircase of steps•

Here is how you might run and visualize one of the sample problems:

cd free
cp ../../src/spa_g++ . # copy SPARTA executable to this dir
spa_g++ <in.free # run the problem

Running the simulation produces the file log.sparta and optionall image.*.jpg. If you have the freely available
ImageMagick toolkit on your machine, you can run its "convert" command to create an animated GIF, and
visualize it from the FireFox browser as follows:

convert image*ppm movie.gif
firefox ./movie.gif

A similar command should work with other browsers. Or you can select "Open File" under the File menu of your
browser and load the animated GIF file directly.

45

http://sparta.sandia.gov
http://sparta.sandia.gov

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

5. Performance & scalability

The SPARTA distribution includes a bench sub-directory with several sample problems. The Benchmarks page of
the SPARTA WWW Site gives timing data for these problems run on different machines, for both strong and
weak scaling scenarioes:

free = free molecular flow in a box•
collide = collisional molecular flow in a box•
sphere = flow around a sphere•

For each problem there is an input script and sample log file outputs on different machines and different numbers
of processors. E.g. a log file like log.free.foo.1M.P means the the free molecular problem with 1 million grid cells
ran on P processors of machine "foo".

Each can be run as a serial benchmark (on one processor) or in parallel. In parallel, all the benchmarks can be run
as a fixed-size problem, meaning the same problem is run on various numbers of processors (strong scaling).
They can also be run as scaled-size problem, if the problem size is increased with the number of processors (weak
scaling).

Here is an example of how to run the benchmark problems. See the bench/README file for more details.

1-processor runs:

spa_g++ -v x 100 -v y 100 -v z 100 <in.free
spa_g++ -v x 100 -v y 100 -v z 100 <in.collide
spa_g++ -v x 50 -v y 50 -v z 50 <in.sphere

32-processor runs:

mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 <in.free
mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 <in.collide
mpirun -np 32 spa_g++ -v x 50 -v y 50 -v z 50 <in.sphere

Note that the benchmark scripts define variables that can be set from the command line that determine the size of
problem that is run. Specifically, the x,y,z variables specify the grid size (e.g. 100x100x100) that is used, and
variable n specifies the number of particles (10 per grid cell in this case).

46

http://sparta.sandia.gov
http://sparta.sandia.gov

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

7. Additional tools

SPARTA is designed to be a computational kernel for performing DSMC computations. Additional pre- and
post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are provided
with the SPARTA distribution in the tools directory and are described briefly below.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for SPARTA simulations. Pizza.py is written in Python and is available for
download from the Pizza.py web site.

Some of the Pizza.py tools relevant to SPARTA are as follows:

dump - read, write, manipulate particle dump files•
gl - 3d interactive visualization via OpenGL of dump or surface files•
sdata - read, write, manipulate surface files•
olog - read log files and extract columns of data•
vcr - VCR-style GUI for 3d interactive OpenGL visualization of dump or surface files•

The dump, sdata, and olog tools are included in the SPARTA distribution in the tools/pizza directory, and are
used by some of the scripts discussed below.

This is the list of tools included in the tools directory of the SPARTA distribution. Each is described in more
detail below.

dump2cfg - convert a particle dump file to CFG format•
dump2xyz - convert a particle dump file to XYZ format•
grid_refine - refine a grid around a surface•
log2txt - extract columns of info from a log file•
logplot - plot columns of info from a log file via GnuPlot•
paraview - converters of SPARTA data to ParaView format•
stl2surf - convert an STL text file into a SPARTA surface file•
surf_create - create a surface file with simple objects•
surf_transform - transform surface via tranlate/scale/rotate operations•

dump2cfg tool

This is a Python script that converts a SPARTA particle dump file into extended CFG format so that it can be
visualized by the AtomEye visualization program. AtomEye is a very fast particle visualizer, capable of
interactive visualizations of millions of particles on a desktop machine. It is commonly used in the materials
modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

47

http://sparta.sandia.gov
http://pizza.sandia.gov
http://www.python.org
http://pizza.sandia.gov
http://www.paraview.org
http://mt.seas.upenn.edu/Archive/Graphics/A

dump2xyz tool

This is a Python script that converts a SPARTA particle dump file into XYZ format so that it can be visualized by
various visualization packages that read XYZ formatted files. An example is VMD package, commonly used in
the molecular dynamics modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

grid_refine tool

This is a Python script that creates a SPARTA grid file adapted around the lines or triangles in a SPARTA surface
file. The resulting grid file can be read by the read_grid command. The surface file can be read by the read_surf
command.

See the header of the script for the various adaptivity options that are supported, and the syntax used to run it.

log2txt tool

This is a Python script that reads a SPARTA log file, extracts selected columns of statistical output, and writes
them to a text file. It knows how to concatenate log file info across multiple successive runs. The columnar output
can then be read by various plotting packages.

See the header of the script for the syntax used to run it.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

logplot tool

This is a Python script that reads a SPARTA log file, extracts the selected columns of statistical output, and plots
them via the GnuPlot program. It knows how to concatenate log file info across multiple successive runs.

See the header of the script for the syntax used to run it. You must have GnuPlot installed on your system to use
this script. If you can type "gnuplot" from the command line to start GnuPlot, it should work. If not (e.g. because
you need a path name), then edit these 2 lines as needed in pizza/gnu.py:

except: PIZZA_GNUPLOT = "gnuplot"
except: PIZZA_GNUTERM = "x11"

For example, the first could become "/home/smith/bin/gnuplot". The second should only need changing if
GnuPlot requires a different setting to plot to your screen.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

48

http://www.ks.uiuc.edu/Research/vmd

paraview tools

The tools/paraview directory has scripts which convert SPARTA grid and surface data (input and output) to
ParaView format.

ParaView is a popular, powerful, freely-available visualization package. You must have ParaView installed to use
the Python scripts. See tools/paraview/README for more details.

The scripts were developed by Tom Otahal (Sandia).

stl2surf tool

This is a Python script that reads a stereolithography (STL) text file and converts it to a SPARTA surface file.
STL files contain a collection of triangles and can be created by various mesh-generation programs. The format
for SPARTA surface files is described on the read_surf command doc page.

See the header of the script for the syntax used to run it, e.g.

% python stl2surf.py stlfile surffile

The script also checks the triangulated object to see if it is "watertight" and issues a warning if it is not, since
SPARTA will perform the same check. The read_surf command doc page explains what watertight means for 3d
objects.

surf_create tool

This is a Python script that creates a SPARTA surface file containing one or more simple objects whose surface is
represented as triangules (3d) or line segments (2d). Such files can be read by the read_surf command. The 3d
objects it supports are a sphere, box, and spikysphere (randomized radius at each point). The 2d objects it supports
are a circle, rectangle, triangle, and spikycircly (randomized radius at each point).

See the header of the script for the syntax used to run it.

surf_transform tool

This is a Python script that transforms a SPARTA surface file into a new surface file using various operations
supported by the read_surf command. These operations include translation, scaling, rotation, and inversion
(changing which side of the surface is inside vs outside).

See the header of the script for the syntax used to run it.

49

http://www.paraview.org

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

8. Modifying & extending SPARTA

This section describes how to extend SPARTA by modifying its source code.

8.1 Compute styles
8.2 Fix styles
8.3 Region styles
8.4 Collision styles
8.5 Surface collision styles
8.6 Chemistry styles
8.7 Dump styles
8.8 Input script commands

SPARTA is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPARTA and think it will be of general interest to users, please submit it to the developers for inclusion
in the released version of SPARTA.

The best way to add a new feature is to find a similar feature in SPARTA and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPARTA and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors, arrays,
structs).

The new features described in this section require you to write a new C++ derived class. Creating a new class
requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods
to work as a new option. Depending on how different your new feature is compared to existing features, you can
either derive from the base class itself, or from a derived class that already exists. Enabling SPARTA to invoke
the new class is as simple as putting the two source files in the src dir and re-building SPARTA.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPARTA more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files collide_foo.cpp and collide_foo.h that define a new class
CollideFoo that computes inter-particle collisions described in the classic 1997 paper by Foo, et al. If you wish to
invoke those potentials in a SPARTA input script with a command like

collide foo mix-ID params.foo 3.0

then your collide_foo.h file should be structured as follows:

#ifdef COLLIDE_CLASS CollideStyle(foo,CollideFoo) #else ... (class definition for CollideFoo) ... #endif

where "foo" is the style keyword in the collid command, and CollideFoo is the class name defined in your
collide_foo.cpp and collide_foo.h files.

When you re-build SPARTA, your new collision model becomes part of the executable and can be invoked with a
collide command like the example above. Arguments like a mixture ID, params.foo (a file with collision
parameters), and 3.0 can be defined and processed by your new class.

50

http://sparta.sandia.gov
http://sparta.sandia.gov/authors.html

As illustrated by this example, many kinds of options are referred to in the SPARTA documentation as the "style"
of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPARTA. Virtual functions in the base class header file which are set = 0 are ones that
must be defined in the new derived class to give it the functionality SPARTA expects. Virtual functions that are
not set to 0 are functions that can be optionally defined.

Here are additional guidelines for modifying SPARTA and adding new functionality:

Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

•

Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a large volume
of data on a single processor and analyze it. This runs the risk of seriously degrading the parallel
efficiency.

If you have a question about how to compute something or about internal SPARTA data structures or
algorithms, feel free to send an email to the developers.

•

If you add something you think is generally useful, also send an email to the developers so we can
consider adding it to the SPARTA distribution.

•

8.1 Compute styles

Compute style commands calculate instantaneous properties of the simulated system. They can be global
properties, or per particle or per grid cell or per surface element properties. The result can be single value or
multiple values (global or per particle or per grid or per surf).

Here is a brief description of methods to define in a new derived class. See compute.h for details. All of these
methods are optional.

init initialization before a run
compute_scalar compute a global scalar quantity
compute_vector compute a global vector of quantities
compute_per_particle compute one or more quantities per particle
compute_per_grid compute one or more quantities per grid cell
compute_per_surf compute one or more quantities per surface element
surf_tally call when a particle hits a surface element
boundary_tally call when a particle hits a simulation box boundary
memory_usage tally memory usage

Note that computes with "/particle" in their style name calculate per particle quantities, with "/grid" in their name
calculate per grid cell quantities, and with "/surf" in their name calculate per surface element properties. All others
calcuulate global quantities.

Flags may also need to be set by a compute to enable specific properties. See the compute.h header file for
one-line descriptions.

51

http://sparta.sandia.gov/authors.html
http://sparta.sandia.gov/authors.html

8.2 Fix styles

Fix style commands perform operations during the timestepping loop of a simulation. They can define methods
which are invoked at different points within the timestep. They can be used to insert particles, perform
load-balancing, or perform time-averaging of various quantities. They can also define and maintain new
per-particle vectors and arrays that define quantities that move with particles when they migrate from processor to
processor or when the grid is rebalanced or adapated. They can also produce output of various kinds, similar to
compute commands.

Here is a brief description of methods to define in a new derived class. See fix.h for details. All of these methods
are optional, except setmask().

setmask set flags that determine when the fix is called within a timestep
init initialization before a run
start_of_step called at beginning of timestep
end_of_step called at end of timestep
add_particle called when a particle is created
surf_react called when a surface reaction occurs
memory_usage tally memory usage

Flags may also need to be set by a fix to enable specific properties. See the fix.h header file for one-line
descriptions.

Fixes can interact with the Particle class to create new per-particle vectors and arrays and access and update their
values. These are the relevant Particle class methods:

add_custom add a new custom vector or array
find_custom find a previously defined custom vector or array
remove_custom remove a custom vector or array

See the fix ambipolar for an example of how these are used. It define an integer vector called "ionambi" to flag
particles as ambipolar ions, and a floatin-point array called "velambi" to store the velocity vector for the
associated electron.

8.3 Region styles

Region style commands define geometric regions within the simulation box. Other commands use regions to limit
their computational scope.

Here is a brief description of methods to define in a new derived class. See region.h for details. The inside()
method is required.

inside: determine whether a point is inside/outside the region

8.4 Collision styles

Collision style commands define collision models that calculate interactions between particles in the same grid
cell.

52

Here is a brief description of methods to define in a new derived class. See collide.h for details. All of these
methods are required except init() and modify_params().

init initialization before a run
modify_params process style-specific options of the collide_modify command
vremax_init estimate VREmax settings
attempt_collision compute # of collisions to attempt for entire cell
attempt_collision compute # of collisions to attempt between 2 species groups
test_collision determine if a collision bewteen 2 particles occurs
setup_collision pre-computation before a 2-particle collision
perform_collision calculate the outcome of a 2-particle collision

8.5 Surface collision styles

Surface collision style commands define collision models that calculate interactions between a particle and
surface element.

Here is a brief description of methods to define in a new derived class. See surf_collide.h for details. All of these
methods are required except dynamic().

init initialization before a run
collide perform a particle/surface-element collision
dynamic allow surface property to change during a simulation

8.6 Chemistry styles

Particle/particle chemistry models in SPARTA are specified by reaction style commands which define lists of
possible reactions and their parameters.

Here is a brief description of methods to define in a new derived class. See react.h for details. The init() method is
optional; the attempt() method is required.

init initialization before a run
attempt attempt a chemical reaction between two particles

8.7 Dump styles

Dump commands output snapshots of simulation data to a file periodically during a simulation, in a particular file
format. Per particle, per grid cell, or per surface element data can be output.

Here is a brief description of methods to define in a new derived class. See dump.h for details. The init_style(),
modify_param(), and memory_usage() methods are optional; all the others are required.

init_style style-specific initialization before a run
modify_param process style-specific options of the dump_modify command

53

write_header write the header of a snapshot to a file
count # of entities this processor will output
pack pack a processor's data into a buffer
write_data write a buffer of data to a file
memory_usage tally memory usage

8.8 Input script commands

New commands can be added to SPARTA that will be recognized in input scripts. For example, the
create_particles, read_surf, and run commands are all implemented in this fashion. When such a command is
encountered in an input script, SPARTA simply creates a class with the corresponding name, invokes the
"command" method of the class, and passes it the arguments from the input script. The command() method can
perform whatever operations it wishes on SPARTA data structures.

The single method the new class must define is as follows:

command operations performed by the input script command
Of course, the new class can define other methods and variables as needed.

54

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

9. Python interface to SPARTA

This section describes how to build and use SPARTA via a Python interface.

9.1 Building SPARTA as a shared library•
9.2 Installing the Python wrapper into Python•
9.3 Extending Python with MPI to run in parallel•
9.4 Testing the Python-SPARTA interface•
9.5 Using SPARTA from Python•
9.6 Example Python scripts that use SPARTA•

The SPARTA distribution includes the file python/sparta.py which wraps the library interface to SPARTA. This
file makes it is possible to run SPARTA, invoke SPARTA commands or give it an input script, extract SPARTA
results, and modify internal SPARTA variables, either from a Python script or interactively from a Python
prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not generally
work, unless you have a package installed that extends your Python to enable multiple instances of Python to read
what you type.

Python is a powerful scripting and programming language which can be used to wrap software like SPARTA and
many other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or
multiscale model. See Section 4.7 of the manual and the examples/COUPLE directory of the distribution for more
ideas about coupling SPARTA to other codes. See Section 2.4 about how to build SPARTA as a library, and
Section 4.6 for a description of the library interface provided in src/library.cpp and src/library.h and how to
extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be easy
to add functions to. This can extend the Python inteface as well. See details below.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

By using the Python interface, SPARTA can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as SPARTA runs. Examples of such scripts are included in the python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within SPARTA,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking SPARTA
thru Python will be negligible.

Before using SPARTA from a Python script, you need to do two things. You need to build SPARTA as a dynamic
shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the Python
wrapper file python/sparta.py. Both these steps are discussed below. If you wish to run SPARTA in parallel from
Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for SPARTA uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

55

http://sparta.sandia.gov
http://www.python.org

9.1 Building SPARTA as a shared library

Instructions on how to build SPARTA as a shared library are given in Section 2.4. A shared library is one that is
dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not ".a".

From the src directory, type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine target name, such as icc or g++ or serial. This should create the file libsparta_foo.so in
the src directory, as well as a soft link libsparta.so, which is what the Python wrapper will load by default. Note
that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section 2.3 for more details, especially if your SPARTA build uses auxiliary libraries like MPI
which may not be built as shared libraries on your system.

9.2 Installing the Python wrapper into Python

For Python to invoke SPARTA, there are 2 files it needs to know about:

python/sparta.py•
src/libsparta.so•

Sparta.py is the Python wrapper on the SPARTA library interface. Libsparta.so is the shared SPARTA library that
Python loads, as described above.

You can insure Python can find these files in one of two ways:

set two environment variables•
run the python/install.py script•

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/sparta/python
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/sparta/src

If you use the python/install.py script, you need to invoke it every time you rebuild SPARTA (as a shared library)
or make changes to the python/sparta.py file.

You can invoke install.py from the python directory as

% python install.py [libdir] [pydir]

The optional libdir is where to copy the SPARTA shared library to; the default is /usr/local/lib. The optional pydir
is where to copy the sparta.py file to; the default is the site-packages directory of the version of Python that is
running the install script.

Note that libdir must be a location that is in your default LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you

56

want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]

You can also invoke install.py from the make command in the src directory as

% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the SPARTA shared library (see this section
below), you will need to manually copy files like libsparta_g++.so into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

9.3 Extending Python with MPI to run in parallel

If you wish to run SPARTA in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

pyMPI•
maroonmpi•
mpi4py•
myMPI•
Pypar•

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke SPARTA in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with SPARTA, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

import numpy

57

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type

import pypar

without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and SPARTA in parallel from Python, you must insure both are using the
same version of MPI. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your SPARTA build is explicit about which MPI it is using, since you specify the details in
your lo-level src/MAKE/Makefile.foo file. Pypar uses the "mpicc" command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that SPARTA is using. If you have problems running both Pypar and SPARTA together, this is an
issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

9.4 Testing the Python-SPARTA interface

To test if SPARTA is callable from Python, launch Python interactively and type:

>>> from sparta import sparta
>>> spa = sparta()

If you get no errors, you're ready to use SPARTA from Python. If the 2nd command fails, the most common error
to see is

OSError: Could not load SPARTA dynamic library

which means Python was unable to load the SPARTA shared library. This typically occurs if the system can't find
the SPARTA shared library or one of the auxiliary shared libraries it depends on, or if something about the library

58

is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the sparta.py file:

>>> from ctypes import CDLL
>>> CDLL("libsparta.so")

If an error occurs, carefully go thru the steps in Section 2.4 and above about building a shared library and about
insuring Python can find the necessary two files it needs.

Test SPARTA and Python in serial:

To run a SPARTA test in serial, type these lines into Python interactively from the bench directory:

>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file("in.free")

Or put the same lines in the file test.py and run it as

% python test.py

Either way, you should see the results of running the in.free benchmark on a single processor appear on the
screen, the same as if you had typed something like:

spa_g++ <in.free

You can also pass command-line switches, e.g. to set input script variables, through the Python interface.

Replacing the "spa = sparta()" line above with

spa = sparta("","-v","x","100","-v","y","100","-v","z","100")

is the same as typing

spa_g++ -v x 100 -v y 100 -v z 100 <in.free

from the command line.

Test SPARTA and Python in parallel:

To run SPARTA in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar
from sparta import sparta
spa = sparta()
spa.file("in.free")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize()

You can then run it in parallel as:

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

59

http://datamining.anu.edu.au/~ole/pypar

% mpirun -np 4 spa_g++ <in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
SPARTA independently on each of the P processors specified in the mpirun command. In this case you should get
4 sets of output, each showing that a SPARTA run was made on a single processor, instead of one set of output
showing that SPARTA ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not working
correctly.

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for SPARTA) can be invoked in one of several ways:

% python foo.script
% python -i foo.script
% foo.script

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and requires that you have made the script file
executable:

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

9.5 Using SPARTA from Python

The Python interface to SPARTA consists of a Python "sparta" module, the source code for which is in
python/sparta.py, which creates a "sparta" object, with a set of methods that can be invoked on that object. The
sample Python code below assumes you have first imported the "sparta" module in your Python script, as follows:

from sparta import sparta

These are the methods defined by the sparta module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the SPARTA library from a C++ or C or Fortran program.

spa = sparta() # create a SPARTA object using the default libsparta.so library
spa = sparta("g++") # create a SPARTA object using the libsparta_g++.so library
spa = sparta("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
spa = sparta("g++",list)

spa.close() # destroy a SPARTA object

spa.file(file) # run an entire input script, file = "in.lj"

60

spa.command(cmd) # invoke a single SPARTA command, cmd = "run 100"

fnum = spa.extract_global(name,type) # extract a global quantity
 # name = "dt", "fnum", etc
 # type = 0 = int
 # 1 = double

temp = spa.extract_compute(id,style,type) # extract value(s) from a compute
 # id = ID of compute
 # style = 0 = global data
 # 1 = per particle data
 # 2 = per grid cell data
 # 3 = per surf element data
 # type = 0 = scalar
 # 1 = vector
 # 2 = array

var = spa.extract_variable(name,flag) # extract value(s) from a variable
 # name = name of variable
 # flag = 0 = equal-style variable
 # 1 = particle-style variable

IMPORTANT NOTE: Currently, the creation of a SPARTA object from within sparta.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the SPARTA instance runs on a subset of
processors if desired, but I don't know how to do it from Pypar. So for now, it runs with MPI_COMM_WORLD,
which is all the processors. If someone figures out how to do this with one or more of the Python wrappers for
MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple SPARTA objects in your Python script, and coordinate and run multiple
simulations, e.g.

from sparta import sparta
spa1 = sparta()
spa2 = sparta()
spa1.file("in.file1")
spa2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_compute(), and extract_variable() methods return values or pointers to data
structures internal to SPARTA.

For extract_global() see the src/library.cpp file for the list of valid names. New names can easily be added. A
double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_compute(), the global, per particle, per grid cell, or per surface element results calulated by the
compute can be accessed. What is returned depends on whether the compute calculates a scalar or vector or array.
For a scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the
internal SPARTA data is returned, which you can use via normal Python subscripting. See Section 4.4 of the
manual for a discussion of global, per particle, per grid, and per surf data, and of scalar, vector, and array data
types. See the doc pages for individual computes for a description of what they calculate and store.

For extract_variable(), an equal-style or particle-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For particle-style
variables, a vector of doubles is returned, one value per particle, which you can use via normal Python

61

subscripting.

As noted above, these Python class methods correspond one-to-one with the functions in the SPARTA library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

Add a new interface function to src/library.cpp and src/library.h.•
Rebuild SPARTA as a shared library.•
Add a wrapper method to python/sparta.py for this interface function.•
You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?•

9.6 Example Python scripts that use SPARTA

There are demonstration Python scripts included in the python/examples directory of the SPARTA distribution, to
illustrate what is possible when Python wraps SPARTA.

See the python/README file for more details.

62

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

10. Errors

This section describes the various kinds of errors you can encounter when using SPARTA.

10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

10.1 Common problems

If two SPARTA runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. On different machines, there can be numerical round-off in the computations which
causes slight differences in particle trajectories or the number of particles, which will lead to numerical
divergence of the particle trajectores and averaged statistical quantities within a few 100s or few 1000s of
timesteps. When running on different numbers of processors, random numbers are used in different ways, so two
simulations can be immediately different. However, the statistical properties (e.g. overall particle temperature or
per grid cell temperature or surface energy flux) for the two runs on different machines or on different numbers of
processors should still be similar.

A SPARTA simulation typically has two stages, setup and run. Most SPARTA errors are detected at setup time;
others like running out of memory may not occur until the middle of a run.

SPARTA tries to flag errors and print informative error messages so you can fix the problem. Of course,
SPARTA cannot figure out physics or numerical mistakes, like choosing too big a timestep or specifying
erroneous collision parameters. If you run into errors that SPARTA doesn't catch that you think it should flag,
please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.sparta file, or using the echo command in your script or "-echo screen"
as a command-line argument to see it on the screen. For a given command, SPARTA expects certain arguments in
a specified order. If you mess this up, SPARTA will often flag the error, but it may read a bogus argument and
assign a value that is valid, but not what you wanted.

Generally, SPARTA will print a message to the screen and logfile and exit gracefully when it encounters a fatal
error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the
WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to
the screen, not to the logfile, to avoid cluttering up statistical output. If SPARTA crashes or hangs without spitting
out an error message first then it could be a bug (see the next section) or one of the following cases:

SPARTA runs in the available memory a processor allows to be allocated. Most reasonable runs are compute
limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large memory
allocations in the code are done via C-style malloc's which will generate an error message if you run out of
memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky, you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since SPARTA doesn't trap on those errors.

Illegal arithmetic can cause SPARTA to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild statistical values or NaN values in your SPARTA output,
something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out statistical

63

http://sparta.sandia.gov
http://sparta.sandia.gov/authors.html

info frequently (e.g. every timestep) via the stats command so you can monitor what is happening. Visualizing the
particle motion is also a good idea to insure your model is behaving as you expect.

In parallel, one way SPARTA can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

10.2 Reporting bugs

If you are confident that you have found a bug in SPARTA, please follow these steps.

Check the New features and bug fixes section of the SPARTA web site to see if the bug has already been fixed.

If not, please email a description of the problem to the developers.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
particles and grid cells and fewest number of processors and with the simplest and quick-to-run input script that
reproduces the bug. And try to identify what command or combination of commands is causing the problem.

10.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPARTA prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Error and
warning messages also list the source file and line number where the error was generated. For example, this
message

ERROR: Illegal create_particles command (create_particles.cpp:68)

means that line #68 in the file src/create_particles.cpp generated the error. Looking in the source code may help
you figure out what went wrong.

Errors:

%d read_surf point pairs are too close
A pair of points is very close together, relative to grid size, inidicating the grid is too large, or an
ill-formed surface.

%d read_surf points are not inside simulation box
If clipping was not performed, all points in surf file must be inside (or on surface of) simulation box.

%d surface elements not assigned to a collision model
All surface elements must be assigned to a surface collision model via the surf_modify command before a
simulation is perforemd.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

Axi-symmetry is not yet supported in SPARTA
This error condition will be removed after axi-symmetry is fully implemented.

64

http://sparta.sandia.gov/bug.html
http://sparta.sandia.gov
http://sparta.sandia.gov/authors.html

Axi-symmetry only allowed for 2d simulation
Self-explanatory.

BPG edge on more than 2 faces
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Bad grid of processors for balance_grid block
Product of Px,Py,Pz must equal total number of processors.

Bad grid of processors for create_grid
For block style, product of Px,Py,Pz must equal total number of processors.

Bigint setting in spatype.h is invalid
Size of bigint is less than size of smallint.

Bigint setting in spatype.h is not compatible
Bigint size stored in restart file is not consistent with SPARTA version you are running.

Both restart files must use % or neither
Self-explanatory.

Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.

Bound_modify surf requires wall be a surface
The box boundary must be of style "s" to be assigned a surface collision model.

Bound_modify surf_collide ID is unknown
Self-explanatory.

Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.

Box boundary not assigned a surf_collide ID
Any box boundary of style "s" must be assigned to a surface collision model via the bound_modify
command, before a simulation is performed.

Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value
for all 3 dimensions.

Box ylo must be 0.0 for axi-symmetric model
Self-explanatory.

Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

Cannot add new species to mixture all or species
This is done automatically for these 2 mixtures when each species is defined by the species command.

Cannot balance grid before grid is defined
Self-explanatory.

Cannot create grid before simulation box is defined
Self-explanatory.

Cannot create grid when grid is already defined
Self-explanatory.

Cannot create particles before grid is defined
Self-explanatory.

Cannot create particles before simulation box is defined
Self-explanatory.

Cannot create/grow a vector/array of pointers for %s
SPARTA code is making an illegal call to the templated memory allocaters, to create a vector or array of
pointers.

Cannot create_box after simulation box is defined
A simulation box can only be defined once.

65

Cannot open VSS parameter file %s
Self-explantory.

Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.

Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed
file, also check that the gzip executable can be found and run.

Cannot open file variable file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix print file %s
The output file generated by the fix print command cannot be opened

Cannot open gzipped file
SPARTA was compiled without support for reading and writing gzipped files through a pipeline to the
gzip program with -DSPARTA_GZIP.

Cannot open input script %s
Self-explanatory.

Cannot open log.sparta
The default SPARTA log file cannot be opened. Check that the directory you are running in allows for
files to be created.

Cannot open logfile
The SPARTA log file named in a command-line argument cannot be opened. Check that the path and
name are correct.

Cannot open logfile %s
The SPARTA log file specified in the input script cannot be opened. Check that the path and name are
correct.

Cannot open print file %s
Self-explanatory.

Cannot open reaction file %s
Self-explanatory.

Cannot open restart file %s
The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed
file, also check that the gzip executable can be found and run.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open species file %s
Self-explanatory.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot read grid before simulation box is defined
Self-explanatory.

Cannot read grid when grid is already defined
Self-explanatory.

66

Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.

Cannot read_surf after particles are defined
This is because the newly read surface objects may enclose particles.

Cannot read_surf before grid ghost cells are defined
This needs to be documented if keep this restriction.

Cannot read_surf before grid is defined
Self-explantory.

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot reset timestep with a time-dependent fix defined
The timestep cannot be reset when a fix that keeps track of elapsed time is in place.

Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.

Cannot set global surfmax when surfaces already exist
This setting must be made before any surfac elements are read via the read_surf command.

Cannot use collide_modify with no collisions defined
A collision style must be specified first.

Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.

Cannot use dump_modify fileper without % in dump file name
Self-explanatory.

Cannot use dump_modify nfile without % in dump file name
Self-explanatory.

Cannot use fix inflow in y dimension for axisymmetric
This is because the y dimension boundaries cannot be inflow boundaries for an axisymmetric model.

Cannot use fix inflow in z dimension for 2d simulation
Self-explanatory.

Cannot use fix inflow n > 0 with perspecies yes
This is because the perspecies option calculates the number of particles to insert itself.

Cannot use fix inflow on periodic boundary
Self-explanatory.

Cannot use group keyword with mixture all or species
This is because the groups for these 2 mixtures are pre-defined.

Cannot use include command within an if command
Self-explanatory.

Cannot use non-rcb fix balance with a grid cutoff
This is because the load-balancing will generate a partitioning of cells to processors that is dispersed and
which will not work with a grid cutoff >= 0.0.

Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.

Cannot use specified create_grid options with more than one level
When defining a grid with more than one level, the other create_grid keywords (stride, clump, block, etc)
cannot be used. The child grid cells will be assigned to processors in round-robin order as explained on
the create_grid doc page.

Cannot use swiggle in variable formula between runs
This is a function of elapsed time.

Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.

Cannot use weight cell radius unless axisymmetric
An axisymmetric model is required for this style of cell weighting.

Cannot use write_restart fileper without % in restart file name

67

Self-explanatory.
Cannot use write_restart nfile without % in restart file name

Self-explanatory.
Cannot weight cells before grid is defined

Self-explanatory.
Cannot write grid when grid is not defined

Self-explanatory.
Cannot write restart file before grid is defined

Self-explanatory.
Cell ID has too many bits

Cell IDs must fit in 32 bits (SPARTA small integer) or 64 bits (SPARTA big integer), as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details. And see Section 4.8 for details on how cell
IDs are formatted.

Cell type mis-match when marking on neigh proc
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Cell type mis-match when marking on self
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Cellint setting in spatype.h is not compatible
Cellint size stored in restart file is not consistent with SPARTA version you are running.

Collision mixture does not contain all species
The specified mixture must contain all species in the simulation so that they can be assigned to collision
groups.

Collision mixture does not exist
Self-explantory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for fix ave/grid does not exist
Self-explanatory.

Compute ID for fix ave/surf does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute boundary mixture ID does not exist
Self-explanatory.

Compute grid mixture ID does not exist
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global or surf values
The compute reduce command does not operate on this kind of values. The variable command has special
functions that can reduce global values.

Compute reduce compute does not calculate a per-grid array
This is necessary if a column index is used to specify the compute.

Compute reduce compute does not calculate a per-grid vector
This is necessary if no column index is used to specify the compute.

Compute reduce compute does not calculate a per-particle array
This is necessary if a column index is used to specify the compute.

68

Compute reduce compute does not calculate a per-particle vector
This is necessary if no column index is used to specify the compute.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a per-grid array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-grid vector
This is necessary if no column index is used to specify the fix.

Compute reduce fix does not calculate a per-particle array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-particle vector
This is necessary if no column index is used to specify the fix.

Compute reduce fix does not calculate a per-surf array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-surf vector
This is necessary if no column index is used to specify the fix.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not particle-style variable
This is the only style of variable that can be reduced.

Compute sonine/grid mixture ID does not exist
Self-explanatory.

Compute surf mixture ID does not exist
Self-explanatory.

Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the
last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.

Could not create a single particle
The specified position was either not inside the simulation domain or not inside a grid cell with no
intersections with any defined surface elements.

Could not find compute ID to delete
Self-explanatory.

Could not find dump grid compute ID
Self-explanatory.

Could not find dump grid fix ID
Self-explanatory.

Could not find dump grid variable name
Self-explanatory.

Could not find dump image compute ID
Self-explanatory.

Could not find dump image fix ID
Self-explanatory.

Could not find dump modify compute ID
Self-explanatory.

Could not find dump modify fix ID
Self-explanatory.

Could not find dump modify variable name
Self-explanatory.

Could not find dump particle compute ID

69

Self-explanatory.
Could not find dump particle fix ID

Self-explanatory.
Could not find dump particle variable name

Self-explanatory.
Could not find dump surf compute ID

Self-explanatory.
Could not find dump surf fix ID

Self-explanatory.
Could not find dump surf variable name

Self-explanatory.
Could not find fix ID to delete

Self-explanatory.
Could not find split point in split cell

This is an error when calculating how a grid cell is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Could not find stats compute ID
Compute ID specified in stats_style command does not exist.

Could not find stats fix ID
Fix ID specified in stats_style command does not exist.

Could not find stats variable name
Self-explanatory.

Could not find surf_modify sc-ID
Self-explanatory.

Could not find surf_modify surf-ID
Self-explanatory.

Could not find undump ID
A dump ID used in the undump command does not exist.

Cound not find dump_modify ID
Self-explanatory.

Create_box z box bounds must straddle 0.0 for 2d simulations
Self-explanatory.

Create_grid nz value must be 1 for a 2d simulation
Self-explanatory.

Create_particles global option not yet implemented
Self-explantory.

Create_particles mixture ID does not exist
Self-explanatory.

Create_particles single requires z = 0 for 2d simulation
Self-explanatory.

Create_particles species ID does not exist
Self-explanatory.

Created incorrect # of particles: %ld versus %ld
The create_particles command did not function properly.

Delete region ID does not exist
Self-explanatory.

Did not assign all restart particles correctly
One or more particles in the restart file were not assigned to a processor. Please report the issue to the
SPARTA developers.

Did not assign all restart split grid cells correctly
One or more split grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

70

Did not assign all restart sub grid cells correctly
One or more sub grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

Did not assign all restart unsplit grid cells correctly
One or more unsplit grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.

Divide by 0 in variable formula
Self-explanatory.

Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Dump grid and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump grid output does not match these timesteps.

Dump grid compute does not calculate per-grid array
Self-explanatory.

Dump grid compute does not compute per-grid info
Self-explanatory.

Dump grid compute vector is accessed out-of-range
Self-explanatory.

Dump grid fix does not compute per-grid array
Self-explanatory.

Dump grid fix does not compute per-grid info
Self-explanatory.

Dump grid fix vector is accessed out-of-range
Self-explanatory.

Dump grid variable is not grid-style variable
Self-explanatory.

Dump image and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump image output does not match these timesteps.

Dump image cannot use grid and gridx/gridy/gridz
Can only use grid option or one or more of grid x,y,z options by themselves, not together.

Dump image compute does not have requested column
Self-explanatory.

Dump image compute does not produce a vector
Self-explanatory.

Dump image compute is not a per-grid compute
Self-explanatory.

Dump image compute is not a per-surf compute
Self-explanatory.

Dump image fix does not have requested column
Self-explanatory.

Dump image fix does not produce a vector
Self-explanatory.

Dump image fix does not produce per-grid values
Self-explanatory.

Dump image fix does not produce per-surf values
Self-explanatory.

Dump image persp option is not yet supported
Self-explanatory.

Dump image requires one snapshot per file
Use a "*" in the filename.

71

Dump modify compute ID does not compute per-particle array
Self-explanatory.

Dump modify compute ID does not compute per-particle info
Self-explanatory.

Dump modify compute ID does not compute per-particle vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify fix ID does not compute per-particle array
Self-explanatory.

Dump modify fix ID does not compute per-particle info
Self-explanatory.

Dump modify fix ID does not compute per-particle vector
Self-explanatory.

Dump modify fix ID vector is not large enough
Self-explanatory.

Dump modify variable is not particle-style variable
Self-explanatory.

Dump particle and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump particle output does not match these timesteps.

Dump particle compute does not calculate per-particle array
Self-explanatory.

Dump particle compute does not calculate per-particle vector
Self-explanatory.

Dump particle compute does not compute per-particle info
Self-explanatory.

Dump particle compute vector is accessed out-of-range
Self-explanatory.

Dump particle fix does not compute per-particle array
Self-explanatory.

Dump particle fix does not compute per-particle info
Self-explanatory.

Dump particle fix does not compute per-particle vector
Self-explanatory.

Dump particle fix vector is accessed out-of-range
Self-explanatory.

Dump particle variable is not particle-style variable
Self-explanatory.

Dump surf and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump surf output does not match these timesteps.

Dump surf compute does not calculate per-surf array
Self-explanatory.

Dump surf compute does not compute per-surf info
Self-explanatory.

Dump surf compute vector is accessed out-of-range
Self-explanatory.

Dump surf fix does not compute per-surf array
Self-explanatory.

Dump surf fix does not compute per-surf info
Self-explanatory.

Dump surf fix vector is accessed out-of-range
Self-explanatory.

72

Dump surf variable is not surf-style variable
Self-explanatory.

Dump_modify buffer yes not allowed for this style
Not all dump styles allow dump_modify buffer yes. See the dump_modify doc page.

Dump_modify region ID does not exist
Self-explanatory.

Duplicate cell ID in grid file
Parent cell IDs must be unique.

Edge not part of 2 vertices
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Edge part of invalid vertex
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Edge part of same vertex twice
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.

Failed to allocate %ld bytes for array %s
The SPARTA simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to open FFmpeg pipeline to file %s
The specified file cannot be opened. Check that the path and name are correct and writable and that the
FFmpeg executable can be found and run.

Failed to reallocate %ld bytes for array %s
The SPARTA simulation has run out of memory. You need to run a smaller simulation or on more
processors.

File variable could not read value
Check the file assigned to the variable.

Fix ID for compute reduce does not exist
Self-explanatory.

Fix ID for fix ave/grid does not exist
Self-explanatory.

Fix ID for fix ave/surf does not exist
Self-explanatory.

Fix ID for fix ave/time does not exist
Self-explanatory.

Fix ID must be alphanumeric or underscore characters
Self-explanatory.

Fix ave/grid compute array is accessed out-of-range
Self-explanatory.

Fix ave/grid compute does not calculate a per-grid array
Self-explanatory.

Fix ave/grid compute does not calculate a per-grid vector
Self-explanatory.

Fix ave/grid compute does not calculate per-grid values
Self-explanatory.

Fix ave/grid fix array is accessed out-of-range
Self-explanatory.

Fix ave/grid fix does not calculate a per-grid array
Self-explanatory.

73

Fix ave/grid fix does not calculate a per-grid vector
Self-explanatory.

Fix ave/grid fix does not calculate per-grid values
Self-explanatory.

Fix ave/grid variable is not grid-style variable
Self-explanatory.

Fix ave/surf compute array is accessed out-of-range
Self-explanatory.

Fix ave/surf compute does not calculate a per-surf array
Self-explanatory.

Fix ave/surf compute does not calculate a per-surf vector
Self-explanatory.

Fix ave/surf compute does not calculate per-surf values
Self-explanatory.

Fix ave/surf fix array is accessed out-of-range
Self-explanatory.

Fix ave/surf fix does not calculate a per-surf array
Self-explanatory.

Fix ave/surf fix does not calculate a per-surf vector
Self-explanatory.

Fix ave/surf fix does not calculate per-surf values
Self-explanatory.

Fix ave/surf variable is not surf-style variable
Self-explanatory.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self-explanatory.

Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time compute does not calculate a scalar
Self-explantory.

Fix ave/time compute does not calculate a vector
Self-explantory.

Fix ave/time compute does not calculate an array
Self-explanatory.

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time fix does not calculate a scalar
Self-explanatory.

Fix ave/time fix does not calculate a vector
Self-explanatory.

Fix ave/time fix does not calculate an array
Self-explanatory.

Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time variable is not equal-style variable
Self-explanatory.

Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.

74

Fix for fix ave/grid not computed at compatible time
Fixes generate values on specific timesteps. Fix ave/grid is requesting a value on a non-allowed timestep.

Fix for fix ave/surf not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/surf is requesting a value on a non-allowed
timestep.

Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.

Fix in variable not computed at compatible time
Fixes generate their values on specific timesteps. The variable is requesting the values on a non-allowed
timestep.

Fix inflow mixture ID does not exist
Self-explanatory.

Fix inflow used on outflow boundary
Self-explanatory.

Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a non-allowed
timestep.

Found edge in same direction
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.

Gravity in y not allowed for axi-symmetric model
Self-explanatory.

Gravity in z not allowed for 2d
Self-explanatory.

Grid cell corner points on boundary marked as unknown = %d
Corner points of grid cells on the boundary of the simulation domain were not all marked successfully as
inside, outside, or overlapping with surface elements. Please report the issue to the SPARTA developers.

Grid cells marked as unknown = %d
Grid cell marking as inside, outside, or overlapping with surface elements did not successfully mark all
cells. Please report the issue to the SPARTA developers.

Grid cutoff is longer than box length in a periodic dimension
This is not allowed. Reduce the size of the cutoff specified by the global gridcut command.

Grid file does not contain parents
No parent cells appeared in the grid file.

Grid in/out other-mark error %d\n
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Grid in/out self-mark error %d for icell %d, icorner %d, connect %d %d, other cell %d, other corner %d, values
%d %d\n

A grid cell was incorrectly marked as inside, outside, or overlapping with surface elements. Please report
the issue to the SPARTA developers.

Grid-style variables are not yet implemented
Self-explanatory.

Illegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPARTA to see the offending line.

Inconsistent surface to grid mapping in read_restart
When surface elements were mapped to grid cells after reading a restart file, an inconsitent count of
elements in a grid cell was found, as compared to the original simulation, which should not happen.

75

Please report the issue to the SPARTA developers.
Incorrect format of parent cell in grid file

Number of words in a parent cell line was not the expected number.
Incorrect line format in VSS parameter file

Number of parameters in a line read from file is not valid.
Incorrect line format in species file

Line read did not have expected number of fields.
Incorrect line format in surf file

Self-explanatory.
Incorrect point format in surf file

Self-explanatory.
Incorrect triangle format in surf file

Self-explanatory.
Index between variable brackets must be positive

Self-explanatory.
Input line quote not followed by whitespace

An end quote must be followed by whitespace.
Invalid Boolean syntax in if command

Self-explanatory.
Invalid Nx,Ny,Nz values in grid file

A Nx or Ny or Nz value for a parent cell is <= 0.
Invalid SPARTA restart file

The file does not appear to be a SPARTA restart file since it does not have the expected magic string at
the beginning.

Invalid attribute in dump grid command
Self-explanatory.

Invalid attribute in dump modify command
Self-explantory.

Invalid attribute in dump particle command
Self-explanatory.

Invalid attribute in dump surf command
Self-explanatory.

Invalid balance_grid style for non-uniform grid
Some balance styles can only be used when the grid is uniform. See the command doc page for details.

Invalid call to ComputeGrid::post_process_grid()
This indicates a coding error. Please report the issue to the SPARTA developers.

Invalid call to ComputeSonineGrid::post_process_grid()
This indicates a coding error. Please report the issue to the SPARTA developers.

Invalid cell ID in grid file
A cell ID could not be converted into numeric format.

Invalid character in species ID
The only allowed characters are alphanumeric, an underscore, a plus sign, or a minus sign.

Invalid collide style
The choice of collision style is unknown.

Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.

Invalid color map min/max values
The min/max values are not consistent with either each other or with values in the color map.

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPARTA.

Invalid compute ID in variable formula

76

The compute is not recognized.
Invalid compute property/grid field for 2d simulation

Fields that reference z-dimension properties cannot be used in a 2d simulation.
Invalid compute style

Self-explanatory.
Invalid dump frequency

Dump frequency must be 1 or greater.
Invalid dump grid field for 2d simulation

Self-explanatory.
Invalid dump image filename

The file produced by dump image cannot be binary and must be for a single processor.
Invalid dump image persp value

Persp value must be >= 0.0.
Invalid dump image theta value

Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value

Zoom value must be > 0.0.
Invalid dump movie filename

The file produced by dump movie cannot be binary or compressed and must be a single file for a single
processor.

Invalid dump style
The choice of dump style is unknown.

Invalid dump surf field for 2d simulation
Self-explanatory.

Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.

Invalid fix ID in variable formula
The fix is not recognized.

Invalid fix ave/time off column
Self-explantory.

Invalid fix style
The choice of fix style is unknown.

Invalid flag in grid section of restart file
Unrecognized entry in restart file.

Invalid flag in header section of restart file
Unrecognized entry in restart file.

Invalid flag in layout section of restart file
Unrecognized entry in restart file.

Invalid flag in particle section of restart file
Unrecognized entry in restart file.

Invalid flag in peratom section of restart file
The format of this section of the file is not correct.

Invalid flag in surf section of restart file
Unrecognized entry in restart file.

Invalid image up vector
Up vector cannot be (0,0,0).

Invalid immediate variable
Syntax of immediate value is incorrect.

Invalid keyword in compute property/grid command
Self-explantory.

Invalid keyword in stats_style command
One or more specified keywords are not recognized.

77

Invalid math function in variable formula
Self-explanatory.

Invalid math/special function in variable formula
Self-explanatory.

Invalid point index in line
Self-explanatory.

Invalid point index in triangle
Self-explanatory.

Invalid react style
The choice of reaction style is unknown.

Invalid reaction coefficients in file
Self-explanatory.

Invalid reaction formula in file
Self-explanatory.

Invalid reaction style in file
Self-explanatory.

Invalid reaction type in file
Self-explanatory.

Invalid read_surf command
Self-explanatory.

Invalid read_surf geometry transformation for 2d simulation
Cannot perform a transformation that changes z cooridinates of points for a 2d simulation.

Invalid region style
The choice of region style is unknown.

Invalid replace values in compute reduce
Self-explanatory.

Invalid reuse of surface ID in read_surf command
Surface IDs must be unique.

Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this, perform
multiple shorter runs.

Invalid run command start/stop value
Self-explanatory.

Invalid run command upto value
Self-explanatory.

Invalid special function in variable formula
Self-explanatory.

Invalid species ID in species file
Species IDs are limited to 15 characters.

Invalid stats keyword in variable formula
The keyword is not recognized.

Invalid surf_collide style
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid use of library file() function
This function is called thru the library interface. This error should not occur. Contact the developers if it
does.

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

78

Invalid variable name
Variable name used in an input script line is invalid.

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style in special function next
Only file-style or atomfile-style variables can be used with next().

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Ionization and recombination reactions are not yet implemented
This error conditions will be removed after those reaction styles are fully implemented.

Irregular comm recv buffer exceeds 2 GB
MPI does not support a communication buffer that exceeds a 4-byte integer in size.

Label wasn't found in input script
Self-explanatory.

Log of zero/negative value in variable formula
Self-explanatory.

MPI_SPARTA_BIGINT and bigint in spatype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.

Migrate cells send buffer exceeds 2 GB
MPI does not support a communication buffer that exceeds a 4-byte integer in size.

Mismatched brackets in variable
Self-explanatory.

Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an equal-style
variable formula.

Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.

Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in an
equal-style variable formula.

Mixture %s fractions exceed 1.0
The sum of fractions must not be > 1.0.

Mixture ID must be alphanumeric or underscore characters
Self-explanatory.

Mixture group ID must be alphanumeric or underscore characters
Self-explanatory.

Mixture species is not defined
One or more of the species ID is unknown.

Modulo 0 in variable formula
Self-explanatory.

More than one positive area with a negative area
SPARTA cannot determine which positive area the negative area is inside of, if a cell is so large that it
includes both positive and negative areas.

More than one positive volume with a negative volume
SPARTA cannot determine which positive volume the negative volume is inside of, if a cell is so large
that it includes both positive and negative volumes.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Next command must list all universe and uloop variables
This is to insure they stay in sync.

79

No dump grid attributes specified
Self-explanatory.

No dump particle attributes specified
Self-explanatory.

No dump surf attributes specified
Self-explanatory.

No positive areas in cell
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

No positive volumes in cell
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Non digit character between brackets in variable
Self-explantory.

Number of groups in compute boundary mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute sonine/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute surf mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute tvib/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of species in compute tvib/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.

Nz value in read_grid file must be 1 for a 2d simulation
Self-explanatory.

Only ylo boundary can be axi-symmetric
Self-explanatory. See the boundary doc page for more details.

Owned cells with unknown neighbors = %d
One or more grid cells have unknown neighbors which will prevent particles from moving correctly.
Please report the issue to the SPARTA developers.

Parent cell child missing
Hierarchical grid traversal failed. Please report the issue to the SPARTA developers.

Parent cell's parent does not exist in grid file
Parent cells must be listed in order such that each cell's parents have already appeared in the list.

Particle %d on proc %d hit inside of surf %d on step %ld
This error should not happen if particles start outside of physical objects. Please report the issue to the
SPARTA developers.

Particle %d,%d on proc %d is in invalid cell on timestep %ld
The particle is in a cell indexed by a value that is out-of-bounds for the cells owned by this processor.

Particle %d,%d on proc %d is in split cell on timestep %ld
This should not happend. The particle should be in one of the sub-cells of the split cell.

Particle %d,%d on proc %d is outside cell on timestep %ld
The particle's coordinates are not within the grid cell it is supposed to be in.

Particle vector in equal-style variable formula
Equal-style variables cannot use per-particle quantities.

Particle-style variable in equal-style variable formula

80

Equal-style variables cannot use per-particle quantities.
Partition numeric index is out of bounds

It must be an integer from 1 to the number of partitions.
Per-particle compute in equal-style variable formula

Equal-style variables cannot use per-particle quantities.
Per-particle fix in equal-style variable formula

Equal-style variables cannot use per-particle quantities.
Per-processor particle count is too big

No processor can have more particle than fit in a 32-bit integer, approximately 2 billion.
Point appears first in more than one CLINE

This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Point appears last in more than one CLINE
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Power by 0 in variable formula
Self-explanatory.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors SPARTA is running
on.

React tce can only be used with collide vss
Self-explanatory.

Read_grid did not find parents section of grid file
Expected Parents section but did not find keyword.

Read_surf did not find lines section of surf file
Expected Lines section but did not find keyword.

Read_surf did not find points section of surf file
Expected Parents section but did not find keyword.

Read_surf did not find triangles section of surf file
Expected Triangles section but did not find keyword.

Region ID for dump custom does not exist
Self-explanatory.

Region intersect region ID does not exist
One or more of the region IDs specified by the region intersect command does not exist.

Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.

Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix ID when you
do not intend to.

Request for unknown parameter from collide
VSS model does not have the parameter being requested.

Restart file byte ordering is not recognized
The file does not appear to be a SPARTA restart file since it doesn't contain a recognized byte-ordering
flag at the beginning.

Restart file byte ordering is swapped
The file was written on a machine with different byte-ordering than the machine you are reading it on.

Restart file incompatible with current version
This is probably because you are trying to read a file created with a version of SPARTA that is too old
compared to the current version.

Restart file is a multi-proc file
The file is inconsistent with the filename specified for it.

81

Restart file is not a multi-proc file
The file is inconsistent with the filename specified for it.

Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Reuse of compute ID
A compute ID cannot be used twice.

Reuse of dump ID
A dump ID cannot be used twice.

Reuse of region ID
A region ID cannot be used twice.

Reuse of surf_collide ID
A surface collision model ID cannot be used more than once.

Run command before grid ghost cells are defined
Normally, ghost cells will be defined when the grid is created via the create_grid or read_grid commands.
However, if the global gridcut cutoff is set to a value >= 0.0, then ghost cells can only be defined if the
partiioning of cells to processors is clumped, not dispersed. See the fix balance command for an
explanation. Invoking the fix balance command with a clumped option will trigger ghost cells to be
defined.

Run command before grid is defined
Self-explanatory.

Run command start value is after start of run
Self-explanatory.

Run command stop value is before end of run
Self-explanatory.

Seed command has not been used
This command should appear near the beginning of your input script, before any random numbers are
needed by other commands.

Sending particle to self
This error should not occur. Please report the issue to the SPARTA developers.

Single area is negative, inverse donut
An inverse donut is a surface with a flow region interior to the donut hole and also exterior to the entire
donut. This means the flow regions are disconnected. SPARTA cannot correctly compute the flow area of
this kind of object.

Single volume is negative, inverse donut
An inverse donut is a surface with a flow region interior to the donut hole and also exterior to the entire
donut. This means the flow regions are disconnected. SPARTA cannot correctly compute the flow
volume of this kind of object.

Singlet BPG edge not on cell face
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Singlet CLINES point not on cell border
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Small,big integers are not sized correctly
This error occurs whenthe sizes of smallint and bigint as defined in src/spatype.h are not what is expected.
Please report the issue to the SPARTA developers.

Smallint setting in spatype.h is invalid
It has to be the size of an integer.

Smallint setting in spatype.h is not compatible
Smallint size stored in restart file is not consistent with SPARTA version you are running.

Species %s did not appear in VSS parameter file
Self-explanatory.

82

Species ID does not appear in species file
Could not find the requested species in the specified file.

Species ID is already defined
Species IDs must be unique.

Sqrt of negative value in variable formula
Self-explanatory.

Stats and fix not computed at compatible times
Fixes generate values on specific timesteps. The stats output does not match these timesteps.

Stats compute array is accessed out-of-range
Self-explanatory.

Stats compute does not compute array
Self-explanatory.

Stats compute does not compute scalar
Self-explanatory.

Stats compute does not compute vector
Self-explanatory.

Stats compute vector is accessed out-of-range
Self-explanatory.

Stats every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Stats fix array is accessed out-of-range
Self-explanatory.

Stats fix does not compute array
Self-explanatory.

Stats fix does not compute scalar
Self-explanatory.

Stats fix does not compute vector
Self-explanatory.

Stats fix vector is accessed out-of-range
Self-explanatory.

Stats variable cannot be indexed
A variable used as a stats keyword cannot be indexed. E.g. v_foo must be used, not v_foo100.

Stats variable is not equal-style variable
Only equal-style variables can be output with stats output, not particle-style or grid-style or surf-style
variables.

Stats_modify every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Stats_modify int format does not contain d character
Self-explanatory.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

Support for writing images in JPEG format not included
SPARTA was not built with the -DSPARTA_JPEG switch in the Makefile.

Support for writing images in PNG format not included
SPARTA was not built with the -DSPARTA_PNG switch in the Makefile.

Support for writing movies not included
SPARTA was not built with the -DSPARTA_FFMPEG switch in the Makefile

Surf file cannot contain lines for 3d simulation
Self-explanatory.

Surf file cannot contain triangles for 2d simulation
Self-explanatory.

Surf file does not contain lines

83

Required for a 2d simulation.
Surf file does not contain points

Self-explanatory.
Surf file does not contain triangles

Required for a 3d simulation.
Surf-style variables are not yet implemented

Self-explanatory.
Surf_collide ID must be alphanumeric or underscore characters

Self-explanatory.
Surf_collide diffuse rotation invalid for 2d

Specified rotation vector must be in z-direction.
Surf_collide diffuse variable is invalid style

It must be an equal-style variable.
Surf_collide diffuse variable name does not exist

Self-explanatory.
Surface check failed with %d duplicate edges

One or more edges appeared in more than 2 triangles.
Surface check failed with %d duplicate points

One or more points appeared in more than 2 lines.
Surface check failed with %d infinitely thin line pairs

Two adjacent lines have normals in opposite directions indicating the lines overlay each other.
Surface check failed with %d infinitely thin triangle pairs

Two adjacent triangles have normals in opposite directions indicating the triangles overlay each other.
Surface check failed with %d points on lines

One or more points are on a line they are not an end point of, which indicates an ill-formed surface.
Surface check failed with %d points on triangles

One or more points are on a triangle they are not an end point of, which indicates an ill-formed surface.
Surface check failed with %d unmatched edges

One or more edges did not appear in a triangle, or appeared only once and edge is not on surface of
simulation box.

Surface check failed with %d unmatched points
One or more points did not appear in a line, or appeared only once and point is not on surface of
simulation box.

Timestep must be >= 0
Reset_timestep cannot be used to set a negative timestep.

Too big a timestep
Reset_timestep timestep value must fit in a SPARTA big integer, as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details.

Too many surfs in one cell
Use the global surfmax command to increase this max allowed number of surfs per grid cell.

Too many timesteps
The cummulative timesteps must fit in a SPARTA big integer, as as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details.

Too much buffered per-proc info for dump
Number of dumped values per processor cannot exceed a small integer (~2 billion values).

Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Unexpected end of data file

84

SPARTA hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.

Unexpected end of grid file
Self-explantory.

Unexpected end of surf file
Self-explanatory.

Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPARTA. Check the input script.

Unknown outcome in reaction
The specified type of the reaction is not encoded in the reaction style.

VSS parameters do not match current species
Species cannot be added after VSS colision file is read.

Variable ID in variable formula does not exist
Self-explanatory.

Variable evaluation before simulation box is defined
Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been setup.

Variable for dump every is invalid style
Only equal-style variables can be used.

Variable for dump image center is invalid style
Must be an equal-style variable.

Variable for dump image persp is invalid style
Must be an equal-style variable.

Variable for dump image phi is invalid style
Must be an equal-style variable.

Variable for dump image theta is invalid style
Must be an equal-style variable.

Variable for dump image zoom is invalid style
Must be an equal-style variable.

Variable for restart is invalid style
It must be an equal-style variable.

Variable for stats every is invalid style
It must be an equal-style variable.

Variable formula compute array is accessed out-of-range
Self-explanatory.

Variable formula compute vector is accessed out-of-range
Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable has circular dependency
A circular dependency is when variable "a" in used by variable "b" and variable "b" is also used by
varaible "a". Circular dependencies with longer chains of dependence are also not allowed.

Variable name between brackets must be alphanumeric or underscore characters
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

85

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix ave/grid does not exist
Self-explanatory.

Variable name for fix ave/surf does not exist
Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for restart does not exist
Self-explanatory.

Variable name for stats every does not exist
Self-explanatory.

Variable name must be alphanumeric or underscore characters
Self-explanatory.

Variable stats keyword cannot be used between runs
Stats keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.

Vertex contains duplicate edge
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex contains edge that doesn't point to it
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex contains invalid edge
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex has less than 3 edges
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex pointers to last edge are invalid
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.

Y cannot be periodic for axi-symmetric
Self-explanatory. See the boundary doc page for more details.

Z dimension must be periodic for 2d simulation
Self-explanatory.

Warnings:

%d particles were in wrong cells on timestep %ld
This is the total number of particles that are incorrectly matched to their grid cell.

86

Grid cell interior corner points marked as unknown = %d
Corner points of grid cells interior to the simulation domain were not all marked successfully as inside,
outside, or overlapping with surface elements. This should normally not happen, but does not affect
simulations.

More than one compute ke/particle
This may be inefficient since each such compute stores a vector of length equal to the number of particles.

Restart file used different # of processors
The restart file was written out by a SPARTA simulation running on a different number of processors.
This means you will likely want to re-balance the grid cells and particles across processors. This can be
done using the balance or fix balance commands.

Surface check found %d nearly infinitely thin line pairs
Two adjacent lines have normals in nearly opposite directions indicating the lines nearly overlay each
other.

Surface check found %d nearly infinitely thin triangle pairs
Two adjacent triangles have normals in nearly opposite directions indicating the triangles nearly overlay
each other.

Surface check found %d points nearly on lines
One or more points are nearly on a line they are not an end point of, which indicates an ill-formed
surface.

Surface check found %d points nearly on triangles
One or more points are nearly on a triangle they are not an end point of, which indicates an ill-formed
surface.

87

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

11. Future and history

This section lists features we are planning to add to SPARTA, features of previous versions of SPARTA, and
features of other parallel molecular dynamics codes I've distributed.

11.1 Coming attractions
11.2 Past versions

11.1 Coming attractions

The developers">>wish list link on the SPARTA web page gives a list of features we are planning to add to
SPARTA in the future. Please contact the you are interested in contributing to the those developments or would
be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

11.2 Past versions

Sandia's predecessor to SPARTA is a DSMC code called ICARUS. It was developed in the early 1990s by Tim
Bartel and Steve Plimpton. It was later modified and extended by Michael Gallis.

ICARUS is a 2d code, written in Fortran, which models the flow geometry around bodies with a collection of
adjoining body-fitted grid blocks. The geometry of the grid cells within in a single block is represented with
analytic equations, which allows for fast particle tracking.

Some details about ICARUS, including simulation snapshots and papers, are discussed on this page

Performance-wise ICARUS scaled quite well on several generations of parallel machines, and is still used by
Sandia researchers today. ICARUS was export-controlled software, and so was not distributed widely outside of
Sandia.

SPARTA development began in late 2011. In contrast to ICARUS, it is a 3d code, written in C++, and uses a
hierarchical Cartesian grid to track particles. Surfaces are embedded in the grid, which cuts and splits their flow
volumes.

The Authors link on the SPARTA web page gives a timeline of features added to the code since it's initial
open-source release.

88

http://sparta.sandia.gov
http://sparta.sandia.gov/future.html<A HREF =
http://sparta.sandia.gov/authors.html
http://www.sandia.gov/~sjplimp
http://www.sandia.gov/~sjplimp/dsmc.html
http://sparta.sandia.gov/history.html

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

adapt_grid command

Syntax:

adapt_grid action1 action2 style args ... keyword args ...

action1 = refine or coarsen•
action2 = coarsen or refine, optional•
style = particle or surf or value or random

particle args = rthresh cthresh
 rcount = threshold in particle count for refinment
 ccount = threshold in particle count for coarsening

surf arg = surfID ssize
 surfID = group ID for which surface elements to consider
 ssize = do not refine to create cells smaller than ssize (dist units)
 coarsen only if child cells are smaller than ssize (dist units)

value args = c_ID/c_ID[N]/f_ID/f_ID[N] rthresh cthresh
 c_ID = ID of a compute that calculates a per grid vector, use values from vector
 c_ID[N] = ID of a compute that calculates a per grid array, use values from Nth column of array
 f_ID = ID of a fix that calculates a per grid vector, use vector
 f_ID[N] = ID of a fix that calculates a per grid array, use Nth column of array
 rvalue = threshold in value for refinement
 cvalue = threshold in value for coarsening

random args = rfrac cfrac
 rfrac = fraction of child cells to refine
 cfrac = fraction of parent cells to coarsen

•

zero or more keyword/args pairs may be appended•
keyword = iterate or maxlevel or minlevel or thresh or combine or cells or region or dir

iterate arg = niterate
 niterate = number of iterations of action loop

maxlevel arg = Nmax
 Nmax = do not refine to create child cells at a level > Nmax

minlevel arg = Nmin
 Nmin = do not coarsen to create child cells at a level <Nmin

thresh args = rdecide cdecide
 rdecide = less or more = refine when value is less or more than rvalue
 cdecide = less or more = coarsen when value is less or more than cvalue

combine arg = sum or min or max = how to combine child values into parent value
cells args = Nx Ny Nz

 Nx,Ny,Nz = refine a cell into Nx by Ny by Nz child cells
region args = regID rflag

 regID = ID of region that cells must be inside to be eligible for adaptation
 rflag = all or one or center = what portion of grid cell must be inside

dir args = Sx Sy Sz
 Sx,Sy,Sz = vector components used with style surf to test surf elements

file arg = filename
 filename = name of file to write out with new parent grid info

Examples:

adapt_grid refine particle 10 50
adapt_grid coarsen particle 10 50
adapt_grid refine coarsen particle 10 50
adapt_grid refine surf 0.15 iterate 1 dir 1 0 0
adapt_grid refine coarsen value c_11 5.0 10.0 iterate 2

•

89

http://sparta.sandia.gov

Description:

This command perform a one-time adaptation of grid cells, either by refinement or coarsening or both. This
command can be invoked as many times as desired, before or between simulation runs. Grid adaptation can
also be performed on-the-fly during a simulation by using the fix adapt command.

Refinement means splitting one child cell into multiple new child cells; the original child cell becomes a parent
cell. Coarsening means combining all the child cells of a parent cell, so that the child cells are deleted and the
parent cell becomes a single new child cell. See Section howto 4.8 for a description of the hierarchical grid
used by SPARTA and a defintion of child and parent cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the current density distribution, or
mean-free-path of particles, or to other simulation attributes such as the presence of surface elements. A
well-adapted grid can improve accuracy of the simulation and/or reduce a simulation's computational cost.

The action1 and action2 parameters determine whether refinement or coarsening is performed and in what
order. Action2 is optional. If not specified, only action1 is performed. Note that cells which are refined by
action1 are not eligible for subsequent coarsening by action2, during a single invocation of this command.
Likewise cells that are coarsened by action1 are not eligible for subsequent refinement by action2. This is also
true if the iterate keyword is used to loop over the two actions multiple times. Cells can be successivly refined
on each iteration, but will never be coarsened. Likewise cells can be successivly coarsensed, but will never be
refined. Of course any cell may be refined or coarsened later if the adapt_grid command is used again,
including on later timesteps via the fix adapt command.

Examples of 2d and 3d refined grids are shown here. The 3d simulation shows 2d planar cuts through the 3d
grid. Click on either image for a larger version.

The first step in a refinement action is to determine what child cells are eligible for refinement. Child cells that
are wholly inside a closed surface are not eligible. The maxlevel and region keywords also affect eligibility.
They are described below.

The first step in a coarsening action is to determine what parent cells are eligible for coarsening. Only parent
cells whose children are all child cells are eligible. If one or more of their children are also parent cells, then the
parent cell is a "grandparent" and is not eligible for coarsening. The minlevel and region keywords also affect
eligibility. They are described below.

90

The style parameter is then used to decide whether to refine or coarsen each eligible grid cell. The operation of
the differnt styles is described in the next section. Note that for refinement, the number of new child cells
created withing a single cell is set by the cells keyword which defaults to 2x2x2 for 3d models and 2x2x1 for
2d models.

Note that many of the style take an argument for both refinement and coarsening, e.g. rcount and ccount for
style particle. Both arguments must be specified, though one or the other will be ignored if the specified actions
do not include refinement or coarsening.

The particle style adapts based on the number of particles in a grid cell. For refinement, if the current number
(on this timestep) is more than rcount, the cell is refined. For coarsening, if the sum of the current number of
particles in all child cells of the parent cell is less than ccount, the parent cell is coarsened. Note that if you
wish to use time-averaged counts of particles in each cell you should use the value style with the ID of a fix
ave/grid command that time-averages particle counts from the compute grid command.

The surf style adapts only if a grid cell contains one or more surface elements in the specified surfID group.
The dir keyword can be used to exclude additional surface elements. For refinement, the cell is refined unless
the refinement will create child cells with any of their dimensions smaller than the specified ssize. For
coarsening, the parent cell is coarsened only if any of the child cell dimensions is smaller than the specified
ssize.

The value style uses values calculated by a compute or fix to decide whether to adapt each cell. The fix or
compute must calculate per-grid values as described in Section howto 4.4. If the compute or fix calculates a
vector of such values, it is specified as c_ID or f_ID. If it calculates an array of such values, it is specified as
c_ID[N] or f_ID[N] when N is the column of values to use, from 1 to Ncolumns.

For refinement, if the compute or fix value for the grid cell is "more" than rvalue, the cell is refined. For
coarsening, if the "sum" of the compute or fix values in all child cells of the parent cell is "less" than cvalue, the
parent cell is coarsened. The thresh keyword can be used to change the refinment or coarsening criteria to
"less" versus "more". Likewise the combine keyword can be used to change the "sum" of child cell values to be
a "min" or "max" operation.

Here is an example using particle count as calculated by the compute grid command as an adaptation criterion.
A cell will be refined if its count > 25, and a parent cell coarsened if the sum of its children cell counts < 10.

compute 1 grid all n nrho
adapt_grid refine coarsen value c_11 25 10

The same thing could be accomplished with this command:

adapt_grid refine coarsen particle 25 10

These commands use a time-averaged particle count as an adaptation criterion in the same manner:

compute 1 grid all n nrho
fix 1 ave/grid 10 100 1000 c_11
run 1000 # run to accumulate time averages
adapt_grid refine coarsen value f_11 25 10

Here is an example using mean-free path (MFP) as calculated by the compute lambda/grid command as an
adaptation criterion. Note the use of "thresh less more" to refine when MFP is less than the specified threshold
(0.05).

compute 1 lambda/grid c_12 NULL N2 kall

91

adapt_grid refine coarsen value c_12 0.05 0.1 &
 combine min thresh less more

The random style is provided for test and debugging purposes. For each cell eligible for adaptation, a uniform
random number RN bewteen 0.0 and 1.0 is generated. For refinement, the cell is refined if RN < rfrac, so that
approximately an rfrac fraction of the child cells are refined. Similarly, for coarsening, the parent cell is
coarsened if RN < cfrac, so that approximately a cfrac fraction of the parent cells are coarsened.

Various optional keywords can also be specified.

The iterate keyword determines how many times the action1 and action2 operations are looped over. The
default is once. If multiple iterations are used, cells can be recursively refined or coarsened. If no further
refinement or coarsening occurs on an iteration, the loop ends. Note that the compute used with style value will
be recalculated at each iteration to accurately reflect per grid values for the current grid.

The maxlevel keyword limits how far a grid cell can be refined. See Section howto 4.8 for a definition of the
level assigned to each parent and child cell. Child cells with a level >= Nmax are not eligible for refinement.
The default setting of Nmax = 0 means there is no limit on refinement.

The minlevel keyword limits how far a grid cell can be coarsened. See Section howto 4.8 for a definition of the
level assigned to each parent and child cell. Parent cells with a level < Nmin are not eligible for coarsening. The
default setting of Nmin = 1 means the only limit on coarsening is that the first level grid is preserved (never
coarsened to a single root cell). The specified Nmin must be >= 1.

The thresh keyword is only used by style value. It sets the comparison criterion for refinement as rdecide = less
or more. This means a child cell is refined if its compute or fix value is less or more than rvalue. Similarly, it
sets the comparison criterion for coarsening as cdecide = less or more. This means a parent cell is coarsened if
the compute or fix value accumulated from the compute or fix values of its children is less or more than cvalue.

The combine keyword is only used by style value. It determines how the compute or fix value for a parent cell
is accumulated from the compute or fix values of all its children. If the setting is sum, the child values are
summed. If it is min or max, the parent value is the minimum or maximum of all the child values.

The cells keyword determines how many new child cells are created when a single grid cell is refined. Nx by
Ny by Nz new child cells are created. Nz must be 1 for 2d simulations. In the future we plan to allow for
variable refinement by allowing wild cards to be used for Nx, Ny, and Nz.

The region keyword can be used to limit which grid cells are eligible for adapation. It applies to both child cells
for refinment and parent cells for coarsening. The ID of the geometric region is speficied as regID. See the
region command for details on what kind of geometric regions can be defined. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

The grid cell must be in the region to be eligible for adaptation. The rflag setting determines how a grid cell is
judged to be in the region or not. For rflag = one, it is in the region if any of its corner points (4 for 2d, 8 for 3d)
is in the region. For rflag = all, all its corner points must be in the region. For rflag = center, the center point of
the grid cell must be in the region.

The dir keyword is only used by the style surf. The Sx,Sy,Sz settings are components of a vector. It's length
does not matter, just its direction. Only surface elements whose normal is opposed to the vector direction (in a
dot product sense) are eligible surfaces for the adapation procedure described above for the surf style. This can
be useful to exclude refinement around surface elements that are not facing "upwind" with respect to the flow
direction of the particles. This is accomplished by setting Sx,Sy,Sz to the flow direction. If Sy,Sy,Sz = (0,0,0),

92

which is the default, then no surface elements are excluded.

The file keyword triggers output of the adapted grid to the specified filename. The format of the file is the same
as that created by the write_grid command, which is a list of parent cells. The file can be read in by a
subsequent simulation to define a grid, or used by visualization or other post-procesing tools. Note that no file
is written if no grid cells are refined or coarsened.

If the filename contains a "*" wildcard character, then the "*" is replaced by the current timestep. This is useful
for the fix adapt command, if you wish to write out multiple grid files, each time the grid iadapts.

If the grid is partitioned across processors in a "clumped" manner before this command is invoked, it will still
be clumped by processor after the adaptation. Likewise if it is not clumped before, it will remain un-clumped
after adaptation. You can use the balance_grid command after this command to re-balance the new adapted grid
cells and their particles across processors. See Section howto 4.8 for a description clumped and unclumped
grids.

Restrictions:

This command can only be used after the grid has been created by the create_grid, read_grid, or read_restart
commands.

Currently a fix cannot be used with style value for iterate > 1. This is because the per-grid cell values
accumulated by the fix are not interpolated to new grid cells so that the fix can be re-evaluated multiple times.
In the future we may revove this restriction.

Related commands:

fix adapt, balance_grid

Default:

The keyword defaults are iterate = 1, minlevel = 1, maxlevel = 0, thresh = more for rdecide and less for
cdecide, combine = sum, cells = 2 2 2 for 3d and 2 2 1 for 2d, no region, dir = 0 0 0, and no file.

93

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

balance_grid command

Syntax:

balance_grid style args ...

style = none or stride or clump or block or random or proc or rcb

none args = none
stride args = xyz or xzy or yxz or yzx or zxy or zyx
clump args = xyz or xzy or yxz or yzx or zxy or zyx
block args = Px Py Pz

 Px,Py,Pz = # of processors in each dimension
random args = none
proc args = none
rcb args = weight

 weight = cell or part

•

Examples:

balance_grid block * * *
balance_grid block * 4 *
balance_grid clump yxz
balance_grid random
balance_grid rcb part

Description:

This command adjusts the assignment of grid cells and their particles to processors, to attempt to balance the
computational cost (load) evenly across processors. The load balancing is "static" in the sense that this command
performs the balancing once, before or between simulations. The assignments will remain static during the
subsequent run. To perform "dynamic" balancing, see the fix balance command, which can adjust the assignemt
of grid cells to processors on-the-fly during a run.

After grid cells have been assigned, they are migrated to new owning processors, along with any particles they
own or other per-cell attributes stored by fixes. The internal data structures within SPARTA for grid cells and
particles are re-initialized with the new decomposition.

This command can be used immediately after the grid is created, via the create_grid or read_restart commands. In
the former case balance_grid can be used to partition the grid in a more desirable manner than the default creation
options allow for. In the latter case, balance grid can be used to change the somewhat random assignment of grid
cells to processors that will be made if the restart file is read by a different number of processors than it was
written by.

This command can also be used once particles have been created, or a simulation has come to equilibrium with a
spatially varying density distribution of particles, so that the computational load is more evenly balanced across
processors.

The details of how child cells are assigned to processors by the various options of this command are described
below. The cells assigned to each processor will either be "clumped" or "dispersed".

The clump and block and rcb styles will produce clumped assignments of child cells to each processor. This
means each processor's cells will be geometrically compact. The stride and random and proc styles will produce

94

http://sparta.sandia.gov

dispersed assignments of child cells to each processor.

IMPORTANT NOTE: See Section 5.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

The none style will not change the assignment of grid cells to processors. However it will update the internal data
structures within SPARTA that store ghost cell information on each processor for cells owned by other
processors. This is useful if the global gridcut command was used after grid cells were already defined. That
command erases ghost cell information stored by processors, which then needs to be re-generated before a
simulation is run. Using the balance_grid none command will re-generate the ghost cell information.

The stride, clump, and block styles can only be used if the grid is "uniform". The grid in SPARTA is hierarchical
with one or more levels, as defined by the create_grid or read_grid commlands. If the parent cell of every grid cell
is at the same level of the hierarchy, then for puposed os this command the grid is uniform, meaning the collection
of grid cells effectively form a uniform fine grid overlaying the entire simulation domain.

The meaning of the stride, clump, and block styles is exactly the same as when they are used as keywords with the
create_grid command. See its doc page for details.

The random style means that each grid cell will be assigned randomly to one of the processors. Note that in this
case every processor will typically not be assigned the exact same number of cells.

The proc style means that each processor will choose a random processor to assign its first grid cell to. It will then
loop over its grid cells and assign each to consecutive processors, wrapping around the enumeration of processors
if necessary. Note that in this case every processor will typically not be assigned exactly the same number of cells.

The rcb style uses a recursive coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of grid
cells to processors. Each grid cell has a "weight" in this algorithm so that each processor is assigned an equal total
weight of grid cells, as nearly as possible. If the weight argument is specified as cell, then the weight for each grid
cell is 1.0, so that each processor will end up with an equal number of grid cells. If the weight argument is
specified as part, than the weight for each grid cell is the number of particles it currently owns, so that each
processor will end up with an equal number of particles.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal
number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors
than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an
example of a clumped distribution where each processor's assigned cells can be compactly bounded by a
rectangle. Click for a larger version of the image.

95

Restrictions:

This command can only be used after the grid has been created by the create_grid, read_grid, or read_restart
commands.

This command also initializes various options in SPARTA before performing the balancing. This is so that grid
cells are ready to migrate to new processors. Thus if an error is flagged, e.g. that a simulation box boundary
condition is not yet assigned, that operation needs to be performed in the input script before balancing can be
performed.

Related commands:

fix balance

Default: none

96

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

bound_modify command

Syntax:

bound_modify wall1 wall2 ... keyword value ...

wall1,wall2,... = xlo or xhi or ylo or yhi or zlo or zhi•
one or more keyword/value pairs may be listed

keywords = collide or react
collide value = sc-ID

 sc-ID = ID of a surface collision model
react value = sr-ID

 sr-ID = ID of a surface reaction model or none

•

Examples:

bound_modify yhi collide 1 react 2
bound_modify zlo zhi collide hotwall

Description:

Set parameters for one or more of the boundaries of the global simulation box. Any of the 6 faces can be selected
via the list of wall settings.

The collide keyword can only be used when the boundary is of type "s", for surface, as set by the boundary
command. This keyword assigns a surface collision model to the boundary, as defined by the surf_collide
command. The ID of the surface collision model is specified as sc-ID, which is the ID used in the surf_collide
command.

The effect of this keyword is that particle collisions with the specified boundaries will be computed by the
specified surface collision model.

The react keyword can only be used when the boundary is of type "s", for surface, as set by the boundary
command. This keyword assigns a surface reaction model to the boundary, as defined by the surf_react command.
The ID of the surface reaction model is specified as sr-ID, which is the ID used in the surf_react command. If an
sr-ID of none is used then surface reactions are turned off.

The effect of this keyword is that particle collisions with the specified boundaries will induce reactions which are
computed by the specified surface reaction model.

Restrictions:

For 2d simulations, the zlo and zhi boundaries cannot be modified by this command, since they are always
periodic.

All boundaries of type "s" must be assigned to a surface collision model via the collide keyword before a
simlulation can be performed. Using a surface reaction model is optional.

Related commands:

97

http://sparta.sandia.gov

boundary, surf_modify

Default:

The default for boundary reactions is none.

98

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

boundary command

Syntax:

boundary x y z

x,y,z = o or p or r or a or s, one or two letters

o is outflow
p is periodic
r is specular reflection
a is axi-symmetric
s is treat boundary as a surface

•

Examples:

boundary o p p
boundary os o o
boundary r p rs

Description:

Set the style of boundaries for the global simulation box in each of the x, y, z dimensions. A single letter assigns
the same style to both the lower and upper face of the box in that dimension. Two letters assigns the first style to
the lower face and the second style to the upper face. The size of the simulation box is set by the create_box
command.

The boundary style determines how particles exiting the box are handled.

Style o means an outflow boundary, so that particles freely exit the simulation.

Style p means the box is periodic, so that particles exit one end of the box and re-enter the other end. The p style
must be applied to both faces of a dimension.

Style r means a specularly reflecting boundary. Particles that cross this boundary have their velocity reversed so
as to re-enter the box. The new velocity is used to advect the particle for the reminder of the timestep following
the collision.

Style a means an axi-symmetric boundary, which can only be used for the lower y-dimension boundary in a 2d
simulation. The simulation box must also have a value of 0.0 for ylo; see the create_box command. This
effectively means that the x-axis is the axis of symmetry. The upper y-dimension boundary cannot be periodic.

Style s means the boundary is treated as a surface which allows the particle-surface interaction to be treated in a
variety of ways via the options provided by the surf_collide command. This is effectively the same as when a
particle collides with a triangulated surface read in and setup by the read_surf command.

For style s, the boundary face must also be assigned to a surface collision model defined by the surf_collide
command. The assignment of the boundary to the model is done via the bound_modify command.

Restrictions:

This command must be used before the grid is defined, e.g. by a create_grid command.

99

http://sparta.sandia.gov

For 2d simulations, the z dimension must be periodic.

Related commands:

bound_modify, surf_collide

Default:

boundary p p p

100

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
SPARTA. Once a clear command has been executed, it is almost as if SPARTA were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

101

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

collide command

Syntax:

collide style args keyword value ...

style = none or vss•
args = arguments for that style

none args = none
vss args = mix-ID file

 mix-ID = ID of mixture to use for group definitions
 file = filename that lists species with their VSS model parameters

•

zero or more keyword/value pairs may be appended•
keyword = relax

relax value = constant or variable

•

Examples:

collide none
collide vss all ../data/air.vss
collide vss species all.vss relax variable

Description:

Define what style of particle-particle collisions will be performed by SPARTA each timestep. If collisions are
performed, particles are sorted into grid cells every timestep and the appropriate collision model is invoked on a
per-grid-cell basis. Collisions alter the velocity of participating particles as well as their rotational and vibrational
energies. The rotational and vibrational properties of each species are set in the file read by the species command.

The collision style determines how many pairs of particles are considered for collisions, the criteria for which
collisions actually occurs, and the outcome of individual collision, which alters the velocities of the two particles.
If chemistry is enabled, via the react command, particles involved in collisions may also change species, or a
particle may be deleted, or a new particle created. The collide_modify command can also be used to alter aspects
of how collisions are performed. For example, it can be used to turn on/off the tracking of vibrational energy and
its exchange in collisions.

A mix-ID argument is specified for each collision style. It must contain all the species defined for use by the
simulation, via the species command. The group definitions in the mixture assign one or more particle species to
each group. These groupings are used to determine how pairs of particles are chosen to collide with each other, in
the following manner.

Consider a cell with N particles and a mixture with M groups. Based on its species, each particle is assigned to
one of the M groups. Each unique pair of groups is considered, including each group paired with itself. For each
pair of groups a value Nattempt (see equation 11.3 in (Bird94)) is calcualted which is the number of collisions to
attempt. This is a function of N1 and N2 (the number of particles in each group), the grid cell volume, and other
parameters of the collision style.

For each collision attempt, a random pair of particles is selected, with one particle from each group. Whether the
collision occurs or not is a function of the relative velocities of the two particles, their respectives species, and
other parameters of the collision style; see equation 11.4 in (Bird94).

102

http://sparta.sandia.gov

The none style means that no particle-particle collisions will be performed, i.e. the simulation models
free-molecular flow.

The vss style implements the Variable Soft Sphere (VSS) model for collisions. As discussed below, with
appropriate parameter choices, it can also compute the Variable Hard Sphere (VHS) model and the Hard Sphere
(HS) model. See chapters 2.6 and 2.7 in (Bird94) for details.

In DSMC, the variable-soft-sphere (VSS) interaction of Koura and Matsumoto and the variable-hard-sphere
(VHS) interaction of Bird are used to approximate molecular interactions. Both models yield transport properties
proportional to a power (omega) of the gas temperature. This temperature dependence of the transport properties
is similar to the Inverse Power Law model (IPL) for which Chapman-Enskog theory provides closed form
solutions for the transport properties.

Both VSS and VHS interactions define parameters diam = molecular diameter, which is a function of the
molecular speed, and alpha = angular-scattering parameter, which relates the scattering angle to the impact
parameter. Setting alpha = 1 produces isotropic (hard sphere) interactions, which converts the VSS model into a
VHS model.

The file argument is for a collision data file which contains definitions of VSS model parameters for some number
of species. Example files are included in the data directory of the SPARTA distribution, with a "*.css" suffix. The
file can contain species not used by this simulation; they will simply be ignored. All species currently defined by
the simulation must be present in the file.

The format of the file depends of the setting of the optional relax keyword, as explained below. Comments or
blank lines are allowed in the file. Comment lines start with a "#" character. All other lines must have the
following format with parameters separated by whitespace.

If the relax keyword is specified as constant, which is the default, then each line has 4 parameters following the
species ID:

species-ID diam omega tref alpha

The species-ID is a string that will be matched to one of the species defined by the simulation, via the species
command. The meaning of additional properties is as follows:

diam = VHS or VSS diameter of particle (distance units)•
omega = temperature-dependence of viscosity (unitless)•
tref = reference temperature (temperature units)•
alpha = angular scattering parameter (unitless)•

The methodolgy for deriving VSS/VHS parameters from these properties is explained in Chapter 3 of (Bird94).
Parameter values for the most common gases are given in Appendix A of the same book. These values are based
on the first-order approximation of the Chapman-Enskog theory. Infinite-order parameters are described in
(Gallis04).

In the constant case rotational and vibrational relaxation during a collision is treated in the same constant manner
for every collision, using the rotational and vibrational relaxation numbers from the species data file, as read by
the species command.

If the relax keyword is specified as variable, then each line has 8 parameters following the species ID:

species-ID diam omega tref alpha Zrotinf T* C1 C2

103

The first 4 parameters are the same as above. Parameters 5 and 6 affect rotational relaxation; parameters 7 and 8
affect vibrational relaxation. In this case the rotational and vibrational relaxation during a collision is treated as a
variable and is computed for each collision. This calculation is only performed for polyatomic species, using
equations A5 and A6 on pages 413 and 414 in (Bird94). Zrotinf and T* are parameters in the numerator and
denominator of eq A5. C1 and C2 are in eq A6. The units of these parameters is as follows:

Zrotinf (unitless)•
T* (temperature units)•
C1 (temperature units)•
C2 (temperature^(1/3) units)•

Note that a collision data file with the 4 extra relaxation parameters (per species) can be used when the relax
keyword is specified as constant. In that case, the extra parameters are simply ignored.

Restrictions: none

Related commands:

collide_modify, mixture, react

Default:

Style = none is the default (no collisions). If the vss style is specified, then relax = constant is the default.

(Koura92) K. Koura and H. Matsumoto, "Variable soft sphere molecular model for air species," Phys Fluids A, 4,
1083 (1992).

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Gallis04) M. A. Gallis, J. R. Torczynski, and D. J. Rader, "Molecular gas dynamics observations of
Chapman-Enskog behavior and departures therefrom in nonequilibrium gases," Phys Rev E, 69, 042201 (2004).

104

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

collide_modify command

Syntax:

collide_modify keyword values ...

one or more keyword/value pairs may be listed•
keywords = vremax or remain or ambipolar or nearcp or rotate or vibrate

vremax values = Nevery startflag
 Nevery = zero vremax every this many timesteps
 startflag = yes or no = zero vremax at start of every run

remain value = yes or no = hold remaining fraction of collisions over to next timestep
nearcp values = choice Nlimit

 choice = yes or no to turn on/off near collision partners
 Nlimit = max # of attempts made to find a collision partner

ambipolar value = no or yes
rotate value = no or yes
vibrate value = no or discrete or smooth

•

Examples:

collide_modify vremax 1000 yes
collide_modify vremax 0 no remain no
collide_modify ambipolar yes

Description:

Set parameters that affect how collisions are performed.

The vremax keyword affects how often the Vremax parameter, for collision frequency is re-zeroed during the
simulation. This parameter is stored for each grid cell and each pair of collision groups (groups are described by
the collide command).

The value of Vremax affects how many events are attempted in each grid cell for a pair of groups, and thus the
overall time spent performing collisions. Vremax is continuously set to the largest difference in velocity between
a pair of colliding particles. The larger Vremax grows, the more collisions are attempted for the grid cell on each
timestep, though this does not affect the number of collisions actually performed. Thus if Vremax grows large,
collisions become less efficient, though still accurate.

For non-equilibrium flows, it is typically desirable to reset Vremax to zero fairly frequently (e.g. every 1000
steps) so that it does not become large, due to anomolously fast moving particles. In contrast, when a system is at
equilibrium, it is typically desirable to not reset Vremax to zero since it will also stay roughly constant.

If Nevery is specified as 0, Vremax is not zeroed during a run. Otherwise Vremax is zeroed on timesteps that are a
multiple of Nevery. Additionally, if startflag is set to yes, Vremax is zeroed at the start of every run. If it is set to
no, it is not.

The remain keyword affects how the number of attempted collisions for each grid cell is calculated each timestep.
If the value is set to yes, then any fractional collision count (for each grid cell and pair of grgroups) is carried over
to the next timestep. E.g. if the computed collision count is 7.3, then 7 attempts are made on this timestep, and 0.3
are carried over to the next timestep, to be added to the computed collision count for that step. If the value is set to

105

http://sparta.sandia.gov

no, then no carry-over is made. Instead, in this example, 7 attempts are made and an 8th attempt is made
conditionally with a probability of 0.3, using a random number.

The nearcp keyword stands for "near collision partner" and affects how collision partners are selected. If no is
specified, which is the default, then collision partner pairs are selected randomly from all particles in the grid cell.
In this case the Nlimit parameter is ignored, though it must still be specfied.

If yes is specified, then up to Nlimit collision partners are considered for each collision. The first partner I is
chosen randomly from all particles in the grid cell. A distance R that particle I moves in that timestep is
calculated, based on its velocity. Nlimit possible collision partners J are examined, starting at a random J. If one of
them is within a distance R of particle I, it is immediately selected as the collision partner. If none of the Nlimit
particles are within a distance R, the closest J particle to I is selected. An exception to these rules is that a particle
J is not considered for a collision if the I,J pair were the most recent collision partners (in the current timestep) for
each other. The convergence properties of this near-neighbor algorithm are described in (Gallis11). Note that
choosing Nlimit judiciously will avoid costly searches when there are large numbers of particles in some or all
grid cells.

If the ambipolar keyword is set to yes, then collisions within a grid cell with use the ambipolar approximation.
This requires use of the >fix ambipolar command to define which species is an electron and which species are
ions. There can be many of the latter. When collisions within a single grid cell are performed, each ambipolar ion
is split into two particles, the ion and an associated electron. Collisions between the augmented set of particles are
calculated. Ion/electron chemistry can also occur if the 'react command has been used to read a file of reactions
that include such reactions. See the react command doc page. After all collisions in the grid cell have been
computed, there is still a one-to-one correspondence between ambipolar ions and electron, and each pair is
recombined into a single ambipolar particle.

The rotate keyword determines how vibrational energy is treated in particle collisions and stored by particles. If
the value is set to no, then rotational energy is not tracked; every particle's rotational energy is 0.0. If the value is
set to yes, a particle's rotational energy is a continuous value.

The vibrate keyword determines how vibrational energy is treated in particle collisions and stored by particles. If
the value is set to no, then vibrational energy is not tracked; every particle's vibrational energy is 0.0. If the value
is set to discrete, each particle's vibrational energy is set to discrete values, namely multiples of kT where k = the
Boltzmann constant and T is the characteristic vibrational temperature set for the particle's species in the file read
by the species command. If the value is set to smooth, a particle's vibrational energy is a continuous value. Note
that the discrete setting is only observed if the vibrational degrees of freedom for the species is 2, as set in the file
read by the species command, i.e. for species that are dimer molecules. Species with more degrees of freedom
(4,6,etc) are always treated as if the setting were smooth.

Restrictions: none

Related commands:

collide

Default:

The option defaults are vremax = (0,yes), remain = yes, ambipolar no, nearcp no, rotate yes, and vibrate = no.

(Gallis11) M. A. Gallis, J. R. Torczynski, "Effect of Collision-Partner Selection Schemes on the Accuracy and
Efficiency of the Direct Simulation Monte Carlo Method," International Journal for Numerical Methods in Fluids,

106

67(8):1057-1072. DOI:10.1002/fld.2409 (2011).

107

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute command

Syntax:

compute ID style args

ID = user-assigned name for the computation•
style = one of a list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

compute 1 ke/particle
compute myGrid all n mass u usq temp

Description:

Define a computation that will be performed on a collection of particles or grid cells or surface elements.
Quantities calculated by a compute are instantaneous values, meaning they are calculated from information about
the current timestep. Examples include calculation of the system temperature or counting collisions of particles
with surface elements. Code for new computes can be added to SPARTA; see Section 8 of the manual for details.

Note that defining a compute does not perform a computation. Instead computes are invoked by other SPARTA
commands as needed, e.g. to generate statistics or dump file output. See Section 4.4 for a summary of various
SPARTA output options, many of which involve computes.

The ID for a compute is used to identify the compute in other commands. Each compute ID must be unique. The
ID can only contain alphanumeric characters and underscores. You can specify multiple computees of the same
style so long as they have different IDs. A compute can be deleted with the uncompute command, after which its
ID can be re-used.

Each compute style has its own doc page which describes its arguments and what it does. Here is an alphabetic
list of compute styles available in SPARTA:

boundary - various quantities on each global boundary•
count - particle counts for species and mixtures and mixture groups•
distsurf/grid - distance from grid cells to surface•
eflux/grid - energy flux density per grid cell•
grid - various per grid cell quantities•
ke/particle - temperature per particle•
lambda/grid - mean-free path per grid cell•
pflux/grid - momentum flux density per grid cell•
property/grid - per grid cell properties•
reduce - reduce vectors to scalars•
sonine/grid - Sonine moments per grid cell•
surf - various per surface element quantities•
thermal/grid - thermal temperature per grid cell•
temp - temperature of particles•
tvib/grid - vibrational temperature per grid cell•

108

http://sparta.sandia.gov

Computes calculate one of four styles of quantities: global, per-particle, per-grid, or per-surf. A global quantity is
one or more system-wide values, e.g. the temperature of the system. A per-particle quantity is one or more values
per particle, e.g. the kinetic energy of each particle. A per-grid quantity is one or more values per grid cell. A
per-surf quantity is one or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two forms: a single scalar value or a vector of
values. Additionaly, global quantities can also be a 2d array of values. The doc page for each compute describes
the style and kind of values it produces, e.g. a per-particle vector. Some computes can produce more than one
form of a single style, e.g. a global scalar and a global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be referenced
via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar compute
values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

The values generated by a compute can be used in several ways:

Global values can be output via the stats_style command. Or the values can be referenced in a variable
equal or variable atom command.

•

Per-particle values can be output via the dump particle command. Or the values can be referenced in a
particle-style variable.

•

Per-grid values can be output via the dump grid command. They can be time-averaged via the fix ave/grid
command.

•

Per-surf values can be output via the dump surf command. They can be time-averaged via the fix ave/surf
command.

•

Restrictions: none

Related commands:

uncompute

Default: none

109

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute boundary command

Syntax:

compute ID boundary mix-ID value1 value2 ...

ID is documented in compute command•
boundary = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = n or press or shx or shy or shz or ke

 n = count of particles hitting boundary
 press = magnitude of normal pressure on boundary
 shx,shy,shz = components of shear stress on boundary
 ke = flux of kinetic energy on boundary
 erot = flux of rotational energy on boundary
 evib = flux of vibrational energy on boundary
 etot = flux of total energy on boundary

•

Examples:

compute 1 boundary all n press eng
compute mine boundary species press shx shy shz

These commands will dump time averages for each species and each boundary to a file every 1000 steps:

compute 1 boundary species n press shx shy shz
fix 1 ave/time 10 100 1000 c_1 file tmp.boundary

Description:

Define a computation that calculates one or more values for each boundary (i.e. face) of the simulation box, based
on the particles that strike that boundary. The values are summed for each group of species in the specified
mixture. See the mixture command for how a set of species can be partitioned into groups.

The manner in which statistics are tallied for each boundary depends on the style of boundary as specified by the
boundary command. For outflow boundaries, only the flux of particles leaving the simulation box contributes to
the pressure, stress, and energy; there is no contribution from reflected particles. For periodic boundaries, only the
count n is tallied, since the particles exert no pressure or stress on the boundary. For specular boundaries, the
particle collisions exert pressure and stress on the boundary but no energy flux, since the collisions conserve
energy. For surface boundaries, each collision may contribute to all the values, depending on the surface collision
model.

The n value counts the number of particles in the group striking the boundary or passing through it.

The press value calculates the pressure P exerted on the boundary in the normal direction by particles in the
group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

110

http://sparta.sandia.gov

where p_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when
colliding with the boundary. The pressure exerted on the boundary is the sum over all contributing p_delta dotted
into the normal N of the boundary which is directed into the box, normalized by A = the area of the boundary face
and dt = the timestep and fnum = the real/simulated particle ratio set by the global fnum command.

The shx, shy, shz values calculate the shear pressure components Sx, Sy, Sz extered on the boundary in the
tangential direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are
computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)
Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before. P_delta_t is the tangential component of the
change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

The ke value calculates the kinetic energy flux Eflux imparted to the boundary by particles in the group, such that
energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when
colliding with the boundary. The energy flux imparted to the boundary is the sum over all contributing e_delta,
normalized by A = the area of the boundary face and dt = the timestep and fnum = the real/simulated particle ratio
set by the global fnum command.

The erot value calculates the rotational energy flux Eflux imparted to the boundary by particles in the group, such
that energy lost by a particle is a positive flux. This is computed as

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from
Erot_pre to Erot_post when colliding with the boundary. The flux equation is the same as for the ke value.

The evib value calculates the vibrational energy flux Eflux imparted to the boundary by particles in the group,
such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from
Evib_pre to Evib_post when colliding with the boundary. The flux equation is the same as for the ke value.

The etot value calculates the total energy flux imparted to the boundary by particles in the group, such that energy
lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies. Thus the
total energy flux is the sum of what is computed by the ke, erot, and evib values.

Output info:

111

This compute calculates a global array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc. The number of rows is 4 for a 2d simulation for the 4 faces (xlo, xhi,
ylo, yhi), and it is 6 for a 3d simulation (xlo, xhi, ylo, yhi, zlo, zhi).

The array can be accessed by any command that uses global array values from a compute as input. See Section
4.4 for an overview of SPARTA output options.

The array values will be in the units appropriate to the individual values as described above. N is unitless. Press,
shx, shy, shz are in pressure units. Ke, erot, evib, and etot are in energy/area-time units for 3d simulations and
energy/length-time units for 2d simulations.

Restrictions: none

Related commands:

fix ave/time

Default: none

112

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute count command

Syntax:

compute ID count id1 id2 ...

ID is documented in compute command•
count = style name of this compute command•
id1,id2,... = species ID or mixture ID or mixture/group

 species ID = ID used with the species command
 mixture ID = ID used with the mixture command, expands to all groups in mixture
 mixture/group = ID of mixture followed by name of one group within mixture

•

Examples:

compute 1 count species
compute Ncounts count N N2 N+ air/O

Description:

Define a computation that counts the number of particles currently in the simulation for various species or groups
within mixtures. Groups are collections of one or more species within a mixture. See the "mixture" command for
an explanation of how species are added to a mixture and how groups of species within the mixture are defined.

Each of the listed ids (id1, id2, etc) can be in one of three formats. Any of the ids can be in any of the formats.

An id can be a species ID, in which case the count is for particles of that species.

An id can be a mixture ID, in which case one count is performed for each of the groups within the mixture. In the
first example above, "species" is the name of a default mixture which assigns every species defined for the
simulation to its own group. If there are 10 species in the simulation, there will thus be 10 counts calculated, the
same as if the command had been specified with explicit names for all 10 species, e.g.

compute 1 count O2 N2 O N NO O2+ N2+ O+ N+ NO+

An id can be of the form mix-ID/name where mix-ID is a mixture ID and name is the name of a group in that
mixture.

Output info:

If there is a single count accumulated, this compute calculates a global scalar. If there are multiple counts
accumulated, it calculates a global vector with a length = number of counts. These results can be used by any
command that uses global scalar or vector values from a compute as input. See Section 4.4 for an overview of
SPARTA output options.

The values will all be unitless counts.

Restrictions:

113

http://sparta.sandia.gov

It is an error if a listed id is both a species ID and a mixture ID, since this command cannot distinguish between
them.

Related commands: none

Default: none

114

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute distsurf/grid command

Syntax:

compute ID distsurf surfID keyword args ...

ID is documented in compute command•
distsurf/grid = style name of this compute command•
surfID = group ID for which surface elements to consider•
zero or more keyword/args pairs may be appended•
keyword = dir

dir args = Sx Sy Sz
 Sx,Sy,Sz = direction vector used to test surf elements

•

Examples:

compute 1 distsurf/grid all
compute 1 distsurf/grid sphere2 dir 1 0 0

Description:

Define a computation that calculates the minimum distance from each grid cell to any surface element. This is
useful for grid adaptation; the adapt_grid command can use the compute as a criterion for refining or coarsening
individual grid cells.

Only surface elements in the specified surfID group are included in the distance calculations. Surface groups can
be defined by the group surf command.

If the dir keyword is specified it can exclude additional surface elements. The Sx,Sy,Sz settings are components
of a vector. It's length does not matter, just its direction. Only surface elements whose normal is opposed to the
vector direction (in a dot product sense) are eligible surfaces for the distance calculations. This can be useful to
exclude surface elements that are not facing "upwind" with respect to the flow direction of the particles. I.e. by
setting Sx,Sy,Sz to the flow direction. If Sy,Sy,Sz = (0,0,0), which is the default, then no surface elements are
excluded by this criterion.

Each grid cell also only considers a subset of eligible surfaces in its distance calculations. A vector from the grid
cell center to the center of each surface element is calculated. If that vector is opposed to the normal vector of the
surface element (in a dot product sense), the distance from the grid cell to the surface is calculated. This means
that for an individual grid cell, only surface elements that are "facing" the grid cell are considered.

The "distance" between a grid cell and a surface element is the minimum distance between the two geometric
entities. If the surface element overlaps with the grid cell, the distance is 0.0. Otherwise the distance is the
minimum distance between the perimeter of the grid cell and the line segment (in 2d) or the perimeter of the
triangle (in 3d).

Here is an example of using this compute with the adapt_grid command to adapt the grid around the upwind side
of a circular object (flow is from the left boundary of the box). The first adapt_grid command uses a threshold
distance value of 0.5 to create refine grid cells once. The second adapt_grid command uses a threshold distance
value of 0.1 to create some of the grid cells closer to the surface a second time.

115

http://sparta.sandia.gov

NOTE: include pic

Here is an example of how to use this compute with two successive "adapt_grid" commands. The first refines
once for grid cells within a distance of 0.3 from surface elements facing upwind. The second refines again for grid
cells within a distance of 0.1 from the surface elements.

compute 5 distsurf/grid dir 1 0 0
adapt_grid refine value c_5 0.3 0.0 thresh less more
adapt_grid refine value c_5 0.1 0.0 thresh less more

For a 2d simulation of flow around a circle (flow from right to left), these commands produce this kind of adapted
grid (click for a larger image):

Output info:

This compute calculates a per-grid vector whose values are the distances of each grid cell from any of the surface
elements.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells.

The vector can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4
for an overview of SPARTA output options.

The per-grid array values for the vector will be in distance units.

Restrictions: None

Related commands:

adapt_grid

Default:

The keyword default is dir = 0,0,0.

116

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute eflux/grid command

Syntax:

compute ID eflux/grid mix-ID value1 value2 ...

ID is documented in compute command•
eflux/grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
values = heatx or heaty or heatz

heatx,heaty,heatz = xyz components of energy flux density tensor

•

Examples:

compute 1 eflux/grid species heatx heaty heatz
compute 1 eflux/grid species heaty

These commands will dump 10 time averaged energy flux densities for each species and each grid cell to a dump
file every 1000 steps:

compute 1 eflux/grid species heatx heaty heatz
fix 1 ave/grid 10 100 1000 c_1
dump 1 grid all 1000 tmp.grid id f_1

Description:

Define a computation that calculates components of the energy flux density vector for each grid cell. This is also
called the heat flux density vector, and is based on the thermal velocity of the particles in each grid cell. The
values are tallied separately for each group of species in the specified mixture, as described in the Output section
below. See the mixture command for how a set of species can be partitioned into groups.

The values listed above rely on first computing and subtracting the center-of-mass (COM) velocity for all
particles in the group and grid cell from each particle to yield a thermal velocity. This thermal velocity is used to
compute the components of the energy flux density vector, as described below. This is in contrast to some of the
values tallied by the compute grid temp command which simply uses the full velocity of each particle to compute
a momentum or kinetic energy density. For non-streaming simulations, the two results should be similar, but for
streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a thermal velocity for
each particle, as described below, is also computed over one large set of particles (across all timesteps), in
contrast to using a COM velocity computed only for particles in the current timestep, which is what the compute
sonine/grid command does.

117

http://sparta.sandia.gov

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Calculation of the energy flux density is done by first calcuating the center-of-mass (COM) velocity of particles
for each group. grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell.

The heatx, heaty, heatz values compute the components of the energy flux density vector due to particles in the
group as follows:

heatx = 0.5 * fnum/volume Sum_i (mass_i Cx Csq) heaty = 0.5 * fnum/volume Sum_i (mass_i Cy Csq) heatz =
0.5 * fnum/volume Sum_i (mass_i Cz Csq)

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if momxx and momxy values
were specified as keywords, then the first two columns would be momxx and momxy for the first group, the 3rd
and 4th columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of energy flux density = energy-velocity/volume units.

Restrictions: none

Related commands:

compute grid, compute thermal/grid, compute pflux/grid, fix ave/grid, dump grid

Default: none

118

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute grid command

Syntax:

compute ID grid mix-ID value1 value2 ...

ID is documented in compute command•
grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = n or nrho or nfrac or mass or massrho or massfrac or u or v or w or usq or vsq or wsq of ke or
temp or erot or trot or evib or tvib or pxrho or pyrho or pzrho or kerho

n = particle count
nrho = number density
nfrac = number fraction
mass = mass
massrho = mass density
massfrac = mass fraction
u = x component of velocity
v = y component of velocity
w = z component of velocity
usq = x component of velocity squared
vsq = y component of velocity squared
wsq = z component of velocity squared
ke = kinetic energy
temp = temperature
erot = rotational energy
trot = rotational temperature
evib = vibrational energy
tvib = vibrational temperature (classical definition)
pxrho = x component of momentum density
pyrho = y component of momentum density
pzrho = z component of momentum density
kerho = kinetic energy density

•

Examples:

compute 1 grid species n u v w usq vsq wsq
compute 1 grid air n u v w

These commands will dump time averages for each species and each grid cell to a dump file every 1000 steps:

compute 1 grid species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1
dump 1 grid all 1000 tmp.grid id f_1

Description:

Define a computation that calculates one or more values for each grid cell, based on the particles in the cell. The
values are tallied separately for each group of species in the specified mixture, as described in the Ouput section
below. See the mixture command for how a set of species can be partitioned into groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

119

http://sparta.sandia.gov

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that for most of the values, this is a different form of averaging than taking the values produced by the
formulas below for a single timestep, summing those values over the sampling timesteps, and then dividing by the
number of sampling steps.

The n value counts the number of particles in each group. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps.

The nrho value computes the number density for the grid cell volume due to particles in each group:

Nrho = fnum/volume * N

N is the number of particles (same as the n keyword), fnum is the real/simulated particle ratio set by the global
fnum command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps,
this value is normalized by the number of sampling steps.

The nfrac value computes the number fraction of particles in each group:

Nfrac = Ngroup / Ntotal

Ngroup is the count of particles in the group and Ntotal is the total number of particles in all groups in the
mixture. Note that this total is not (necessarily) all particles in the cell.

The mass value computes the average mass of particles in each group:

Mass = Sum_i (mass_i) / N

where Sum_i is a sum over particles in the group.

The massrho value computes the mass density for the grid cell volume due to particles in each group:

Massrho = fnum/volume * Sum_i (mass_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps.

The massfrac value computes the mass fraction of particles in each group:

Massfrac = Sum_i (mass_i) / Masstotal

where Sum_i is a sum over particles in the group and Masstotal is the total mass of particles in all groups in the
mixture. Note that this total is not (necessarily) the mass of all particles in the cell.

The u, v, w values compute the components of the mass-weighted average velocity of particles in each group:

U = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
V = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
W = Sum_i (mass_i Vz_i) / Sum_i (mass_i)

120

This is the same as the center-of-mass velocity of particles in each group.

The usq, vsq, wsq values compute the average mass-weighted squared components of the velocity of particles in
each group:

Usq = Sum_i (mass_i Vx_i Vx_i) / Sum_i (mass_i)
Vsq = Sum_i (mass_i Vy_i Vy_i) / Sum_i (mass_i)
Wsq = Sum_i (mass_i Vz_i Vz_i) / Sum_i (mass_i)

The ke value computes the average kinetic energy of particles in each group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N

Note that this is different than the group's contribution to the average kinetic energy of entire grid cells. That can
be calculated by multiplying the ke quantity by the n quantity.

The temp value first computes the average kinetic energy of particles in each group, as for the ke value. This is
then converted to a temperature T by the following formula where kB is the Boltzmann factor:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N
T = KE / (3/2 kB)

Note that this definition of temperature does not subtract out a net streaming velocity for particles in the grid cell,
so it is not a thermal temperature when the particles have a non-zero streaming velocity. See the compute
thermal/grid command to calculate thermal temperatures after subtracting out streaming components of velocity.

The erot value computes the average rotational energy of particles in each group:

Erot = Sum_i (erot_i) / N

Note that this is different than the group's contribution to the average rotational energy of entire grid cells. That
can be calculated by multiplying the erot quantity by the n quantity.

The trot value computes a rotational temperature by the following formula where kB is the Boltzmann factor:

Trot = (2/kB) Sum_i (erot_i) / Sum_i (dof_i)

Dof_i is the number of rotational degrees of freedom for particle i.

The evib value computes the average vibrational energy of particles in each group:

Evib = Sum_i (evib_i) / N

Note that this is different than the group's contribution to the average vibrational energy of entire grid cells. That
can be calculated by multiplying the evib quantity by the n quantity.

The tvib value computes a classical definition of vibrational temperature, valid for continous distributions of
vibrational energy, by the following formula where kB is the Boltzmann factor:

Tvib = (2/kB) Sum_i (evib_i) / Sum_i (dof_i)

Dof_i is the number of vibrational degrees of freedom for particle i.

121

The pxrho, pyrho, pzrho values compute components of momentum density for the grid cell volume due to
particles in each group:

Pxrho = fnum/volume * Sum_i (mass_i * Vx_i)
Pyrho = fnum/volume * Sum_i (mass_i * Vy_i)
Pzrho = fnum/volume * Sum_i (mass_i * Vz_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps.

The kerho value computes the kinetic energy density for the grid cell volume due to particles in each group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KErho = fnum/volume * Sum_i (mass_i * Vsq_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. N is unitless.
Nrho is in 1/distance^3 units for 3d simulations and 1/distance^2 units for 2d simulations. Mass is in mass units.
Massrho is in is in mass/distance^3 units for 3d simulations and mass/distance^2 units for 2d simulations. U, v,
and w are in velocity units. Usq, vsq, and wsq are in velocity squared units. Ke, erot, and evib are in energy units.
Temp and trot and tvib are in temperature units. Pxrho, pyrho, pzrho are in momentum/distance^3 units for 3d
simulations and momentum/distance^2 units for 2d simulations, where momentum is in units of mass*velocity.
Kerho is in units of energy/distance^3 units for 3d simulations and energy/distance^2 units for 2d simulations.

Restrictions: none

Related commands:

fix ave/grid, dump grid, compute thermal/grid

122

Default: none

123

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute ke/particle command

Syntax:

compute ID ke/particle

ID is documented in compute command•
ke/particle = style name of this compute command•

Examples:

compute 1 ke/particle

Description:

Define a computation that calculates the per-atom translational kinetic energy for each particle.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump particle command.

The kinetic energy is

Vsq = Vx*Vx + Vy*Vy + Vz*Vz KE = 1/2 m Vsq

where m is the mass and (Vx,Vy,Vz) are the velocity components of the particle.

Output info:

This compute calculates a per-particle vector, which can be accessed by any command that uses per-particle
values from a compute as input.

The vector can be accessed by any command that uses per-particle values from a compute as input. See Section
4.4 for an overview of SPARTA output options.

The per-particle vector values will be in energy units.

Restrictions: none

Related commands:

dump particle

Default: none

124

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute lambda/grid command

Syntax:

compute ID lambda/grid nrho temp species extra

ID is documented in compute command•
lambda/grid = style name of this compute command•
nrho = compute or fix column for number density, prefaced by "c_" or "f_"•
temp = NULL or compute or fix column for temperature, prefaced by "c_" or "f_"•
species = species name used for reference properties•
extra = kall or kx or ky or kz (optional)

kall = also calculate Knudsen number based on cell size in all dimensions
kx = also calculate Knudsen number based on cell size in x dimension
ky = also calculate Knudsen number based on cell size in y dimension
kz = also calculate Knudsen number based on cell size in z dimension

•

Examples:

compute 1 lambda/grid c_GR[1] NULL Ar
compute 1 lambda/grid f_ave[2] f_ave[3] N2 kall

These commands will dump time averages for the mean free path for each grid cell to a dump file every 1000
steps:

compute 1 grid species nrho temp
fix 1 ave/grid 10 100 1000 c_1
compute 2 lambda/grid f_1[1] f_1[2] Ar
dump 1 grid all 1000 tmp.grid id c_2

Description:

Define a computation that calculates the mean free path (lambda) between molecular collisions for each grid cell,
based on the particles in that cell. Optionally, a Knudsen number for each cell can also be calculated, which is the
mean free path divided by the cell size. These quantities can be useful for estimating the optimal grid cell size
when adapting the grid, e.g. via the adapt_grid or fix adapt/grid commands.

Unlike other computes that calculate per grid cell values, this compute does not take a mixture ID as an argument.
This is because it uses the number density and temperature calculated by other computes or fixes as input, and
those computes or fixes use mixtures as part of their computations.

The results of this compute can be used by different commands in different ways. For example, the values can be
output by the dump grid command.

The formula used to calculate the mean free path (lambda) is given in (Bird94) as equation 4.65:

125

http://sparta.sandia.gov

This is an approximate mean free path for a multi-species mixture, suitable for estimating optimal grid cell sizes
as explained above. It is a simplied version of formulas 4.76 and 4.77 from the same reference.

Dref and Tref and omega are collision properties for a reference species in the flow. The reference species is
specified by the species argument. It must be a species defined by the species command and listed in the file of
per-species collision properties read in by the collide command.

Specifically, Dref is the diameter of molecules of the species, Tref is the reference temperature, and omega is the
viscosity temperature-dependence for the species.

In the formula above, n is the number density and T is the thermal temperature of particles in a grid cell. This
compute does not calculate these quantities itself; instead it uses another compute or fix to perform the
calculation. This is done by specifying the nrho and temp arguments as either

c_ID[m] = compute with ID that calculates nrho/temp as its Mth column of output•
f_ID[m] = fix with ID that calculates a time-averaged nrho/temp as its Mth column of output•

The temp argument can also be specified as NULL, which drops the (Tref/T) ratio term from the formula above.
That is also effectively the case if the reference species defines omega = 1/2. In that case, the temp argument is
ignored, whether it is NULL or not.

Note that if the value of n is 0.0 for a grid cell, its mean-free-path will be set to 1.0e20 (infinite length).

The compute_grid command can calculate a number density, using its nrho value. It can also calculate a
temperature using its temp value. Note that this temperature is inferred from the translational kinetic energy of the
particles, which is only appopriate for a mean free path calculation for systems with zero or small streaming
velocities. For systems with streaming flow, an appropriate temperature can be calculated by the compute
thermal/grid command. The formulas on its doc page show that the the center-of-mass velocity from the particles
in each grid cell is subtracted from each particle's velocity to yield a translational thermal velocity, from which a
thermal temperature is calculated.

The fix ave/grid command can calculate the same values in a time-averaged sense, assuming it uses these same
computes as input. Using this fix as input to this compute will thus yield less noisy values, due to the time
averaging.

Note that the compute or fix (via the compute(s) it uses as input) can perform its number density or temperature
calculation for a subset of the particles based on the "mixture" it uses. See the mixture command for how a set of
species can be partitioned into groups.

IMPORTANT NOTE: If the ID of a fix ave/grid command is used as the nrho or temp argument, it only produces
output on timesteps that are multiples of its Nfreq argument. Thus this compute can only be invoked on those
timesteps. For example, if a dump grid command invokes this compute to write values to a dump file, it must do
so on timesteps that are multiples of Nfreq.

One of the kall or kx or ky or kz extra arguments can be optionally appended. If specified, this calculates an
additional value per grid cell, namely the dimensionless Knudsen number which is the ratio of the mean free path
to the cell size. For kall, the cell size is taken to be the average of the three grid cell side lengths (or two cell
lengths for a 2d simulation). For kx, ky, or kz, the cell size is the single cell side length in the corresponding x,y,z
dimension.

Output info:

126

This compute calculates a per-grid vector or array. If one of kall, kx, ky, or kz is not specified, then it is a vector. If
one extra argument is specified, it is an array with two columns. The vector or first column of the array is the
mean free path; the second column is the Knudsen number.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all the individual values.
Likewise, split cells store no particles and will produce a zero result. This is because their sub-cells actually
contain the particles that are geometrically inside the split cell.

The vector or array can be accessed by any command that uses per-grid values from a compute as input. See
Section 4.4 for an overview of SPARTA output options.

The per-grid array values for the vector or first column of the array will be in distance units. The second column
of the array will be dimensionless.

Restrictions:

To use this compute, a collision style must be defined via the collide command, which defines properties for the
reference species.

As explained above, to use this compute with nrho or temp defined as input from a fix ave/grid command, this
compute must only be invoked on timesteps that are multiples of the Nfreq argument used by the fix, since those
are the steps when it produces output.

Related commands:

compute grid, compute thermal/grid, fix ave/grid, dump grid

Default: none

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

127

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute pflux/grid command

Syntax:

compute ID pflux/grid mix-ID value1 value2 ...

ID is documented in compute command•
pflux/grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
values = momxx or momyy or momzz or momxy or momyz or momxz

momxx,momyy,momzz = diagonal components of momentum flux density tensor
momxy,momyz,momxz = off-diagonal components of momentum flux density tensor

•

Examples:

compute 1 pflux/grid species momxx momyy momzz
compute 1 pflux/grid species momxx momxy

These commands will dump 10 time averaged momentum flux densities for each species and each grid cell to a
dump file every 1000 steps:

compute 1 pflux/grid species momxx momyy momzz
fix 1 ave/grid 10 100 1000 c_1
dump 1 grid all 1000 tmp.grid id f_1

Description:

Define a computation that calculates components of the momemtum flux density tensor for each grid cell. This is
equivalent to the kinetic energy density tensor, and is based on the thermal velocity of the particles in each grid
cell. The values are tallied separately for each group of species in the specified mixture, as described in the Output
section below. See the mixture command for how a set of species can be partitioned into groups.

The values listed above rely on first computing and subtracting the center-of-mass (COM) velocity for all
particles in the group and grid cell from each particle to yield a thermal velocity. This thermal velocity is used to
compute the components of the momentum flux density tensor, as described below. This is in contrast to some of
the values tallied by the compute grid temp command which simply uses the full velocity of each particle to
compute a momentum or kinetic energy density. For non-streaming simulations, the two results should be similar,
but for streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a thermal velocity for
each particle, as described below, is also computed over one large set of particles (across all timesteps), in
contrast to using a COM velocity computed only for particles in the current timestep, which is what the compute

128

http://sparta.sandia.gov

sonine/grid command does.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Calculation of the momentum flux density is done by first calcuating the center-of-mass (COM) velocity of
particles for each group. grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell.

The momxx, momyy, momzz values compute the diagonal components of the momentum flux density tensor due to
particles in the group as follows:

momxx = fnum/volume Sum_i (mass_i Cx^2)
momyy = fnum/volume Sum_i (mass_i Cy^2)
momzz = fnum/volume Sum_i (mass_i Cz^2)

The momxy, momyz, momxz values compute the off-diagonal components of the momentum flux density tensor
due to particles in the group as follows:

momxy = fnum/volume Sum_i (mass_i Cx Cy)
momyz = fnum/volume Sum_i (mass_i Cy Cz)
momxz = fnum/volume Sum_i (mass_i Cx Cz)

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if momxx and momxy values
were specified as keywords, then the first two columns would be momxx and momxy for the first group, the 3rd
and 4th columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of momentum flux density = energy density = energy/volume units.

Restrictions: none

Related commands:

129

compute grid, compute thermal/grid, compute eflux/grid, fix ave/grid, dump grid

Default: none

130

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute property/grid command

Syntax:

compute ID property/grid input1 input2 ...

ID is documented in compute command•
property/grid = style name of this compute command•
input = one or more grid attributes

 possible attributes = id, proc, xlo, ylo, zlo, xhi, yhi, zhi, xc, yc, zc

 id = integer form of grid cell ID
 proc = processor that owns grid cell
 xlo,ylo,zlo = coords of lower left corner of grid cell
 xhi,yhi,zhi = coords of lower left corner of grid cell
 xc,yc,zc = coords of center of grid cell
 vol = flow volume of grid cell (area in 2d)

•

Examples:

compute 1 all property/grid id xc yc zc

Description:

Define a computation that simply stores grid attributes for each grid cell. This is useful so that the values can be
used by other output commands that take computes as inputs. See for example, the compute reduce, fix ave/grid,
and dump grid commands.

The values are stored in a per-grid vector or array as discussed below.

Id is the grid cell ID. In SPARTA each grid cell is assigned a unique ID which represents its location, in a
topological sense, within the hierarchical grid. This ID is stored as an integer such as 5774983, but can also be
decoded into a string such as 33-4-6, which makes it easier to understand the grid hierarchy. In this case it means
the grid cell is at the 3rd level of the hierarchy. Its grandparent cell was 33 at the 1st level, its parent was cell 4 (at
level 2) within cell 33, and the cell itself is cell 6 (at level 3) within cell 4 within cell 33. If you specify id, the ID
is printed directly as an integer. The ID in string format can be accessed by the dump grid command and its idstr
argument.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes are the coordinates of the lower-left corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi are the coordinates of the upper-right corner of the grid cell. The xc, yc, zc attributes are the
coordinates of the center point of the grid cell. The zlo, zhi, zc attributes cannot be used for a 2d simulation.

The vol attribute is the flow volume of the grid cell (or area in 2d). Flow volume is the portion of the grid cell that
is accessible to particles, i.e. outside any closed surface that may intersect the cell.

Output info:

This compute calculates a per-grid vector or per-grid array depending on the number of input values. If a single

131

http://sparta.sandia.gov

input is specified, a per-grid vector is produced. If two or more inputs are specified, a per-grid array is produced
where the number of columns = the number of inputs.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. The id and xlo,ylo,zlo and xhi,yhi,zhi values for a split cell and its sub cells are all the same. The vol of a
cut cell is the portion of the cell in the flow. The vol of a split cell is the same as if it were unsplit. The vol of each
sub cell within a split cell is its portion of the flow volume.

The vector or array can be accessed by any command that uses per-atom values from a compute as input. See
Section 4.4 for an overview of SPARTA output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. distance units for xlo or
xc.

Restrictions: none

Related commands:

dump grid, compute reduce, fix ave/grid

Default: none

132

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute reduce command

Syntax:

compute ID reduce mode input1 input2 ... keyword args ...

ID is documented in compute command•
reduce = style name of this compute command•
mode = sum or min or max or ave or sumsq or avesq•
one or more inputs can be listed•
input = x, y, z, vx, vy, vz, ke, erot, evib, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz = particle position or velocity component
 ke,erot,evib = particle energy component
 c_ID = per-particle or per-grid vector calculated by a compute with ID
 c_ID[I] = Ith column of per-particle or per-grid array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-particle or per-grid or per-surf vector calculated by a fix with ID
 f_ID[I] = Ith column of per-particle or per-grid or per-surf array calculated by a fix with ID, I can include wildcard (see below)
 v_name = per-particle or per-grid vector calculated by a particle-style or grid-style variable with name

•

zero or more keyword/args pairs may be appended•
keyword = replace

replace args = vec1 vec2
 vec1 = reduced value from this input vector will be replaced
 vec2 = replace it with vec1[N] where N is index of max/min value from vec2

•

Examples:

compute 1 reduce sum c_grid[*]
compute 2 reduce min f_ave v_myKE
compute 3 reduce max c_mine[1] c_mine[2] c_temp replace 1 3 replace 2 3

These commands will include the average grid cell temperature, across all grid cells, in the stats output:

compute 2 grid all temp
compute 3 reduce ave c_2[1]
stats_style step c_temp c_3

Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The inputs
can be per-particle or per-grid or per-surf quantities; they cannot be global quantities. Particle attributes are
per-particle quantities, computes may generate per-particle or per-grid quantities, fixes may generate any of the
three kinds of quantities, and particle-style or grid-style variables generate per-particle or per-grid quantities. See
the variable command and its special functions which can perform the same operations as the compute reduce
command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector. The sumsq
option sums the square of the values in the vector into a global total. The avesq setting does the same as sumsq,
then divdes the sum of squares by the number of values. The last two options can be useful for calculating the
variance of some quantity, e.g. variance = sumsq - ave^2.

133

http://sparta.sandia.gov

Each listed input is operated on independently.

Each listed input can be a particle attribute or can be the result of a compute or fix or the evaluation of a variable.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2
compute reduce commands are equivalent, since the compute grid command creates a per-grid array with 3
columns:

compute myGrid all u v w
compute 2 all reduce min c_myGrid[*]
compute 2 all reduce min c_myGrid[1] c_myGrid[2] c_myGrid[3]

The particle attributes x,y,z,vx,vy,vz are position and velocity components. The ke,erot,evib attributes are for
kinetic, rotational, and vibrational energy of particles.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-particle or per-grid quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended,
the Ith column of the array calculated by the compute is used. Users can also write code for their own compute
styles and add them to SPARTA. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

IMPORTANT NOTE: A compute which generates per-surf quantities cannot be used as input. This is because its
values have not yet been combined across processors to sum the contributions from all processors whose particles
collide with the same surface element. The combining is performed by the fix ave/surf command, at each of its
Nfreq timesteps. Thus to use this compute on per-surf values, specify a fix ID for a fix ave/surf and insure the fix
outputs its values when they are needed.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes can
generate per-particle or per-grid or per-surf quantities. See the individual fix doc page for details. Note that some
fixes only produce their values on certain timesteps, which must be compatible with when this compute references
the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write code
for their own fix style and add them to SPARTA. See the discussion above for how I can be specified with a
wildcard asterisk to effectively specify multiple values.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be a particle-style or grid-style variable. Both styles define formulas which can reference stats keywords or
invoke other computes, fixes, or variables when they are evaluated. Particle-style variables can also reference
various per-particle attributes (position, velocity, etc). So these variables are a very general means of creating
per-particle or per-grid quantities to reduce.

If the replace keyword is used, two indices vec1 and vec2 are specified, where each index ranges from 1 to the #
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A min/max
is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored. Then, instead
of performing a min/max on the vec1 input vector, the stored index is used to select the Nth element of the vec1

134

vector.

Here is an example which prints out both the grid cell ID and number of particles for the grid cell with the
maximum number of particles:

compute 1 property/grid id
compute 2 grid all n
compute 3 reduce max c_1 c_2[1] replace 1 2
stats_style step c_temp c_3[1] c_3[2]

The first two input values in the compute reduce command are vectors with the ID and particle count of each grid
cell. Instead of taking the max of the ID vector, which does not yield useful information in this context, the
replace keyword will extract the ID for the grid cell which has the maximum number of particles. This ID and the
cell's particle count will be printed with the statistical output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where N
is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any command
that uses global scalar or vector values from a compute as input. See Section 4.4 for an overview of SPARTA
output options.

The scalar or vector values will be in whatever units the quantities being reduced are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

135

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute sonine/grid command

Syntax:

compute ID sonine/grid mix-ID keyword values ...

ID is documented in compute command•
sonine/grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more keywords may be appended, multiple times•
keyword = a or b•
values = values for specific keyword

a args = dim order = sonine A moment
 dim = x or y or z
 order = number from 1 to 5

b args = dim2 order = sonine B moment
 dim2 = xx or yy or zz or xy or yz or xz
 order = number from 1 to 5

•

Examples:

compute 1 sonine/grid air a x 5 b xy 5

These commands will dump 10 time averaged sonine moments for each species and each grid cell to a dump file
every 1000 steps:

compute 1 sonine/grid species a x 5 b xy 5
fix 1 ave/grid 10 100 1000 c_1
dump 1 grid all 1000 tmp.grid id f_1

Description:

Define a computation that calculates the sonine moments of the velocity distribution of the particles in each grid
cell. The values are tallied separately for each group of species in the specified mixture, as described in the Output
section below. See the mixture command for how a set of species can be partitioned into groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the A,B formulas below.

Note however that the center-of-mass (COM) velocity that is subtracted from each particle to yield a squared
thermal velocity Csq for each particle, as described below, is the COM velocity for only the particles in the
current timestep. When time-averaging it is NOT the COM velocity for all particles across all timesteps.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

136

http://sparta.sandia.gov

Calculation of both the A and B sonine moments is done by first calcuating the center-of-mass (COM) velocity of
particles for each group. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell. This allows computation of Csq for each particle which
is used in the formulas below to calculate the sonine moments.

The a keyword calculates the average of one or more sonine A moments for all particles in each group:

A1 = Sum_i (mass_i * Vdim * pow(Csq,1)) / Sum_i (mass_i)
A2 = Sum_i (mass_i * Vdim * pow(Csq,2)) / Sum_i (mass_i)
A3 = Sum_i (mass_i * Vdim * pow(Csq,3)) / Sum_i (mass_i)
A4 = Sum_i (mass_i * Vdim * pow(Csq,4)) / Sum_i (mass_i)
A5 = Sum_i (mass_i * Vdim * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the squared thermal velocity of the particle, as in the
COM equations above. The number of moments computed is specified by the order value, e.g. for order = 3, the
first 3 moments are computed, which leads to 3 columns of output as explained below.

The b keyword calculates the average of one or more sonine B moments for all particles in each group:

B1 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,1)) / Sum_i (mass_i)
B2 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,2)) / Sum_i (mass_i)
B3 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,3)) / Sum_i (mass_i)
B4 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,4)) / Sum_i (mass_i)
B5 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the squared thermal velocity of the particle, as in the
COM equations above. The number of moments computed is specified by the order value, e.g. for order = 2, the
first 2 moments are computed, which leads to 2 columns of output as explained below.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the a z 3 and b xy 2 moments
were specified as keywords, then the 1st thru 3rd columns would be the A1, A2, A3 moments of the first group,
the 4th and 5th columns would be the B1 and B2 moments of the first group, the 6th thru 8th columns would be
the A1, A2, A3 moments of the 2nd group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

137

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. These are
units like velocity cubed or velocity to the 6th power.

Restrictions: none

Related commands:

fix ave/grid, dump grid

Default: none

138

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute surf command

Syntax:

compute ID surf group-ID mix-ID value1 value2 ...

ID is documented in compute command•
boundary = style name of this compute command•
group-ID = group ID for which surface elements to perform calculation on•
mix-ID = mixture ID for particles to perform calculation on•
one or more values can be appended•
value = n or fx or fy or fz or press or px or py or pz or shx or shy or shz or ke

 n = count of particles hitting surface element
 fx,fy,fz = components of force on surface element
 press = magnitude of normal pressure on surface element
 px,py,pz = components of normal pressure on surface element
 shx,shy,shz = components of shear stress on surface element
 ke = flux of particle kinetic energy on surface element
 erot = flux of particle rotational energy on surface element
 evib = flux of particle vibrational energy on surface element
 etot = flux of particle total energy on surface element

•

Examples:

compute 1 surf all all n press eng
compute mine surf sphere species press shx shy shz

These commands will dump time averages for each species and each surface element to a dump file every 1000
steps:

compute 1 surf all species n press shx shy shz
fix 1 ave/surf all 10 100 1000 c_1
dump 1 surf all 1000 tmp.surf id f_1

These commands will time-average the force on each surface element then sum them across element to compute
drag (fx) and lift (fy) on the body:

compute 1 surf all all fx fy
fix 1 ave/surf all 10 100 1000 c_1
compute 2 reduce sum f_1[1] f_1[2]
stats 1000
stats_style step cpu np c_2[1] c_2[2]

Description:

Define a computation that calculates one or more values for each surface element in a group of elements, based on
the particles that strike that element. The values are summed for each group of species in the specified mixture.
See the mixture command for how a set of species can be partitioned into groups. Only surface elements in the
surface group specified by group-ID are included in the calculations. See the group surf command for info on how
surface elements can be assigned to surface groups.

Surface elements are triangles for 3d simulations and line segments for 2d simulations. See the read_surf
command for details.

139

http://sparta.sandia.gov

The results of this compute are used by different commands in different ways. The values for a single timestep
can be output by the dump surf command.

The values over many sampling timesteps can be averaged by the fix ave/surf command. It does its averaging as if
the particles striking the surface element at each sampling timestep were combined together into one large set to
compute the formulas below. The answer is then divided by the number of sampling timesteps if it is not
otherwise normalized by the number of particles. Note that in general this is a different normalization than taking
the values produced by the formulas below for a single timestep, summing them over the sampling timesteps, and
then dividing by the number of sampling steps. However for the current values listed below, the two
normalization methods are the same.

The n value counts the number of particles in the group striking the surface element.

The fx, fy, fz values calculate the components of force extered on the surface element by particles in the group,
with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
Px = - Sum_i (p_delta_x) / (dt / fnum)
Py = - Sum_i (p_delta_y) / (dt / fnum)
Pz = - Sum_i (p_delta_z) / (dt / fnum)

where p_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when
colliding with the surface element. The force exerted on the surface element is the sum over all contributing
p_delta, normalized by dt = the timestep and fnum = the real/simulated particle ratio set by the global fnum
command.

The press value calculates the pressure P exerted on the surface element in the normal direction by particles in the
group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

where p_delta, V_pre, V_post, dt, fnum are defined as before. The pressure exerted on the surface element is the
sum over all contributing p_delta dotted into the outward normal N of the surface element, also normalized by A
= the area of the surface element.

The px, py, pz values calculate the normal pressure Px, Py, Pz extered on the surface element in the direction of its
normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_n = (p_delta dot N) N
Px = - Sum_i (p_delta_n_x) / (A * dt / fnum)
Py = - Sum_i (p_delta_n_y) / (A * dt / fnum)
Pz = - Sum_i (p_delta_n_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before. P_delta_n is the normal component of the
change in momentum vector p_delta of a particle. P_delta_n_x (and y,z) are its x, y, z components.

The shx, shy, shz values calculate the shear pressure Sx, Sy, Sz extered on the surface element in the tangential
direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)

140

Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before. P_delta_t is the tangential component of the
change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

The ke value calculates the kinetic energy flux Eflux imparted to the surface element by particles in the group,
such that energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when
colliding with the surface element. The energy flux imparted to the surface element is the sum over all
contributing e_delta, normalized by A = the area of the surface element and dt = the timestep and fnum = the
real/simulated particle ratio set by the global fnum command.

The erot value calculates the rotational energy flux Eflux imparted to the surface element by particles in the
group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from
Erot_pre to Erot_post when colliding with the surface element. The flux equation is the same as for the ke value.

The evib value calculates the vibrational energy flux Eflux imparted to the surface element by particles in the
group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from
Evib_pre to Evib_post when colliding with the surface element. The flux equation is the same as for the ke value.

The etot value calculates the total energy flux imparted to the surface element by particles in the group, such that
energy lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies.
Thus the total energy flux is the sum of what is computed by the ke, erot, and evib values.

Output info:

This compute calculates a per-surf array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc.

Surface elements not in the specified group-ID will have zeroes for all their values.

The array can be accessed by any command that uses per-surf values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-surf array values will be in the units appropriate to the individual values as described above. N is unitless.
Press, px, py, pz, shx, shy, shz are in in pressure units. Ke, erot, evib, and etot are in energy/area-time units for 3d
simulations and energy/length-time units for 2d simulations.

141

Restrictions: none

Related commands:

fix ave/surf, dump surf

Default: none

142

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute temp command

Syntax:

compute ID temp

ID is documented in compute command•
temp = style name of this compute command•

Examples:

compute 1 temp
compute myTemp temp

Description:

Define a computation that calculates the temperature of all particles.

The temperature is calculated by the formula KE = dim/2 N kB T, where KE = total kinetic energy of the particles
(sum of 1/2 m v^2), dim = dimensionality of the simulation, N = number of particles, kB = Boltzmann constant,
and T = temperature.

Note that this definition of temperature does not subtract out a net streaming velocity for particles, so it is not a
thermal temperature when the particles have a non-zero streaming velocity.

Output info:

This compute calculates a global scalar (the temperature). This value can be used by any command that uses
global scalar values from a compute as input. See Section 4.4 for an overview of SPARTA output options.

The scalar value will be in temperature units.

Restrictions: none

Related commands: none

Default: none

143

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute thermal/grid command

Syntax:

compute ID thermal/grid mix-ID value1 value2 ...

ID is documented in compute command•
thermal/grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = temp or press

temp = temperature
press = pressure

•

Examples:

compute 1 thermal/grid species temp
compute 1 thermal/grid air temp press

These commands will dump 10 time averaged thermal temperatures for each species and each grid cell to a dump
file every 1000 steps:

compute 1 thermal/grid species temp
fix 1 ave/grid 10 100 1000 c_1
dump 1 grid all 1000 tmp.grid id f_1

Description:

Define a computation that calculates one or more values for each grid cell, which are based on the thermal
temperature of the particles in each grid cell. The values are tallied separately for each group of species in the
specified mixture, as described in the Output section below. See the mixture command for how a set of species
can be partitioned into groups.

The values listed above rely on first computing a thermal temperature which subtracts the center-of-mass (COM)
velocity for all particles in the group and grid cell from each particle to yield a thermal velocity. This thermal
velocity is used to compute the temperature, as described below. This is in contrast to some of the values tallied
by the compute grid temp command which simply uses the full velocity of each particle to compute a temperature.
For non-streaming simulations, the two results should be similar, but for streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Also note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a squared thermal

144

http://sparta.sandia.gov

velocity Csq for each particle, as described below, is also computed over one large set of particles (across all
timesteps). This is in contrast to using a COM velocity computed only for particles in the current timestep, which
is what the compute sonine/grid command does.

Calculation of the thermal temperature is done by first calcuating the center-of-mass (COM) velocity of particles
for each group. grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell. This allows computation of Csq for each particle which
is used to calculate the total kinetic energy due to particles in the group as follows:

thermal_KE = Sum_i (1/2 mass_i Csq_i)

The temp value computes the thermal temperature T, due to particles in each group:

T = thermal_KE / (3/2 N kB)

The press value uses the thermal_KE to compute a pressure P for the grid cell due to particles in the group:

P = 2/3 fnum/volume * thermal_KE

Note that if multiple groups are defined in the mixture, one group's value is effectively a partial pressure due to
particles in the group. When accumulated over multiple sampling steps, this value is normalized by the number of
sampling steps.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the temp and press values
were specified as keywords, then the first two columns would be temp and press for the first group, the 3rd and
4th columns would be temp and press for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. Temp is in
temperature units. Press is in prsesure units.

Restrictions: none

145

Related commands:

compute grid, fix ave/grid, dump grid

Default: none

146

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute tvib/grid command

Syntax:

compute ID tvib/grid mix-ID

ID is documented in compute command•
grid = style name of this compute command•
mix-ID = mixture ID to perform calculation on•

Examples:

compute 1 tvib/grid species

Description:

Define a computation that calculates the vibrational temperature for each grid cell, based on the particles in the
cell. The temperature is calculated separately for each group of species in the specified mixture, as described in
the Output section below. See the mixture command for how a set of species can be partitioned into groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set to compute the
formulas below. Note that this is a different normalization than taking the values produced by the formulas below
for a single timestep, summing them over the sampling timesteps, and then dividing by the number of sampling
steps.

The vibrational temperature for a group of particles comprised of different species is defined as a weighted
average as follows:

T_group = (T1*N1 + T2*N2 + ...) / (N1 + N2 + ...)

The sums in the numerator and denominator are over the different species in the group. T1, T2, ... are the
vibrational temperatures of each species. N1, N2, ... are the counts of particles of each species.

The vibrational temperature Tsp for particles of a single species in the group is defined as Tsp as follows:

Ibar = Sum_i (e_vib_i) / (N kB Theta)

Tsp = (2/kB) Sum_i (evib_i) / N (2 Ibar ln(1 + 1/Ibar))

where e_vib is the vibrational energy of a single particle I, N is the total # of particles of that species, and kB is
the Boltzmann factor. Theta is the characteristic vibrational temperature for the species, as defined in the file read
by the species command.

Note that the collide_modify vibrate command affects how vibrational energy is treated in particle collisions and
stored by particles. It thus also affects the vibrational temperature calculated by this compute.

147

http://sparta.sandia.gov

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of groups in the
specified mixture.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in temperature units.

Restrictions: none

Related commands:

compute grid

Default: none

148

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_box command

Syntax:

create_box xlo xhi ylo yhi zlo zhi

xlo,xhi = box bounds in the x dimension (distance units)
ylo,yhi = box bounds in the y dimension (distance units)
zlo,zhi = box bounds in the z dimension (distance units)

Examples:

create_box 0 1 0 1 0 1
create_box 0 1 0 1 -0.5 0.5
create_box 0 10.0 0 5.0 -4.0 0.0

Description:

Set the size of the simulation box.

For a 2d simulation, as specifed by the dimension command, zlo < 0.0 and zhi > 0.0 is required. This means the z
dimensions straddle 0.0. Typical values are -0.5 and 0.5, but this is not required. See Section 6.1 of the manual for
more information about 2d simulations.

For 2d axisymmetric simulations, as set by the dimension and boundary commands, the ylo setting must be 0.0.
See Section 6.2 of the manual for more information about axisymmetric simulations.

Restrictions: none

Related commands: none

Default: none

149

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_grid command

Syntax:

create_grid Nx Ny Nz keyword args ...

Nx,Ny,Nz = size of 1st-level grid in each dimension•
zero or more keywords/args pairs may be appended•
keyword = level or region or stride or clump or block or random or inside

level args = Nlevel Px Py Pz Cx Cy Cz
 Nlevel = level from 2 to M, must be in ascending order
 Px Py Pz = range of parent cells in each dimension in which to create child cells
 Cx Cy Cz = size of child grid in each dimension within parent cells

region args = Nlevel reg-ID Cx Cy Cz
 Nlevel = level from 2 to M, must be in ascending order
 reg-ID = ID of region which parent cells must be in to create child cells
 Cx Cy Cz = size of child grid in each dimension within parent cells

stride arg = xyz or xzy or yxz or yzx or zxy or zyx
clump arg = xyz or xzy or yxz or yzx or zxy or zyx
block args = Px Py Pz

 Px,Py,Pz = # of processors in each dimension
random args = none
inside args = any or all

•

Examples:

create_grid 10 10 10
create_grid 10 10 10 block * * *
create_grid 10 10 10 block 4 2 5
create_grid 10 10 10 level 2 * * * 2 2 3
create_grid 20 10 1 level 2 10*15 3*7 1 2 2 1
create_grid 20 10 1 region 2 b2 2 2 1 region 3 b3 2 3 1 inside any
create_grid 20 10 1 level 2 10*15 3*7 1 2 2 1 region 3 b3 2 3 1
create_grid 8 8 10 level 2 5* * * 4 4 4 level 3 1 2*3 3* 2 2 1

Description:

Overlay a grid over the simulation domain defined by the create_box command. The grid can also be defined by
the read_grid command.

The grid in SPARTA is hierarchical, as described in Section howto 4.8. The entire simulation box is a single
parent grid cell at level 0. It is subdivided into Nx by Ny by Nz cells at level 1. Each of those cells can be a child
cell (no further sub-division) or can be a parent cell which is further subdivided into Nx by Ny by Nz cells at level
2. This can recurse to as many levels as desired. Different cells can stop recursing at different levels. Each parent
cell can define its own unique Nx, Ny, Nz values for subdivision. Note that a grid with a single level is simply a
uniform grid with Nx by Ny by Nz cells in each dimension.

In the current SPARTA implementation, all processors own a copy of all parent cells. Each child cell is owned by
a unique processor. The details of how child cells are assigned to processors by the various options of this
command are described below. The cells assigned to each processor will either be "clumped" or "dispersed".

The clump and block keywords will produce clumped assignments of child cells to each processor. This means
each processor's cells will be geometrically compact. The stride and random keywords, as well as the round-robin

150

http://sparta.sandia.gov

assignment scheme for grids with multiple levels (described below), will produce dispersed assignments of child
cells to each processor.

IMPORTANT NOTE: See Section 5.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs. The balance_grid command can be used after the grid is
created, to assign child cells to processors in different ways. The "fix balance" command can be used to re-assign
them in a load-balanced manner periodically during a running simulation.

A single-level grid is defined by specifying only the arguments Nx, Ny, Nz, with no additional level or region
keywords. This will create a uniform Nx by Ny by Nz grid of child cells. For 2d simulations, Nz must equal 1.

For single-level grids, one of the keywords stride, clump, block, or random can be used to determine which
processors are assigned which cells in the grid. The inside keyword is ignored for single-level grids. If no
keyword is used, the cells are assigned in round-robin fashion, so that each processor is assigned every Pth grid
cell, where P = the number of processors. This is the same as "stride xyz" in the discussion below.

The stride keyword means that every Pth cell is assigned to the same processor, where P is the number of
processors. E.g. if there are 100 cells and 10 processors, then the 1st processor (proc 0) will be assigned cells
1,11,21, ..., 91. The 2nd processor (proc 1) will be assigned cells 2,12,22 ..., 92. The 10th processor (proc 9) will
be assigned cells 10,20,30, ..., 100.

The clump keyword means that the Pth clump of cells is assigned to the same processor, where P is the number of
processors. E.g. if there are N = 100 cells and 10 processors, then the 1st processor (proc 0) will be assigned cells
1 to 10. The 2nd processor (proc 1) will be assigned cells 11 to 20. And The 10th processor (proc 9) will be
assigned cells 91 to 100.

The argument for stride and clump determines how the N grid cells are ordered and is some permutation of the
letters x, y, and z. Each of the N cells has 3 indices (I,J,K) to describe its location in the 3d grid. If the stride
argument is yxz, then the cells will be ordered from 1 to N with the y dimension (J index) varying fastest, the x
dimension next (I index), and the z dimension slowest (K index).

The block keyword maps the P processors to a Px by Py by Pz logical grid that overlays the actual Nx by Ny by Nz
grid. This effectively assigns a contiguous 3d sub-block of cells to each processor.

Any of the Px, Py, Pz parameters can be specified with an asterisk "*", in which case SPARTA will choose the
number of processors in that dimension. It will do this based on the size and shape of the global grid so as to
minimize the surface-to-volume ratio of each processor's sub-block of cells.

The product of Px, Py, Pz must equal P, the total # of processors SPARTA is running on. For a 2d simulation, Pz
must equal 1. If multiple partitions are being used then P is the number of processors in this partition; see Section
2.6 for an explanation of the -partition command-line switch.

Note that if you run on a large, prime number of processors P, then a grid such as 1 x P x 1 will be required,
which may incur extra communication costs.

The random keyword means that each grid cell will be assigned randomly to one of the processors. Note that in
this case different processors will typically not be assigned exactly the same number of cells.

A hierarchical grid with more than one level can be defined using the level or region keywords one or more times
with Nlevel in ascending order, starting with Nlevel = 2. At each level the level or region keyword can be used
interchangeably. Child cells (at any level) are assigned to processors in round-robin fashion, so that each
processor is assigned every Pth grid cell, where P = the number of processors.

151

Note that the keywords stride, clump, block, or random cannot be used with a hierarchical grid. The keyword
inside can be used, but it must come after all the level or region keywords.

For the level keyword, the Px, Py, Pz arguments specify which cells in the previous level are flagged as parents
and sub-divided to create cells at the new level. For example, if the level 1 grid is 100x100x100, then Px, Py, Pz
for level 2 could select any contiguous range of cells from 1 to 100 in x, y, or z. If the level 2 grid is 4x4x2 within
any level 1 cell (as set by Cx, Cy, Cz), then Px, Py, Pz for level 3 could select any contiguous range of cells from
1 to 4 in x, y and 1 to 2 in z.

Each of the Px, Py, Pz arguments can be a single number or be specified with a wildcard asterisk, as in the
examples above. For example, Px can be specified as "*" or "*n" or "n*" or "m*n". If N = the number of grid
cells in the x-direction in the previous level as defined by Nx (or Cx), then an asterisk with no numeric values
means all cells with indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A trailing
asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n (inclusive).

The Cx, Cy, Cz arguments are the number of new cells (in each dimension) to partition each selected parent cell
into. For 2d simulations, Cz must equal 1. Note that for each new level, only grid cells that exist in the previous
level are partitioned further. E.g. level 3 cells are only added to level 2 cells that exist, since some level 1 cells
may not have been partitioned into level 2 cells.

This command creates a two-level grid:

create_grid 10 10 10 level 2 * * * 2 2 3

The 1st level is 10x10x10. Each of the 1000 level 1 cells is further partitioned into 2x2x3 cells. This means the
total number of level 2 cells is 1000 * 12 = 12000. The resulting grid thus has 1001 parent cells (the simulation
box plus the 1000 level 1 cells), and 12000 child cells.

This command creates a 3-level grid:

create_grid 8 8 10 level 2 5* * * 4 4 4 level 3 1 2*3 3* 2 2 1

The last example above creates a 3-level grid. The first level is 8x8x10. The second level is 4x4x4 within each 1st
level cell, but only half or 320 of the 640 level 1 cells are partitioned, namely those with x indices from 5 to 8.
Those with x indices from 1 to 4 remain as level 1 cells. Some of the level 2 cells are further partitioned into
2x2x1 level 3 cells. For the 4x4x4 level 2 grid within 320 or the level 1 cells, only the level 2 cells with x index =
1, y index = 2-3, and z-index = 3-4 are further partitioned into level 3 cells, which is just 4 of the 64 level 2 cells.

The resulting grid thus has 1601 parent cells: 1 for the simulation box, 320 level 1 cells, and 1280 level 2 cells. It
has 24640 child cells: 320 level 1 cells, 19200 level 2 cells, and 5120 level 3 cells.

For the region keyword, the subset of cells in the previous level which are flagged as parents and sub-divided is
determined by which of them are in the geometric region specified by reg-ID.

The region command can define volumes for simple geometric objects such as a sphere or rectangular block. It
can also define unions or intersections of simple objects or other union or intersection objects. by defining an
appropriate region, a complex portion of the simulation domain can be refined to a new level.

Each grid cell at the previous level is tested to see whether it is "in" the region. The inside keyword determines
how this is done. If inside is set to any which is the default, then the grid cell is in the region if any of its corner
points (4 in 2d, 8 in 3d) is in the region. If inside is set to all, then all 4 or 8 corner points must be in the region for
the grid cell itself to be in the region. Note that the side option for the region command can be used to define
whether the inside or outside of the geometric region is considered to be "in" the region.

152

If the grid cell is in the region, then it is refined using the Cx, Cy, Cz arguments in the same manner that the level
keyword uses them. Examples for the use of the region keyword are given above.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command.

The hierarchical grid used by SPARTA is encoded in a 32-bit or 64-bit integer ID. The precision is set by the
-DSPARTA_BIG or -DSPARTA_SMALL or -DSPARTA_BIGBIG compiler switch, as described in Section 2.2.
The number of grid levels that can be used depends on the resolution of the grid at each level. For a minimal
refinement of 2x2x2, a level uses 4 bits of the integer ID. Thus for this style of refinement a maximum of 7 levels
can be used for 32-bit IDs and 15 levels for 64-bit IDs.

Related commands:

create_box, read_grid

Default:

The only keyword with a default setting is inside = any.

153

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_particles command

Syntax:

create_particles mix-ID style args keyword value ...

mix-ID = ID of mixture to use when creating particles•
style = n or single

n args = Np
 Np = 0 or number of particles to create

single args = species-ID x y z vx vy vz
 species-ID = ID of species of single particle
 x,y,z = position of particle (distance units)
 vx,vy,vz = velocity of particle (velocity units)

•

zero or more keyword/value pairs may be appended•
keyword = global or region or species or density or set

global value = yes or no
region value = region-ID
species values = svar xvar yvar zvar
density values = dvar xvar yvar zvar
velocity values = vxvar vyvar vzvar xvar yvar zvar

•

Examples:

create_particles background n 0
create_particles air n 100000 region sphere
create_particles air n 100000 global yes
create_particles air single 3 5.0 6.0 5.4 10.0 -1.0 0.0
create_particles air n 0 species mySpecies xpos NULL zpos
create_particles air n 0 density myDens xgrid ygrid NULL
create_particles air n 0 velocity myVx NULL myVz xpos ypos NULL

Description:

Create particles and add them to the simulation domain. The attributes of individual particles, such as species and
velocity, are determined by the mixture attributes, as specied by the mix-ID. In particular the temp, trot, tvib, and
vstream attributes of the mixture affect create particle velocities and internal energy modes. See the mixture
command for more details. Note that this command can be used multiple times to add more and more particles.

Particles are only created in grid cells which are entirely external to surfaces. Particles are not created in grid cells
cut by surfaces.

IMPORTANT NOTE: When a particle is created at a specified temperature (as set by the mixture command), it's
rotational and vibrational energy will also be initialized, consistent with the mixture temperatures. The rotate and
vibrate options of the collide_modify command determine how internal energy modes are initialized. If the
collide command has not yet been specified, then no rotational or vibrational energy will be assigned to created
particles. Thus if you wish to create particles with non-zero internal energy, the collide and (optionally)
collide_modify commands must be used before this command.

If the n style is used with Np = 0, then the number of created particles is calculated by SPARTA as a function of
the global fnum value, the mixture number density, and the flow volume of the simulation domain.

154

http://sparta.sandia.gov

The fnum value is set by the global fnum command. The mixture nrho is set by the mixture command. The flow
volume of the simulation is the total volume of the simulation domain as specified by the create_box command,
minus any volume that is interior to surfaces defined by the read_surf command. Note that the flow volume
includes volume contributions from grid cells cut by surfaces. However particles are only created in grid cells
entirely external to surfaces. This means that particles may be created in external cells at a (slightly) higher
density to compensate for no particles being created in cut cells that still contribute to the overall flow volume.

If the n style is used with a non-zero Np, then exactly Np particles are created, which can be useful for debugging
or benchmarking purposes.

Based on the value of Np, each grid cell will have a target number of particles M to insert, which is a function of
the cell's volume as compared to the total system flow volume. If M has a fractional value, e.g. 12.5, then 12
particles will be inserted, and a 13th depending on the outcome of a random number generation. As grid cells are
looped over, the remainder fraction is accumulated, so that exactly Np particles are created across all the
processors.

IMPORTANT NOTE: The preceeding calculation is actually done using weighted cell volumes. Grid cells can be
weighted using the global weight command.

Each particle is inserted at a random location within the grid cell. The particle species is chosen randomly in
accord with the frac settings of the collection of species in the mixture, as set by the mixture command. The
velocity of the particle is set to the sum of the streaming velocity of the mixture and a thermal velocity sampled
from the thermal temperature of the mixture. Both the streaming velocity and thermal temperature are also set by
the mixture command. The internal rotational and vibrational energies of the particle are also set based on the trot
and tvib settings for the mixture, as explained above.

The single style creates a single particle. This can be useful for debugging purposes, e.g. to advect a single
particle towards a surface. A single particle of the specified species is inserted at the specified position and with
the specified velocity. In this case the mix-ID is ignored.

This is the meaning of the other allowed keywords.

The global keyword only applies when the n style is used, and controls how particles are generated in parallel.

If the value is yes, then every processor loops over all Np particles. As the coordinates of each is generated, each
processor checks what grid cell it is in, and only stores the particle if it owns that grid cell. Thus an identical set of
particles are created, no matter how many processors are running the simulation

IMPORTANT NOTE: The global yes option is not yet implemented.

If the value is no, then each of the P processors generates a N/P subset of particles, using its own random number
generation. It only adds particles to grid cells that it owns, as described above. This is a faster way to generate a
large number of particles, but means that the individual attributes of particles will depend on the number of
processors and the mapping of grid cells to procesors. The overall set of created particles should have the same
statistical properties as with the yes setting.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion within a subset of the simulation domain. Note that the side option for
the region command can be used to define whether the inside or outside of the geometric region is considered to
be "in" the region.

155

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added. This is
because grid cells will be candidates for particle insertion, unless they are entirely outside the bounding box that
encloses the region. Particles those grid cells attempt to add are included in the count for N, even if some or all of
the particle insertions are rejected due to not being inside the region.

The species keyword can be used to create particles with a spatially-dependent separation of species. The
specified svar is the name of an equal-style variable whose formula should evaluate to a species number, i.e. an
integer from 1 to Nsp, where Nsp is the number of species in the mixture with mix-ID. Since equal-style variables
evaluate to floating-point values, this value is truncated to an integer value. The formula for the species variable
can use one or two or three variables which will store the x, y, or z coordinates of the particle that is being
created. If used, these variables must be internal-style variables defined in the input script; their initial numeric
values can be anything. They must be internal-style variables, because this command resets their values directly.
Their names are specified as xvar, yvar, and zvar. If any of them is not used in the svar formula, it can be
specified as NULL.

When a particle is added, its coordinates are stored in the xvar, yvar, zvar variables if they are specified. The svar
variable is then evaluated. The returned value is used to set the species of that particle, based on the list of species
defined for the mixture. If the returned value is <= 0 or greater than Nsp = the number of species in the mixture,
then no particle is created.

As an example, these commands can be used in a 2d simulation, to create a particle distribution with species 1 on
top of species 2 with a sinudoidal interface between the two species, as illustrated in the snapshot of the initial
particle distribution. Click on the image for a larger version. Note that when using this option less than the
requested N particles can be created if the species variable returns values <= 0 or greater than Nsp = the number
of species in the mixture.

variable x internal 0
variable y internal 0
variable n equal 3
variable s equal "(v_y <0.5*(ylo+yhi) + 0.15*yhi*sin(2*PI*v_n*v_x/xhi)) + 1"
create_particles species n 10000 species s x y NULL

The density keyword can be used to create particles with a spatially-dependent density variation. The specified
dvar is the name of an equal-style variable whose formula should evaluate to a positive value. The formula for the
density variable can use one or two or three variables which will store the x, y, or z coordinates of the geometric
center point of a grid cell. If used, these other variables must be internal-style variables defined in the input script;
their initial numeric values can by anything. Their names are specified as xvar, yvar, and zvar. If any of them is
not used in the dvar formula, it can be specified as NULL.

When particles are added to a grid cell, its center point coordinates are stored in xvar, yvar, zvar if they are
defined. The dvar variable is then evaluated. The returned value is used as a scale factor on the number of
particles to create in that grid cell. Thus a value of 0.5 would create half as many particles in that grid cell as
would otherwise be the case. A value of 1.2 would create 20% more particles in that grid cell.

156

As an example, these commands can be used in a 2d simulation, to create more particles towards the upper right
corner of the domain and less towards the lower left corner, as illustrated in the snapshot of the initial particle
distribution. Click on the image for a larger version. Note that less than requested N particles will be created in
this case because all the scale factors generated by the variable d are less than 1.0.

variable x internal 0
variable y internal 0
variable d equal "v_x/xhi * v_y/yhi"
create_particles air n 10000 density d x y NULL

The velocity keyword can be used to create particles with a spatially-dependent streaming velocity. The specified
vxvar, vyvar, vzvar are the names of equal-style variables whose formulas should evaluate to the corresponding
component of the streaming velocity. If any of them are specified as NULL, then that streaming velocity
component is set by the corresponding global or mixture streaming velocity component, the same as if the velocity
keyword were not used.

The formulas for the vxvar, vyvar, vzvar variables can use one or two or three variables which will store the x, y,
or z coordinates of the particle that is being created. If used, these other variables must be internal-style variables
defined in the input script; their initial numerica values can by anything. Their names are specified as xvar, yvar,
and zvar. If any of them is not used in the vxvar, vyvar, vzvar formulas, it can be specified as NULL.

When a particle is added, its coordinates are stored in xvar, yvar, zvar if they are defined. The vxvar, vyvar, vzvar
variables are then evaluated. The returned values are used to set the streaming velocity of that particle. A thermal
velocity is also added to the particle, using the the global or mixture temperature, as described above.

As an example, these commands can be used in a 2d simulation, to give particles an initial velocity pointing
towards the upper right corner of the domain with a magnitude that makes them all reach that point at the same
time (assuming their thermal velocity is small and it is not a collisional flow). Click on the image to play an
animation of the effect.

variable x internal 0
variable y internal 0
variable vx equal (xhi-v_x)/(1000*7.0e-9) # timesteps and timestep-size
variable vy equal (yhi-v_y)/(1000*7.0e-9)
create_particles air n 10000 velocity vx vy NULL x y NULL

Restrictions: none

157

Related commands:

mixture, fix emit/face

Default:

The option default is global = no.

158

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dimension command

Syntax:

dimension N

N = 2 or 3•

Examples:

dimension 2
dimension 3

Description:

Set the dimensionality of the simulation. By default SPARTA runs 3d simulations, but 2d simulations can also be
run.

2d axi-symmetric models can be run by setting the dimension to 2, and defining the lower boundary in the
y-dimension to axi-symmetric via the boundary command.

Restrictions:

This command must be used before the simulation box is defined by a create_box command.

Related commands: none

Default:

dimension 3

159

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump command

dump image command

Syntax:

dump ID style select-ID N file args

ID = user-assigned name for the dump•
style = particle or grid or surf or image•
select-ID = which particles, grid cells, surface elements to dump

 for dump style = particle or image, use a mixture ID
 for style = grid, use a grid group ID
 for style = surf, use a surface group ID

•

N = dump every this many timesteps•
file = name of file to write dump info to•
args = list of arguments for a particular style

particle args = list of particle attributes
 possible attributes = id, type, proc, x, y, z, xs, ys, zs, vx, vy, vz,
 ke, erot, evib,
 p_ID, p_ID[N\, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 id = particle ID
 type = particle species
 proc = ID of owning processor
 x,y,z = unscaled particle coordinates
 xs,ys,zs = scaled particle coordinates
 vx,vy,vz = particle velocities
 ke,erot,evib = translational, rotational, and vibrational energy
 p_ID = custom per-particle vector with ID
 p_ID[N] = Nth column of custom per-particle array with ID
 c_ID = per-particle vector calculated by a compute with ID
 c_ID[N] = Nth column of per-particle array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-particle vector calculated by a fix with ID
 f_ID[N] = Nth column of per-particle array calculated by a fix with ID, I can include wildcard (see below)
 v_name = per-particle vector calculated by a particle-style variable with name

grid args = list of grid attributes
 possible attributes = id, idstr, proc, xlo, ylo, zlo, xhi, yhi, zhi,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name

 id = integer form of grid cell ID
 idstr = string form of grid cell ID
 proc = processor that owns grid cell
 xlo,ylo,zlo = coords of lower left corner of grid cell
 xhi,yhi,zhi = coords of lower left corner of grid cell
 xc,yc,zc = coords of center of grid cell
 vol = flow volume of grid cell (area in 2d)
 c_ID = per-grid vector calculated by a compute with ID
 c_ID[N] = Nth column of per-grid array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-grid vector calculated by a fix with ID
 f_ID[N] = Nth column of per-grid array calculated by a fix with ID, I can include wildcard (see below)
 v_name = per-grid vector calculated by a grid-style variable with name

surf args = list of surf attributes

•

160

http://sparta.sandia.gov

 possible attributes = id, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name

 id = surface element ID
 v1x,v1y,v1z = coords of 1st vertex in surface element
 v1x,v1y,v1z = coords of 2nd vertex in surface element
 v1x,v1y,v1z = coords of 3rd vertex in surface element
 c_ID = per-surf vector calculated by a compute with ID
 c_ID[N] = Nth column of per-surf array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-surf vector calculated by a fix with ID
 f_ID[N] = Nth column of per-surf array calculated by a fix with ID, I can include wildcard (see below)
 v_name = per-surf vector calculated by a surf-style variable with name

image args = discussed on dump image doc page

Examples:

dump 1 particle all 100 dump.myforce.* id type x y vx fx
dump 2 particle inflow 100 dump.%.myforce id type c_myF[3] v_ke
dump 3 grid all 1000 tmp.grid id proc xlo ylo zlo xhi yhi zhi

Description:

Dump a snapshot of simulation quantities to one or more files every N timesteps in one of several styles. The
image style is the exception; it creates a JPG or PPM image file of the simulation configuration every N
timesteps, as discussed on the dump image doc page.

The ID for a dump is used to identify the dump in other commands. Each dump ID must be unique. The ID can
only contain alphanumeric characters and underscores. You can specify multiple dumpes of the same style so long
as they have different IDs. A dump can be deleted with the undump command, after which its ID can be re-used.

The style setting determines what quantities are written to the file and in what format. The particle, grid, surf
options are for particles, grid cells, or surface elements. Settings made via the dump_modify command can also
alter what info is included in the file and the format of individual values.

The select-ID setting determines which particles, grid cells, or surface elements are output. For style = particle,
the select-ID is a mixture ID as defined by the mixture command. Only particles whose species are part of the
mixture are output. For style = grid, the select-ID is for a grid group, as defined by the group grid command. Only
grid cells in the group are output. For style = surf, the select-ID is for a surface eleemnt group, as defined by the
group surf command. Only surface elements in the group are output.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one per
timestep, one big file or one per processor).

The precision of values output to text-based dump files can be controlled by the dump_modify format command
and its options.

The particle and grid and surf styles create files in a simple text format that is self-explanatory when viewing a
dump file. Many of the SPARTA post-processing tools, including Pizza.py, work with this format.

For post-processing purposes the text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. This information is formatted as:

ITEM: BOX BOUNDS xx yy zz

161

http://pizza.sandia.gov

xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z. The
"xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box boundaries
(xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either o = outflow, p = periodic, or s = specular. See
the boundary command for details.

The "ITEM: NUMBER OF ATOMS" or "ITEM: NUMBER OF CELLS" or "ITEM: NUMBER OF SURFS"
entry in each snapshot gives the number of particles, grid cells, surfaces to follow.

The "ITEM: ATOMS" or "ITEM: CELLS" or "ITEM: SURFS" entry in each snapshot lists column descriptors for
the per-particle or per-grid or per-surf lines that follow. The descriptors are the attributes specied in the dump
command for the style. Possible attributes are listed above and will appear in the order specified. An explanation
of the possible attributes is given below.

Dumps are performed on timesteps that are a multiple of N (including timestep 0). Note that this means a dump
will not be performed on the initial timestep after the dump command is invoked, if the current timestep is not a
multiple of N. This behavior can be changed via the dump_modify first command. N can be changed between
runs by using the dump_modify every command.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
SPARTA exits.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file per
snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.* becomes
tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. Note that the dump_modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to read a series of dump
files in order by some post-processing tools.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, ...
tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that support
parallel I/O for output.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster. Of course,
when post-processing, you will need to convert it back to text format (see the binary2txt tool) or write your own
code to read the binary file. The format of the binary file can be understood by looking at the tools/binary2txt.cpp
file.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format. A
gzipped dump file will be about 3x smaller than the text version, but will also take longer to write.

Note that in the discussion which follows, for styles which can reference values from a compute or fix, like the
particle, grid, or surf styles, the bracketed index I can be specified using a wildcard asterisk with the index to
effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size of the vector
(for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with no numeric
values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A trailing

162

asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2
dump commands are equivalent, since the compute grid command creates a per-grid array with 3 columns:

compute myGrid all u v w
dump 2 grid all 100 tmp.dump id c_myGrid[*]
dump 2 grid all 100 tmp.dump id c_myGrid[1] c_myGrid[2] c_myGrid[3]

This section explains the particle attributes that can be specified as part of the particle style.

Id is the particle ID. Type is an integer index representing the particle species. It is a value from 1 to Nspecies,
The value corresponds to the order in which species were defined via the species command. Proc is the ID of the
processor which currently owns the particle.

The x, y, z attributes write particle coordinates "unscaled", in the appropriate distance units. Use xs, ys, zs to
"scale" the coordinates to the box size, so that each value is 0.0 to 1.0.

Vx, vy, vz are components of particle velocity. The ke, erot, and evib attributes are the kinetic, rotational, and
vibrational energies of the particle. A particle's kinetic energy is given by 1/2 m (vx^2 + vy^2 + vz^2). The way
that rotational and vibrational energy is treated in collisions and stored by particles is affected by the
collide_modify command.

The p_ID and p_ID[N] attributes allow custom per-particle vectors or arrays defined by a fix command to be
output. The ID in the attribute should be replaced by the actual ID of the custom particle attribute that the fix
defines. See individal fix commands for details, e.g. the fix ambipolar command which defines the custom vector
"ionambi" and the custom array "velambi".

If p_ID is used as a attribute, the custom attribute must be a vector, and it is output. If p_ID[N] is used, the
custom attribute must be an array, and N must be in the range from 1-M, which will output the Nth column of the
M-column array.

The c_ID and c_ID[I] attributes allow per-particle vectors or arrays calculated by a compute to be output. The ID
in the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

If c_ID is used as a attribute, the compute must calculate a per-particle vector, and it is output. If c_ID[I] is used,
the compute must calculate a per-particle array, and I must be in the range from 1-M, which will output the Ith
column of the M-column array. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

The f_ID and f_ID[I] attributes allow vector or array per-particle quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script.

If f_ID is used as a attribute, the fix must calculate a per-particle vector, and it is output. If f_ID[I] is used, the fix
must calculate a per-particle array, and I must be in the range from 1-M, which will output the Ith column of the
M-column array. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-particle vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
particle-style variable can be referenced, since it is the only style that generates per-particle values. Variables of

163

style particle can reference per-particle attributes, stats keywords, or invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of creating quantities to output to a dump file.

See Section 8 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-particle quantities which could then be output into dump files.

This section explains the grid cell attributes that can be specified as part of the grid style.

Note that dump grid will output one line (per snapshot) for 3 kinds of child cells: unsplit cells, cut cells, and sub
cells of split cells. Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, cut, split, and
sub cells. This is different than compute or fix commands that produce per grid information, which also include
split cells in their output. The dump grid command discards that output since the sub cells of a split cell provide
the needed information for further processing and visualization. Note that unsplit cells can be outside (in the flow)
or inside surface objects, if they exist.

Id and idstr are two different forms of the grid cell ID. In SPARTA each grid cell is assigned a unique ID which
represents its location, in a topological sense, within the hierarchical grid. This ID is stored as an integer such as
5774983, but can also be decoded into a string such as 33-4-6, which makes it easier to understand the grid
hierarchy. In this case it means the grid cell is at the 3rd level of the hierarchy. Its grandparent cell was 33 at the
1st level, its parent was cell 4 (at level 2) within cell 33, and the cell itself is cell 6 (at level 3) within cell 4 within
cell 33. If you specify id, the ID is printed directly as an integer. If you specify idstr, it is printed as a string.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes write the coordinates of the lower-left corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi attributes write the coordinates of the upper-right corner of the grid cell. The xc, yc, zc
attributes write the coordinates of the center point of the grid cell. The zlo, zhi, zc attributes cannot be used for a
2d simulation.

The vol attribute is the flow volume of the grid cell (or area in 2d) for unsplit or cut or sub cells. Section 4.8 of the
manual gives details of how SPARTA defines unsplit and sub cells. Flow volume is the portion of the grid cell
that is accessible to particles, i.e. outside any closed surface that may intersect the cell. Note that unsplit cells
which are inside a surface object will have a flow volume of 0.0. Likewise a cut cell which is inside a suface
object but which is intersected by surface element(s) which only touch a face, edge, or corner point of the grid
cell, will have a flow volume of 0.0.

The c_ID and c_ID[I] attributes allow per-grid vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

If c_ID is used as a attribute, and the compute calculates a per-grid vector, then the per-grid vector is output. If
c_ID[I] is used, then I must be in the range from 1-M, which will output the Ith column of the M-column per-grid
array calculated by the compute. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

The f_ID and f_ID[I] attributes allow per-grid vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, and the fix calculates a per-grid vector, then the per-grid vector is output. If f_ID[I]
is used, then I must be in the range from 1-M, which will output the Ith column of the M-columne per-grid array
calculated by the fix. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

164

The v_name attribute allows per-grid vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
grid-style variable can be referenced, since it is the only style that generates per-grid values. Variables of style
grid can reference per-grid attributes, stats keywords, or invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of creating quantities to output to a dump file.

See Section 8 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-grid quantities which could then be output into dump files.

This section explains the surface element attributes that can be specified as part of the surf style. For 2d
simulations, a surface element is a line segment with 2 end points. Crossing the unit +z vector into the vector
(v2-v1) determines the outward normal of the line segment. For 3d simulations, a surface element is a triangle
with 3 corner points. Crossing (v2-v1) into (v3-v1) determines the outward normal of the triangle.

Id is the surface element ID.

The v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z attributes write the coordinates of the vertices of the end or corner
points of the surface element. The v1z, v2z, v3x, v3y, and v3z attributes cannot be used for a 2d simulation.

The c_ID and c_ID[I] attributes allow per-surf vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

If c_ID is used as a attribute, and the compute calculates a per-srf vector, then the per-surf vector is output. If
c_ID[I] is used, then I must be in the range from 1-M, which will output the Ith column of the M-column per-surf
array calculated by the compute. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

The f_ID and f_ID[I] attributes allow per-surf vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, and the fix calculates a per-surf vector, then the per-surf vector is output. If f_ID[I] is
used, then I must be in the range from 1-M, which will output the Ith column of the M-column per-surf array
calculated by the fix. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-surf vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
surf-style variable can be referenced, since it is the only style that generates per-surf values. Variables of style
surf can reference per-surf attributes, stats keywords, or invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of creating quantities to output to a dump file.

IMPORTANT NOTE: Surf-style variables have not yet been implemented in SPARTA.

See Section 8 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-surf quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile SPARTA with the -DSPARTA_GZIP option - see the Making
SPARTA section of the documentation.

165

Related commands:

dump image, dump_modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

166

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump image command

dump movie command

Syntax:

dump ID style mix-ID N file color diameter keyword value ...

ID = user-assigned name for the dump•
style = image or movie = style of dump command (other styles particle or grid or surf are discussed on
the dump doc page)

•

mix-ID = mixture ID for which particles to include in image•
N = dump every this many timesteps•
file = name of file to write image to•
color = particle attribute that determines color of each particle•
diameter = particle attribute that determines size of each particle•
zero or more keyword/value pairs may be appended•
keyword = particle or pdiam or grid or gridx or gridy or gridz or surf or size or view or center or up or
zoom or persp or box or gline or sline or axes or shiny or ssao

particle = yes/no = do or do not draw particles
pdiam value = number = numeric value for particle diameter (distance units)
grid values = color

 color = proc or per-grid compute or fix
gridx values = xcoord color

 xcoord = x value to dray yz plane of grid cells at
 color = proc or per-grid compute or fix

gridy values = ycoord color
 ycoord = y value to dray xz plane of grid cells at
 color = proc or per-grid compute or fix

gridz values = zcoord color
 zcoord = z value to dray xy plane of grid cells at
 color = proc or per-grid compute or fix

surf values = color diam
 color = one or proc or per-surf compute or fix
 diam = diameter of 2d lines as fraction of shortest box length

size values = width height = size of images
 width = width of image in # of pixels
 height = height of image in # of pixels

view values = theta phi = view of simulation box
 theta = view angle from +z axis (degrees)
 phi = azimuthal view angle (degrees)
 theta or phi can be a variable (see below)

center values = flag Cx Cy Cz = center point of image
 flag = "s" for static, "d" for dynamic
 Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
 Cx,Cy,Cz can be variables (see below)

up values = Ux Uy Uz = direction that is "up" in image
 Ux,Uy,Uz = components of up vector
 Ux,Uy,Uz can be variables (see below)

zoom value = zfactor = size that simulation box appears in image
 zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
 zfactor can be a variable (see below)

persp value = pfactor = amount of "perspective" in image
 pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
 pfactor can be a variable (see below)

box values = yes/no diam = draw outline of simulation box

•

167

http://sparta.sandia.gov

 yes/no = do or do not draw simulation box lines
 diam = diameter of box lines as fraction of shortest box length

gline values = yes/no diam = draw outline of each grid cell
 yes/no = do or do not draw grid cell outlines
 diam = diameter of grid outlines as fraction of shortest box length

sline values = yes/no diam = draw outline of each surface element
 yes/no = do or do not draw surf element outlines
 diam = diameter of surf element outlines as fraction of shortest box length

axes values = yes/no length diam = draw xyz axes
 yes/no = do or do not draw xyz axes lines next to simulation box
 length = length of axes lines as fraction of respective box lengths
 diam = diameter of axes lines as fraction of shortest box length

shiny value = sfactor = shinyness of spheres and cylinders
 sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

ssao value = yes/no seed dfactor = SSAO depth shading
 yes/no = turn depth shading on/off
 seed = random # seed (positive integer)
 dfactor = strength of shading from 0.0 to 1.0

Examples:

dump myDump image all 100 dump.*.jpg type type
dump myDump movie all 100 movie.mpg type type

These commands will dump shapshot images of all particles whose species are in the mix-ID to a file every 100
steps. The last two shell command will make a movie from the JPG files (once the run has finished) and play it in
the Firefox browser:

dump 4 image 100 tmp.*.jpg type type pdiam 0.2 view 90 -90
dump_modify 4 pad 4
% convert tmp*jpg tmp.gif
% firefox tmp.gif

Description:

Dump a high-quality ray-traced image of the simulation every N timesteps and save the images either as a
sequence of JPEG or PNG or PPM files, or as a single movie file. The options for this command as well as the
dump_modify command control what is included in the image and how it appears.

Any or all of these entities can be included in the images:

particles (all in mixture or limited to a region)•
grid cells (all or limited to a region)•
x,y,z planes cutting through the grid•
surface elements•

Particles can be colored by any attribute allowed by the dump particle command. Grid cells and the x,y,z cutting
planes can be colored by any per-grid attribute calculated by a compute or fix. Surface elements can be colored by
any per-surf attribute calculated by a compute or fix.

A series of images can easily be converted into an animated movie of your simulation (see further details below),
or the process can be automated without writing the intermediate files using the dump movie command. Other
dump styles store snapshots of numerical data asociated with particles, grid cells, and surfaces in various formats,
as discussed on the dump doc page.

Here are two sample images, rendered as JPG files. Click to see the full-size images.

168

The left image is flow around a sphere with visualization of triangular surface elements on the sphere surface
(colored by surface presssure), a vertical plane of grid cells (colored by particle density), and a horizontal plane of
particles (colored by chemical species). The right image is the initial condition for a 2d simulation of
Rayleigh-Taylor mixing as a relatively dense heavy gas (red) mixes with a light gas (green), driven by gravity in
the downward direction.

The filename suffix determines whether a JPEG, PNG, or PPM file is created with the image dump style. If the
suffix is ".jpg" or ".jpeg", then a JPEG format file is created, if the suffix is ".png", then a PNG format is created,
else a PPM (aka NETPBM) format file is created. The JPEG and PNG files are binary; PPM has a text mode
header followed by binary data. JPEG images have lossy compression; PNG has lossless compression; and PPM
files are uncompressed but can be compressed with gzip, if SPARTA has been compiled with -DSPARTA_GZIP
and a ".gz" suffix is used.

Similarly, the format of the resulting movie is chosen with the movie dump style. This is handled by the
underlying FFmpeg converter program, which must be available on your machine, and thus details have to be
looked up in the FFmpeg documentation. Typical examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif
Additional settings of the movie compression like bitrate and framerate can be set using the dump_modify
command.

To write out JPEG and PNG format files, you must build SPARTA with support for the corresponding JPEG or
PNG library. To convert images into movies, SPARTA has to be compiled with the -DSPARTA_FFMPEG flag.
See Section 2.2 of the manual for instructions on how to do this.

Dumps are performed on timesteps that are a multiple of N, including timestep 0. Note that this means a dump
will not be performed on the initial timestep after the dump command is invoked, if the current timestep is not a
multiple of N. This behavior can be changed via the dump_modify first command. N can be changed between
runs by using the dump_modify every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written. The
"*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump_modify pad command can be used to insure
all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of images into
a movie in the correct ordering.

Dump movie filenames on the other hand, must not have any wildcard character since only one file combining all
images into a single movie will be written by the movie encoder.

169

Several of the keywords determine what objects are rendered in the image, namely particles, grid cells, or surface
elements. There are additional optional kewords which control how the image is rendered. As listed below, all of
the keywords have defaults, most of which you will likely not need to change. The dump modify also has options
specific to the dump image style, particularly for assigning colors to particles and other image features.

Rendering of particles

Particles are drawn by default using the color and diameter settings. The particle keyword allow you to turn off
the drawing of all particles, if the specified value is no. Only particles in a geometric region can be drawn using
the dump_modify region command.

The color and diameter settings determine the color and size of particles rendered in the image. They can be any
particle attribute defined for the dump particle command, including type.

The diameter setting can be overridden with a numeric value by the optional pdiam keyword, in which case you
can specify the diameter setting with any valid particle attribute. The pdiam keyword overrides the diameter
setting with a specified numeric value. All particles will be drawn with that diameter, e.g. 1.5, which is in
whatever distance units the input script defines.

If type is specified for the color setting, then the color of each particle is determined by its type = species index.
By default the mapping of types to colors is as follows:

type 1 = red•
type 2 = green•
type 3 = blue•
type 4 = yellow•
type 5 = aqua•
type 6 = purple•

and repeats itself for types > 6. This mapping can be changed by the dump_modify pcolor command.

If proc is specified for the color setting, then the color of each particle is determined by the ID of the owning
processor. The default mapping of proc IDs to colors is that same as in the list above, except that proc P
corresponds to type P+1.

If type is specified for the diameter setting then the diameter of each particle is determined by its type = species
index. By default all types have diameter 1.0. This mapping can be changed by the dump_modify adiam
command.

If proc is specified for the diameter setting then the diameter of each particle will be the proc ID (0 up to
Nprocs-1) in whatever units you are using, which is undoubtably not what you want.

Any of the particle attributes listed in the dump custom command can also be used for the color or diameter
settings. They are interpreted in the following way.

If "vx", for example, is used as the color setting, then the color of the particle will depend on the x-component of
its velocity. The association of a per-particle value with a specific color is determined by a "color map", which
can be specified via the dump_modify cmap command. The basic idea is that the particle-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color map
is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red" and
"blue", or discretely so that the value of -3.2 is "orange".

170

If "vx", for example, is used as the diameter setting, then the particle will be rendered using the x-component of
its velocity as the diameter. If the per-particle value <= 0.0, them the particle will not be drawn.

Rendering of grid cells

The grid keyword turns on the drawing of grid cells with the specified color attribute. For 2d, the grid cell is
shaded with an rectangle that is infinitely thin in the z dimension, which allows you to still see the particles in the
grid cell. For 3d, the grid cell is drawn as a solid brick, which will obscure the particles inside it.

Only grid cells in a geometric region can be drawn using the dump_modify region command.

The gridx and gridy and gridz keywords turn on the drawing of of a 2d plane of grid cells at the specified
coordinate. This is a way to draw one or more slices through a 3d image.

The dump_modify region command does not apply to the gridx and gridy and gridz plane drawing.

If proc is specified for the color setting, then the color of each grid cell is determined by its owning processor ID.
This is useful for visualizing the result of a load balancing of the grid cells, e.g. by the balance_grid or fix balance
commands. By default the mapping of proc IDs to colors is as follows:

proc ID 1 = red•
proc ID 2 = green•
proc ID 3 = blue•
proc ID 4 = yellow•
proc ID 5 = aqua•
proc ID 6 = purple•

and repeats itself for IDs > 6. Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead
of the more customary 0 to Nprocs-1. This mapping can be changed by the dump_modify gcolor command.

The color setting can also be a per-grid compute or fix. In this case, it is specified as c_ID or c_ID[N] for a
compute and as f_ID and f_ID[N] for a fix.

This allows per grid cell values in a vector or array to be used to color the grid cells. The ID in the attribute should
be replaced by the actual ID of the compute or fix that has been defined previously in the input script. See the
compute or fix command for details.

If c_ID is used as a attribute, then the per-grid vector calculated by the compute is used. If c_ID[N] is used, then
N must be in the range from 1-M, which will use the Nth column of the per-grid array calculated by the compute.

If f_ID is used as a attribute, then the per-grid vector calculated by the fix is used. If f_ID[N] is used, then N must
be in the range from 1-M, which will use the Nth column of the per-grid array calculated by the fix.

The manner in which values in the vector or array are mapped to color is determined by the dump_modify cmap
command.

Rendering of surface elements

The surf keyword turns on the drawing of surface elements with the specified color attribute. For 2d, the surface
element is a line whose diameter is specified by the diam setting as a fraction of the minimum simulation box
length. For 3d it is a triangle and the diam setting is ignored. The entire surface is rendered, which in 3d will hide
any grid cells (or fractions of a grid cell) that are inside the surface.

171

The dump_modify region command does not apply to surface element drawing.

If one is specified for the color setting, then the color of every surface element is drawn with the color specified
by the dump_modify scolor keyword, which is gray by default.

If proc is specified for the color setting, then the color of each surface element is determined by its owning
processor ID. Surface elements are assigned to owning processors in a round-robin fashion. By default the
mapping of proc IDs to colors is as follows:

proc ID 1 = red•
proc ID 2 = green•
proc ID 3 = blue•
proc ID 4 = yellow•
proc ID 5 = aqua•
proc ID 6 = purple•

and repeats itself for IDs > 6. Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead
of the more customary 0 to Nprocs-1. This mapping can be changed by the dump_modify scolor command, which
has not yet been added to SPARTA.

The color setting can also be a per-surf compute or fix. In this case, it is specified as c_ID or c_ID[N] for a
compute and as f_ID and f_ID[N] for a fix.

This allows per-surf values in a vector or array to be used to color the surface elemtns. The ID in the attribute
should be replaced by the actual ID of the compute or fix that has been defined previously in the input script. See
the compute or fix command for details.

If c_ID is used as a attribute, then the per-surf vector calculated by the compute is used. If c_ID[N] is used, then
N must be in the range from 1-M, which will use the Nth column of the per-surf array calculated by the compute.

If f_ID is used as a attribute, then the per-surf vector calculated by the fix is used. If f_ID[N] is used, then N must
be in the range from 1-M, which will use the Nth column of the per-surf array calculated by the fix.

The manner in which values in the vector or array are mapped to color is determined by the dump_modify cmap
command.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of the
image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the way
the simulation box appears from image to image, effectively doing a pan or fly-by view of your simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the center
point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180 degrees. The phi
value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0 is a view along the
+x axis, towards the center point. If theta or phi are specified via variables, then the variable values should be in

172

degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy, and
Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation box. These
values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the center of the
image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank image. Internally,
Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static, then this conversion is
done once, at the time the dump command is issued. If flag is set to "d" for dynamic then the conversion is
performed every time a new image is created. If the box size or shape is changing, this will adjust the center point
in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored as
a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which is also
in the plane defined by the view vector and user-specified up vector. Thus this internal vector is computed from
the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector, implied
by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value of 1
should display an image mostly filled by the particles in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image. If no
is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of the box
are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of
the box boundaries can be set with the dump_modify boxcolor command.

The gline keyword determines how the outlines of grid cells are rendered as thin cylinders in the image. If the
gridx or gridy or gridz keywords are specified to draw a plane(s) of grid cells, then outlines of all cells in the
plane(s) are drawn. If the planar options are not used, then the outlines of all grid cells are drawn, whether the
grid keyword is specified or not. In this case, the dump_modify region command can be used to restrict which
grid cells the outlines are drawn for.

For the gline keywork, if no is set, then grid outlines are not drawn and the diam setting is ignored. If yes is set,
the 12 edges of each grid cell are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for
3d) or x,y (for 2d). The color of the grid cell outlines can be set with the dump_modify glinecolor command.

The sline keyword determines how the outlines of surface elements are rendered as thin cylinders in the image. If
no is set, then the surface element outlines are not drawn and the diam setting is ignored. If yes is set, a line is
drawn for 2d and a triangle outline for 3d surface elements, with a diameter that is a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d). The color of the surface element outlines can be set with the dump_modify

173

slinecolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are drawn
to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the lower left
corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction of the
respective box lengths. The diam setting determines their thickness as a fraction of the shortest box length in x,y,z
(for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value must be
a value 0.0 <= sfactor <= 1.0, where sfactor = 1 is a highly reflective surface and sfactor = 0 is a rough non-shiny
surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is set,
then particles further away from the viewer are darkened via a randomized process, which is perceived as depth.
The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength of the
effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPEG, PNG, or PPM images can be converted into a movie file and then played as a movie using
commonly available tools. Using dump style movie automates this step and avoids the intermediate step of writing
(many) image snapshot file.

To manually convert JPEG, PNG or PPM files into an animated GIF or MPEG or other movie file you can:

a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert -loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a program like gifsicle to optimize
and massively shrink them. MPEG files created by ImageMagick are in MPEG-1 format with rather
inefficient compression and low quality.

•

b) Use QuickTime.

Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another format.
QuickTime can generate very high quality and efficiently compressed movie files. Some of the supported
formats require to buy a license and some are not readable on all platforms until specific runtime libraries
are installed.

•

c) Use FFmpeg

FFmpeg is a command line tool that is available on many platforms and allows extremely flexible
encoding and decoding of movies.

cat snap.*.jpg | ffmpeg -y -f image2pipe -c:v mjpeg -i - -b:v 2000k movie.m4v
cat snap.*.ppm | ffmpeg -y -f image2pipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more information see the FFmpeg homepage

•

You can play a movie file as follows:

a) Use your browser to view an animated GIF movie.•

174

http://www.ffmpeg.org/

Select "Open File" under the File menu Load the animated GIF file
b) Use the freely available mplayer or ffplay tool to view a movie. Both are available for multiple OSes
and support a large variety of file formats and decoders.

% mplayer foo.mpg
% ffplay bar.avi

•

c) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate("foo*.jpg")

•

d) QuickTime and other Windows- or MacOS-based media players can obviously play movie files
directly. Similarly for corresponding tools bundled with Linux desktop environments. However, due to
licensing issues with some file formats, the formats may require installing additional libraries, purchasing
a license, or may not be supported.

•

Restrictions:

To write JPEG images, you must use the -DSPARTA_JPEG switch when building SPARTA and link with a
JPEG library. To write PNG images, you must use the -DSPARTA_PNG switch when building SPARTA and link
with a PNG library.

To write movie files, you must use the -SPARTA_FFMPEG switch when building SPARTA. The FFmpeg
executable must also be available on the machine where SPARTA is being run. Typically it's name is lowercase,
i.e. ffmpeg.

See Section 2.2.2 section of the documentation for details on how to compile with optional switches.

Note that since FFmpeg is run as an external program via a pipe, SPARTA has limited control over its execution
and no knowledge about errors and warnings printed by it. Those warnings and error messages will be printed to
the screen only. Due to the way image data is communicated to FFmpeg, it will often print the message + pipe::
Input/output error :pre + which can be safely ignored. Other warnings and errors have to be addressed according
to the FFmpeg documentation. One known issue is that certain movie file formats (e.g. MPEG level 1 and 2
format streams) have video bandwith limits that can be crossed when rendering too large of image sizes. Typical
warnings look like this:

[mpeg @ 0x98b5e0] packet too large, ignoring buffer limits to mux it
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=281407 size=285018
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=283448 size=285018

In this case it is recommended to either reduce the size of the image or encode in a different format that is also
supported by your copy of FFmpeg, and which does not have this limitation (e.g. .avi, .mkv, mp4).

Related commands:

dump, dump_modify, undump

Default:

The defaults for the keywords are as follows:

particle = yes•
pdiam = not specified (use diameter setting)•
grid = not specified (no drawing of grid cells)•
gridx = not specified (no drawing of x-plane of grid cells)•

175

http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

gridy = not specified (no drawing of y-plane of grid cells)•
gridz = not specified (no drawing of z-plane of grid cells)•
surf = not specified (no drawing of surface elements)•
size = 512 512•
view = 60 30 (for 3d)•
view = 0 0 (for 2d)•
center = s 0.5 0.5 0.5•
up = 0 0 1 (for 3d)•
up = 0 1 0 (for 2d)•
zoom = 1.0•
persp = 0.0•
box = yes 0.02•
gline = no 0.0•
sline = no 0.0•
axes = no 0.0 0.0•
shiny = 1.0•
ssao = no•

176

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

dump-ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
these keywords apply to various dump styles•
keyword = append or buffer or every or fileper or first or flush or format or nfile or pad or region or
thresh

append arg = yes or no
buffer arg = yes or no
every arg = N

 N = dump every this many timesteps
 N can be a variable (see below)

fileper arg = Np
 Np = write one file for every this many processors

first arg = yes or no
flush arg = yes or no
format args = line string, int string, float string, M string, or none

 string = C-style format string
 M = integer from 1 to N, where N = # of per-atom quantities being output

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

pad arg = Nchar = # of characters to convert timestep to
region arg = region-ID or "none"
thresh args = attribute operation value

 attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
 operation = "" or ">=" or "==" or "!="
 value = numeric value to compare to
 these 3 args can be replaced by the word "none" to turn off thresholding

•

these keywords apply only to the (image and movie styles•
keyword = bcolor or bdiam or backcolor or bitrate or boxcolor or cmap or color or framerate or gcolor or
glinecolor or pcolor or pdiam or scolor or slinecolor

backcolor arg = color
 color = name of color for background

bitrate arg = rate
 rate = target bitrate for movie in kbps

boxcolor arg = color
 color = name of color for box lines

cmap args = mode lo hi style delta N entry1 entry2 ... entryN
 mode = particle or grid or surf or xplane or yplane or zplane
 lo = number or min = lower bound of range of color map
 hi = number or max = upper bound of range of color map
 style = 2 letters = "c" or "d" or "s" plus "a" or "f"
 "c" for continuous
 "d" for discrete
 "s" for sequential
 "a" for absolute
 "f" for fractional
 delta = binsize (only used for style "s", otherwise ignored)
 binsize = range is divided into bins of this width
 N = # of subsequent entries
 entry = value color (for continuous style)
 value = number or min or max = single value within range

•

177

http://sparta.sandia.gov

 color = name of color used for that value
 entry = lo hi color (for discrete style)
 lo/hi = number or min or max = lower/upper bound of subset of range
 color = name of color used for that subset of values
 entry = color (for sequential style)
 color = name of color used for a bin of values

color args = name R G B
 name = name of color
 R,G,B = red/green/blue numeric values from 0.0 to 1.0

framerate arg = fps
 fps = frames per second for movie

gcolor args = proc color
 proc = proc ID or range of IDs (see below)
 color = name of color or color1/color2/...

glinecolor arg = color
 color = name of color for grid cell outlines

pcolor args = type color
 type = particle type or range of types or proc ID or range of IDs (see below)
 color = name of color or color1/color2/...

pdiam args = type diam
 type = particle type or range of types (see below)
 diam = diameter of particles of that type (distance units)

scolor args = proc color
 proc = proc ID or range of IDs (see below)
 color = name of color for surf one option

slinecolor arg = color
 color = name of color for surface element outlines

Examples:

dump_modify 1 format line "%d %d %20.15g %g %g"
dump_modify 1 format float %20.15g
dump_modify myDump thresh x <0.0 thresh vx >= 3.0
dump_modify 1 every 1000
dump_modify 1 every v_myVar
dump_modify 1 cmap particle min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump styles.

These keywords apply to all dump styles unless otherwise noted. The descriptions give details.

The append keyword applies to all dump styles except image and movie. It also applies only to text output files,
not to binary or gzipped files. If specified as yes, then dump snapshots are appended to the end of an existing
dump file. If specified as no, then a new dump file will be created which will overwrite an existing file with the
same name. This keyword can only take effect if the dump_modify command is used after the dump command,
but before the first command that causes dump snapshots to be output, e.g. a run command. Once the dump file
has been opened, this keyword has no further effect.

The buffer keyword applies only all dump styles except image and movie. It also applies only to text output files,
not to binary or gzipped files. If specified as yes, which is the default, then each processor writes its output into an
internal text buffer, which is then sent to the processor(s) which perform file writes, and written by those
processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom data in binary format
to the processor(s) which perform file wirtes, and those processor(s) format and write it line by line into the
output file.

178

The buffering mode is typically faster since each processor does the relatively expensive task of formatting the
output for its own atoms. However it requires about twice the memory (per processor) for the extra buffering.

The every keyword changes the dump frequency originally specified by the dump command to a new value. The
every keyword can be specified in one of two ways. It can be a numeric value in which case it must be > 0. Or it
can be an equal-style variable, which should be specified as v_name, where name is the variable name. In this
case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot
will be written out. On that timestep, the variable will be evaluated again to determine the next timestep, etc. Thus
the variable should return timestep values. See the stagger() and logfreq() math functions for equal-style variables,
as examples of useful functions to use in this context. Other similar math functions could easily be added as
options for equal-style variables. When using the variable option with the every keyword, you also need to use the
first option if you want an initial snapshot written to the dump file.

For example, the following commands will write snapshots at timesteps 0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
dump 1 all particle 100 tmp.dump id type x y z
dump_modify 1 every v_s first yes

The fileper keyword is documented below with the nfile keyword.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified in
the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if the
setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword applies to all dump styles except image and movie. It also applies only when the styles are
used to write multiple successive snapshots to the same file. It determines whether a flush operation is invoked
after a dump snapshot is written to the dump file. A flush insures the output in that file is current (no buffering by
the OS), even if SPARTA halts before the simulation completes.

The format keyword can be used to change the default numeric format output by the text-based dump styles:
particle, grid, surf.

All the specified format strings are C-style formats, e.g. as used by the C/C++ printf() command. The line
keyword takes a single argument which is the format string for an entire line of output with N fields for each
particle, grid cell, or suraface elememt, which you must enclose in quotes if it is more than one field. The int and
float keywords take a single format argument and are applied to all integer or floating-point quantities output. The
setting for M string also takes a single format argument which is used for the Mth value output in each line, e.g.
the 5th column is output in high precision for "format 5 %20.15g".

The format keyword can be used multiple times. The precedence is that for each value in a line of output, the M
format (if specified) is used, else the int or float setting (if specified) is used, else the line setting (if specified) for
that value is used, else the default setting is used. A setting of none clears all previous settings, reverting all values
to their default format.

NOTE: Grid cell IDs are stored internally as 4-byte or 8-byte signed integers, depending on how SPARTA was
compiled. When specifying the format int option you can use a "%d"-style format identifier in the format string
and SPARTA will convert this to the corresponding 8-byte form it it is needed when outputting those values.
However, when specifying the line option or format M string option for those values, you should specify a format
string appropriate for an 8-byte signed integer, e.g. one with "%ld", if SPARTA was compiled with the
-DSPARTA_BIGBIG option for 8-byte IDs.

179

The nfile or fileper keywords apply to all dump styles except image and movie. They can be used in conjunction
with the "%" wildcard character in the specified dump file name. As explained on the dump command doc page,
the "%" character causes the dump file to be written in pieces, one piece for each of P processors. By default P =
the number of processors the simulation is running on. The nfile or fileper keyword can be used to set P to a
smaller value, which can be more efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which becomes
the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100
or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading zeroes so they are
all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so
that post-processing programs can easily read the files in ascending timestep order.

The region keyword only applies to the dump particle and image styles. If specified, only particles in the region
will be written to the dump file or included in the image. Only one region can be applied as a filter (the last one
specified). See the region command for more details. Note that a region can be defined as the "inside" or "outside"
of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions.

The thresh keyword only applies to the dump particle and image styles. Multiple thresholds can be specified.
Specifying "none" turns off all threshold criteria. If thresholds are specified, only particles whose attributes meet
all the threshold criteria are written to the dump file or included in the image. The possible attributes that can be
tested for are the same as those that can be specified in the dump particle command. Note that different attributes
can be output by the dump particle command than are used as threshold criteria by the dump_modify command.
E.g. you can output the coordinates of particles whose velocity components are above some threshold.

These keywords apply only to the dump image and dump movie styles. Any keyword that affects an image, also
affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the dump
movie style. The descriptions give details.

The backcolor keyword can be used with the dump image command to set the background color of the images.
The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.

The bitrate keyword can be used with the dump movie command to define the size of the resulting movie file and
its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require less
compression and will result in higher quality movies. The quality is also determined by the compression format
and encoder. The default setting is 2000 kbit/s, which will result in average quality with older compression
formats.

IMPORTANT NOTE: Not all movie file formats supported by dump movie allow the bitrate to be set. If not, the
setting is silently ignored.

180

The boxcolor keyword can be used with the dump image command to set the color of the simulation box drawn
around the particles in each image. See the "dump image box" command for how to specify that a box be drawn.
The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.

The cmap keyword can be used with the dump image command to define a color map that is used to draw
"objects" which can be particles, grid cells, or surface elements. The mode setting must be particle or grid or surf
or gridx or gridy or gridz which correspond to the same keywords in the dump image command.

Color maps are used to assign a specific RGB (red/green/blue) color value to an individual object when it is
drawn, based on the object's attribute, which is a numeric value, e.g. the x-component of velocity for a particle, if
the particle-attribute "vx" was specified in the dump image command.

The basic idea of a color map is that the attribute will be within a range of values, and that range is associated
with a a series of colors (e.g. red, blue, green). A specific value (vx = -3.2) can then mapped to the series of colors
(e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure.

There are many possible options for the color map, enabled by the cmap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the attribute. If numeric values are used for lo
and/or hi, then values that are lower/higher than that value are set to the value. I.e. the range is static. If lo is
specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be calculated each
time an image is drawn, based on the set of objects being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s" for
sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range. A
discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering
the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as values
within the range. A fractional color map is one in which the values to which colors are assigned are specified as a
fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned
to objects with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional
map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting is only specified if the style is sequential. It specifies the bin size to use within the range for
assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20
colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 <
-8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range of
values or min or max. The value of the first entry must be min and the value of the last entry must be max. Any
entries in between must have increasing values. Note that numeric values can be specified either as absolute
numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map.

181

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute. X
will fall between 2 of the entry values. The color of the object is linearly interpolated (in each of the RGB values)
between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are
"red" at -10.0 and "blue" at 0.0, then the object's color will be halfway between "red" and "blue", which happens
to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be min
and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap. Note that
numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute.
The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color associated with
that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and
the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All
objects will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color of
an individual object, given the value X of its attribute. The range is partitioned into N bins of width binsize. Thus
X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is considered
to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the colors are
repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins will be red
and the even bins green. The color of the object is the color of its bin. Note that the sequential color map is really
a shorthand way of defining a discrete color map without having to specify where all the bin boundaries are.

The color keyword can be used with the dump image command to define a new color name, in addition to the
140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name. The color
name can then be used with any other dump_modify keyword that takes a color name as a value. The RGB values
should each be floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined color
names with new RBG values.

The framerate keyword can be used with the dump movie command to define the duration of the resulting movie
file. Movie files written by the dump movie command have a default frame rate of 24 frames per second and the
images generated will be converted at that rate. Thus a sequence of 1000 dump images will result in a movie of
about 42 seconds. To make a movie run longer you can either generate images more frequently or lower the frame
rate. To speed a movie up, you can do the inverse. Using a frame rate higher than 24 is not recommended, as it
will result in simply dropping the rendered images. It is more efficient to dump images less frequently.

The gcolor keyword can be used one or more times with the dump image command, only when its grid color
setting is proc, to set the color that grid cells will be drawn in the image.

The proc setting should be an integer from 1 to Nprocs = the number of processors. A wildcard asterisk can be
used in place of or in conjunction with the proc argument to specify a range of processor IDs. This takes the form
"*" or "*n" or "n*" or "m*n". If N = the number of processors, then an asterisk with no numeric values means all
procs from 1 to N. A leading asterisk means all procs from 1 to n (inclusive). A trailing asterisk means all procs
from n to N (inclusive). A middle asterisk means all procs from m to n (inclusive). Note that for this command,
processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

182

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified processors. In the latter case, the list
of colors are assigned in a round-robin fashion to each of the specified processors.

The glinecolor keyword can be used with the dump image command to set the color of the grid cell outlines
drawn around the grid cells in each image. See the "dump image gline" command for how to specify that cell
outlines be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined
by the dump_modify color option.

The pcolor keyword can be used one or more times with the dump image command, only when its particle color
setting is type or procs, to set the color that particles will be drawn in the image.

If the particle color setting is type, then the specified type for the pcolor keyword should be an integer from 1 to
Ntypes = the number of particle types. A wildcard asterisk can be used in place of or in conjunction with the type
argument to specify a range of particle types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number
of particle types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means
all types from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk
means all types from m to n (inclusive).

If the particle color setting is proc, then the specified type for the pcolor keyword should be an integer from 1 to
Nprocs = the number of processors. A wildcard asterisk can be used in place of or in conjunction with the type
argument to specify a range of processor IDs, just as described above for particle types. Note that for this
command, processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified particle types. In the latter case, the
list of colors are assigned in a round-robin fashion to each of the specified particle types.

The pdiam keyword can be used with the dump image command, when its particle diameter setting is type, to set
the size that particles of each type will be drawn in the image. The specified type should be an integer from 1 to
Ntypes. As with the pcolor keyword, a wildcard asterisk can be used as part of the type argument to specify a
range of particle types. The specified diam is the size in whatever distance units the input script is using.

The scolor keyword can be used one or more times with the dump image command, only when its surface
element color setting is one or proc, to set the color that surface elements will be drawn in the image.

When the surf color is one, the proc setting for this command is ignored.

When the surf color is proc, the proc setting for this command should be an integer from 1 to Nprocs = the
number of processors. A wildcard asterisk can be used in place of or in conjunction with the proc argument to
specify a range of processor IDs. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of
processors, then an asterisk with no numeric values means all procs from 1 to N. A leading asterisk means all
procs from 1 to n (inclusive). A trailing asterisk means all procs from n to N (inclusive). A middle asterisk means
all procs from m to n (inclusive). Note that for this command, processor IDs range from 1 to Nprocs inclusive,
instead of the more customary 0 to Nprocs-1.

When the surf color is one, the specified color setting for this command must be a single color which is any of the
140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

183

When the surf color is proc, the color setting for this command can be one or more colors separated by a "/"
character, e.g. red/green/blue. For a single color, that color is assigned to all the specified processors. For two or
more colors, the list of colors are assigned in a round-robin fashion to each of the specified processors.

The slinecolor keyword can be used with the dump image command to set the color of the surface element
outlines drawn around the surface elements in each image. See the "dump image sline" command for how to
specify that surface element outlines be drawn. The color name can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

Restrictions: none

Related commands:

dump, dump image, undump

Default:

The option defaults are

append = no•
buffer = yes for all dump styles except image and movie•
backcolor = black•
boxcolor = yellow•
cmap = mode min max cf 0.0 2 min blue max red, for all modes•
color = 140 color names are pre-defined as listed below•
every = whatever it was set to via the dump command•
fileper = # of processors•
first = no•
flush = yes•
format = %d and %g for each integer or floating point value•
gcolor = * red/green/blue/yellow/aqua/cyan•
glinecolor = white•
nfile = 1•
pad = 0•
pcolor = * red/green/blue/yellow/aqua/cyan•
pdiam = * 1.0•
region = none•
scolor = * gray•
slinecolor = white•
thresh = none•

These are the 140 colors that SPARTA pre-defines for use with the dump image and dump_modify commands.
Additional colors can be defined with the dump_modify color command. The 3 numbers listed for each name are
the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0 value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215 aqua = 0, 255, 255 aquamarine = 127,

255, 212
azure = 240, 255,
255

beige = 245, 245,
220 bisque = 255, 228, 196 black = 0, 0, 0 blanchedalmond =

255, 255, 205 blue = 0, 0, 255

blueviolet = 138,
43, 226 brown = 165, 42, 42 burlywood = 222, 184,

135
cadetblue = 95, 158,
160

chartreuse = 127,
255, 0

184

chocolate = 210,
105, 30 coral = 255, 127, 80 cornflowerblue = 100,

149, 237
cornsilk = 255, 248,
220

crimson = 220, 20,
60

cyan = 0, 255, 255 darkblue = 0, 0, 139 darkcyan = 0, 139, 139 darkgoldenrod =
184, 134, 11

darkgray = 169,
169, 169

darkgreen = 0, 100,
0

darkkhaki = 189, 183,
107

darkmagenta = 139, 0,
139

darkolivegreen = 85,
107, 47

darkorange = 255,
140, 0

darkorchid = 153,
50, 204 darkred = 139, 0, 0 darksalmon = 233,

150, 122
darkseagreen = 143,
188, 143

darkslateblue = 72,
61, 139

darkslategray = 47,
79, 79

darkturquoise = 0, 206,
209

darkviolet = 148, 0,
211

deeppink = 255, 20,
147

deepskyblue = 0,
191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255 firebrick = 178, 34, 34 floralwhite = 255,

250, 240
forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255 gold = 255, 215, 0 goldenrod = 218,

165, 32
gray = 128, 128,
128 green = 0, 128, 0 greenyellow = 173,

255, 47
honeydew = 240,
255, 240

hotpink = 255, 105,
180

indianred = 205, 92,
92 indigo = 75, 0, 130 ivory = 255, 240, 240 khaki = 240, 230,

140
lavender = 230, 230,
250

lavenderblush =
255, 240, 245 lawngreen = 124, 252, 0 lemonchiffon = 255,

250, 205
lightblue = 173, 216,
230

lightcoral = 240,
128, 128

lightcyan = 224,
255, 255

lightgoldenrodyellow =
250, 250, 210

lightgreen = 144, 238,
144

lightgrey = 211, 211,
211

lightpink = 255,
182, 193

lightsalmon = 255,
160, 122

lightseagreen = 32, 178,
170

lightskyblue = 135,
206, 250

lightslategray = 119,
136, 153

lightsteelblue = 176,
196, 222

lightyellow = 255,
255, 224 lime = 0, 255, 0 limegreen = 50, 205,

50
linen = 250, 240,
230

magenta = 255, 0,
255

maroon = 128, 0, 0 mediumaquamarine =
102, 205, 170

mediumblue = 0, 0,
205

mediumorchid =
186, 85, 211

mediumpurple =
147, 112, 219

mediumseagreen =
60, 179, 113

mediumslateblue = 123,
104, 238

mediumspringgreen =
0, 250, 154

mediumturquoise =
72, 209, 204

mediumvioletred =
199, 21, 133

midnightblue = 25,
25, 112

mintcream = 245, 255,
250

mistyrose = 255, 228,
225

moccasin = 255,
228, 181

navajowhite = 255,
222, 173

navy = 0, 0, 128 oldlace = 253, 245, 230 olive = 128, 128, 0 olivedrab = 107,
142, 35

orange = 255, 165,
0

orangered = 255,
69, 0 orchid = 218, 112, 214 palegoldenrod = 238,

232, 170
palegreen = 152,
251, 152

paleturquoise = 175,
238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213 peru = 205, 133, 63 pink = 255, 192,

203
plum = 221, 160,
221

powderblue = 176, 224,
230 purple = 128, 0, 128 red = 255, 0, 0 rosybrown = 188,

143, 143
royalblue = 65, 105,
225

saddlebrown = 139, 69,
19

salmon = 250, 128,
114

sandybrown = 244,
164, 96

seagreen = 46, 139,
87

seashell = 255, 245,
238 sienna = 160, 82, 45 silver = 192, 192, 192 skyblue = 135, 206,

235
slateblue = 106, 90,
205

slategray = 112,
128, 144 snow = 255, 250, 250 springgreen = 0, 255,

127
steelblue = 70, 130,
180 tan = 210, 180, 140

teal = 0, 128, 128 thistle = 216, 191, 216 tomato = 253, 99, 71

185

turquoise = 64, 224,
208

violet = 238, 130,
238

wheat = 245, 222,
179 white = 255, 255, 255 whitesmoke = 245,

245, 245 yellow = 255, 255, 0 yellowgreen = 154,
205, 50

186

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether SPARTA echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

187

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix command

Syntax:

fix ID style args

ID = user-assigned name for the fix•
style = one of a long list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

fix 1 grid/check 100 warn
fix 1 all ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile

Description:

Set a fix that will be applied to the system. In SPARTA, a "fix" is an operation that is applied to the system during
timestepping. Examples include adding particles via inlet boundary conditions or computing diagnostics. Code for
new fixes can be added to SPARTA; see Section 8 of the manual for details.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage of
the timestep, they are invoked in the order they were specified in the input script.

The ID for a fix is used to identify the fix in other commands. Each fix ID must be unique; see an exception
below. The ID can only contain alphanumeric characters and underscores. You can specify multiple fixes of the
same style so long as they have different IDs. A fix can be deleted with the unfix command, after which its ID can
be re-used.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with the
same style and a different ID will not turn off the first one.

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on the
old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one originally was.

Some fixes store an internal "state" which is written to binary restart files via the restart or write_restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the read_restart
command for info on how to re-specify a fix in an input script that reads a restart file. See the doc pages for
individual fixes for info on which ones can be restarted.

Each fix style has its own doc page which describes its arguments and what it does, as listed below. Here is an
alphabetic list of fix styles available in SPARTA:

adapt - on-the-fly grid adaptation•
ambipolar - ambipolar approximation for ionized plasmas•
ave/grid - compute per grid cell time-averaged quantities•
ave/surf - compute per surface element time-averaged quantities•
ave/time - compute/output global time-averaged quantities•
balance - perform dynamic load-balancing•

188

http://sparta.sandia.gov

emit/face - emit particles at global boundaries•
emit/face/file - emit particles at global boundaries using a distribution defined in a file•
emit/surf - emit particles at surfaces•
grid/check - check if particles are in the correct grid cell•
move/surf - move surfaces dynamically during a simulation•
print - print text and variables during a simulation•

In addition to the operation they perform, some fixes also produce one of four styles of quantities: global,
per-particle, per-grid, or per-surf. These can be used by other commands or output as described below. A global
quantity is one or more system-wide values, e.g. the temperature of the system. A per-particle quantity is one or
more values per particle, e.g. the kinetic energy of each particle. A per-grid quantity is one or more values per
grid cell. A per-surf quantity is one or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two forms: a single scalar value or a vector of
values. Additionaly, global quantities can also be a 2d array of values. The doc page for each fix describes the
style and kind of values it produces, e.g. a per-particle vector. Some fixes can produce more than one form of a
single style, e.g. a global scalar and a global vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID is the ID of the fix:

f_ID entire scalar, vector, or array
f_ID[I] one element of vector, one column of array
f_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar fix values as
input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a command
may require a vector of values, not a scalar. This means there is no ambiguity about referring to a fix quantity as
f_ID even if it produces, for example, both a scalar and vector. The doc pages for various commands explain the
details.

Any values generated by a fix can be used in several ways:

Global values can be output via the stats_style command. Or the values can be referenced in a variable
equal or variable atom command.

•

Per-particle values can be output via the dump particle command. Or the per-particle values can be
referenced in an particle-style variable.

•

Per-grid values can be output via the dump grid command. Or the per-grid values can be referenced in a
grid-style variable.

•

Restrictions: none

Related commands:

unfix

Default: none

189

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix adapt command

Syntax:

fix ID adapt Nfreq args ...

ID is documented in fix command•
adapt = style name of this fix command•
Nfreq = perform grid adaptation every this many steps•
args = all remaining args are identical to those defined for the adapt_grid command•

Examples:

fix 1 adapt 1000 refine particle 10 50
fix 1 adapt 1000 coarsen particle 10 50
fix 1 adapt 500 refine coarsen particle 10 50
fix 1 adapt 10000 refine surf 0.15 iterate 1 dir 1 0 0
fix 10 adapt 1000 refine coarsen value c_11 5.0 10.0 iterate 2

Description:

This command performs on-the-fly adapatation of grid cells as a simulation runs, either by refinement or
coarsening or both. Grid adaptation can also be performed before or between simulations by using the adapt_grid
command.

Refinement means splitting one child cell into multiple new child cells; the original child cell becomes a parent
cell. Coarsening means combining all the child cells of a parent cell, so that the child cells are deleted and the
parent cell becomes a single new child cell. See Section howto 4.8 for a description of the hierarchical grid used
by SPARTA and a defintion of child and parent cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the current particle density distribution, or
mean-free-path of particles, or to other simulation attributes such as the presence of surface elements. A
well-adapted grid can improve accuracy of the simulation and/or reduce a simulation's computational cost.

Adaptation is performed by this command once every Nfreq timesteps.

All of the command arguments which appear after Nfreq, which determine how adapation is done for both
refinement and coarsening, are exactly the same as for the adapt_grid command. See its doc page for details.

The one exception is that the iterate keyword cannot be used with the fix adapt command. Only a single iteration
of the action1 and action2 parameters (described on the adapt_grid doc page) can be performed each time grid
adaptation is performed.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is a flag for whether any grid cells were adapted on the last timestep it
was invoked. The value of the flag is 1 if any cells were refined or coarsened, else it is 0.

Restrictions: none

190

http://sparta.sandia.gov

Related commands:

adapt_grid, balance_grid

Default: none

191

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ambipolar command

Syntax:

fix ID ambipolar especies ion1 ion2 ...

ID is documented in fix command•
ambipolar = style name of this fix command•
especies = species ID for ambipolar electrons•
ion1,ion2,... = species IDs for one or more ambipolar ions•

Examples:

fix 1 ambipolar e N+ O+ NO+

Description:

Enable the ambipolar approximation to be used in a simulation. The ambipolar approximation is a
computationally efficient way to model low-density plasmas which contain positively-charged ions and
negatively-charged electrons. In this model, electrons are not free particles which move independently. This
would require a simulation with a very small timestep due to electon's small mass and high speed (1000x that of
an ion or neutral particle).

Instead each ambipolar electron is assumed to stay "close" to its parent ion, so that the plasma gas appears
macroscopically neutral. Each pair of particles thus moves together through the simulation domain, as if they
were a single particle, which is how they are stored within SPARTA. This means a normal timestep can be used.

An overview of all the operations within SPARTA which use the ambipolar approximation is given in the Section
4.11. This includes gas-phase collisions and chemistry as well as surface chemistry when particles collide with
surface elements or the global boundary of the simulation box. The section also lists all the commands that can be
used in an input script to invoke various options associated with the ambipolar approximation. All of them depend
on this fix ambipolar command being defined.

This command defines especies which is the species ID associated with the ambipolar electrons. It also specifies
one or more species IDs as ion1, ion2, etc for ambipolar ions. SPARTA checks that the especies has a negative
charge (as read in by the species command), and the ions have positive charges. An error is flagged if that is not
the case.

Internally, this fix defines two custom particle attributes. The first is named "ionambi" and is an integer vector
(one integer per particle). It stores a value of 1 for ambipolar ions, or 0 otherwise. The second is named "velambi"
and is a floating-point arrays (3 values per particle). It stores the velocity of the ambipolar electron associated
with the ambipolar ion, or zeroes otherwise.

Restart, output info:

No information about this fix is written to binary restart files.

However, the values of the two custom particle attributes defined by this fix are written to the restart file. Namely
the integer value "ionambi" and floating-point velocity values "velambi" for each particle. As explained on the
read_restart doc page these values can be re-assigned to particles when a restart file is read, if a new fix ambipolar

192

http://sparta.sandia.gov

command is specified in the restart script before the first run command is used.

No global or per-particle or per-grid quantities are stored by this fix for access by various output commands.

However, the two custom particle attributes defined by this fix can be accessed by the dump particle command, as
p_ionambi and p_velambi. That means those per-particle values can be written to particle dump files.

Restrictions: none

Related commands:

collide_modify ambipolar yes

Default: none

193

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/grid command

Syntax:

fix ID ave/grid Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/grid = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps zero or more input values can be listed•
value = c_ID, c_ID[i], f_ID, f_ID[i], v_name

 c_ID = per-grid vector (or array) calculated by a compute with ID
 c_ID[I] = Ith column of per-grid array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-grid vector (or array) calculated by a fix with ID
 f_ID[I] = Ith column of per-grid array calculated by a fix with ID, I can include wildcard (see below)
 v_name = per-grid vector calculated by a grid-style variable with name

•

zero or more keyword/arg pairs may be appended

keyword = ave
ave args = one or running

 one = output a new average value every Nfreq steps
 running = accumulate average continuously

•

Examples:

fix 1 ave/grid 10 20 1000 c_mine
fix 1 ave/grid 1 100 100 c_2[1] ave running
fix 1 ave/grid 1 100 100 c_2[*] ave running
fix 1 ave/grid 5 20 100 v_myEng

These commands will dump averages for each species and each grid cell to a file every 1000 steps:

compute 1 grid species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Use one or more per-grid vectors as inputs every few timesteps, and average by grid cell over longer timescales,
applying appropriate normalization factors. The resulting per grid cell averages can be used by other output
commands such as the dump grid command.

Each input value can be the result of a compute or fix or grid-style variable. The compute or fix must produce a
per-grid vector or array, not a global or per-particle or per-surf quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command. To time-average per-surf
quantities, see the fix ave/surf command.

Each per-grid value of each input vector is averaged independently.

Computes that produce per-grid vectors or arrays are those which have the word grid in their style name. See the
doc pages for individual fixes to determine which ones produce per-grid vectors or arrays.

194

http://sparta.sandia.gov

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2 fix
ave/grid commands are equivalent, since the compute grid command creates a per-grid array with 3 columns:

compute myGrid all u v w
fix 1 all ave/grid 10 20 1000 c_myGrid[*]
fix 1 all ave/grid 10 20 1000 c_myGrid[1] c_myGrid[2] c_myGrid[3]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed term is appended, and the compute calculates a per-grid vector, then the per-grid vector is used. If
c_ID[I] is used, then I must be in the range from 1-M, which will use the Ith column of the M-column per-grid
array calculated by the compute. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, and the fix calculates a per-grid vector, then the per-grid vector is used. If f_ID[I] is
used, then I must be in the range from 1-M, which will use the Ith column of the M-column per-grid array
calculated by the fix. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Only grid-style variables can be referenced. See the variable command for details. Note that grid-style variables
define a formula which can reference stats_style keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

For averaging of a value that comes from a compute or fix, normalization is performed as follows. Note that no
normalization is performed on a value produced by a grid-style variable.

If the compute or fix is summing over particles in a grid cell to calculate a per-grid quantity (e.g. energy or
temperature), this takes the form of a numerator divided by a denominator. For example, see the formulas
discussed on the compute grid doc page, where the denominator is 1 (for keyword n), or the number of particles

195

(ke, mass, temp), or the sum of particle masses (u, usq, etc). When this command averages over a series of
timesteps, the numerator and denominator are summed separately. This means the numerator/denominator
division only takes place when this fix produces output, every Nfreq timesteps.

For example, say the Nfreq output is over 2 timesteps, and the value produced by compute grid mass is being
averaged. Say a grid cell has 10 particles on the 1st timestep with a numerator value of 10.0, and 100 particles on
the 2nd timestep with a numerator value of 50.0. The output of this fix will be (10+50) / (10+100) = 0.54, not
((10/10) + (50/100)) / 2 = 0.75.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other. Normalization as described above is performed, and all tallies are zeroed before accumulating over the next
Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus the output at any Nfreq timestep is normalized
over all previously accumulated samples since the fix was defined. The tallies can only be zeroed by deleting the
fix via the unfix command, or by re-defining the fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-grid vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array of
values is produced, where the number of columns is the number of quantities averaged. The per-grid values can
only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed.

This fix performs calculations for all child grid cells in the simulation, which includes unsplit, split, and sub cells.
Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells.

Restrictions:

If performing on-the-fly grid adaptation every N timesteps, using the fix adapt command, this fix cannot
time-average across time windows > N steps, since the grid may change. This means Nfreq cannot be > N, and
keyword ave = running is not allowed.

Related commands:

compute, fix ave/time

Default:

The option defaults are ave = one.

196

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/histo command

fix ave/histo/weight command

Syntax:

fix ID style Nevery Nrepeat Nfreq lo hi Nbin value1 value2 ... keyword args ...

ID is documented in fix command•
style = ave/histo or ave/histo/weight = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating histogram•
Nfreq = calculate histogram every this many timesteps•
lo,hi = lo/hi bounds within which to histogram•
Nbin = # of histogram bins•
one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz = particle attribute (position, velocity component)
 c_ID = scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of vector or Ith column of array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of vector or Ith column of array calculated by a fix with ID, I can include wildcard (see below)
 v_name = value(s) calculated by an equal-style or particle-style or grid-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or beyond or overwrite or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are scalars
 vector = all input values are vectors

file arg = filename
 filename = name of file to output histogram(s) to

ave args = one or running or window
 one = output a new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

beyond arg = ignore or end or extra
 ignore = ignore values outside histogram lo/hi bounds
 end = count values outside histogram lo/hi bounds in end bins
 extra = create 2 extra bins for value outside histogram lo/hi bounds

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file
title3 arg = string

 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 ave/histo 100 5 1000 0.5 1.5 50 c_myGrid* file temp.histo ave running
fix 1 ave/histo 100 5 1000 0 5 100 c_kePart "My output values"
fix 1 ave/histo/weight 1 100 1000 -2.0 2.0 18 vx vy ave running beyond extra

197

http://sparta.sandia.gov

Description:

Use one or more values as inputs every few timesteps to create a single histogram. The histogram can then be
averaged over longer timescales. The resulting histogram can be used by other output commands, and can also be
written to a file. The fix ave/histo/weight command has identical syntax to fix ave/histo, except that exactly two
values must be specified. See details below.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between lo and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see the
discussion of the beyond keyword below.

Each input value can be a particle attribute (position, velocity) or can be the result of a compute or fix or the
evaluation of an equal-style or particle-style or grid-style variable. The set of input values can be either all global,
all per-particle, or all per-grid quantities. Inputs of different kinds (e.g. global and per-particle) cannot be mixed.
Particle attributes are per-particle vector values. See the doc page for individual "compute" and "fix" commands
to see what kinds of quantities they generate.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword.

Note that the output of this command is a single histogram for all input values combined together, not one
histogram per input value. See below for details on the format of the output of this fix.

If mode = scalar, then the input values must be scalars, or vectors with a bracketed term appended, indicating the
Ith value of the vector is used.

If mode = vector, then the input values must be vectors, or arrays with a bracketed term appended, indicating the
Ith column of the array is used.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual elements of the vector or columns of the array had been listed
one by one. E.g. these 2 fix ave/histo commands are equivalent, since the compute grid command creates a
per-grid array with 3 columns:

compute myGrid grid all u v w
fix 1 all ave/histo 100 1 100 c_myGrid file tmp1.grid mode vector
fix 2 all ave/histo 100 1 100 c_myGrid[1] c_myGrid[2] c_myGrid[3] file tmp2.grid mode vector

If the fix ave/histo/weight command is used, exactly two values must be specified. If the values are vectors, they
must be the same length. The first value (a scalar or vector) is what is histogrammed into bins, in the same manner
the fix ave/histo command operates. The second value (a scalar or vector) is used as a "weight". This means that
instead of each value tallying a "1" to its bin, the corresponding weight is tallied. E.g. the Nth entry in the first
vector tallies the Nth entry (weight) in the second vector.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated on timesteps that are multiple of Nfreq. It is
averaged over Nrepeat histograms, computed in the preceding portion of the simulation every Nevery timesteps.

198

Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the timesteps
contributing to the histogram value cannot overlap, i.e. Nrepeat*Nevery can not exceed Nfreq.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will be
used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram is
simply generated on timesteps 100,200,etc.

The particle attribute values (x,y,z,vx,vy,vz) are self-explanatory.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per-atom or local vector calculated by the compute is
used. If a bracketed term is appended, the Ith column of the global or per-particle or per-grid array calculated by
the compute is used. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

Note that there is a compute reduce command which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/histo. Users can also write code for their own
compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global or per-atom or local vector calculated by the fix is used. If a bracketed term is
appended, the Ith column of the global or per-particle or per-grid array calculated by the fix is used. See the
discussion above for how I can be specified with a wildcard asterisk to effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. If
mode = scalar, then only equal-style variables can be used. If mode = vector, then only particle-style or grid-style
variables can be used, which produce per-particle per-grid vectors respectively. See the variable command for
details.

Note that variables of style equal, particle, and grid define a formula which can reference individual particle
properties or stats output keywords, or they can invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global or per-particle or per-grid vectors, or
columns of global or per-particle or per-grid arrays.

The beyond keyword determines how input values that fall outside the lo to hi bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2 bins. If
beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond is set to end
then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is set to extend
then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in the first bin and

199

values > hi are counted in the last bin (Nbins+1). Values between lo and hi (inclusive) are counted in bins 2 thru
Nbins+1. The "coordinate" stored and printed for these two extra bins is lo and hi.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as-is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the average of the
bin value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or by re-defining the fix by
re-specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are summed
within a moving "window" of time, so that the last M histograms are used to produce the output. E.g. if M = 3 and
Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual histograms on steps
8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they are not available.

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
histogram.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file. This
includes a leading line that contains the timestep, number of bins, the total count of values contributing to the
histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum value
encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #, the
coordinate for the center of the bin (between lo and hi), the count of values in the bin, and the normalized count.
The normalized count is the bin count divided by the total count (not including values not histogrammed), so that
the normalized values sum to 1.0 across all bins.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only contains
one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3 lines of
the output file, assuming the file keyword was used. SPARTA uses default values for each of these, so they do not
need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line describes the six values that are printed at the first
of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, output info:

No information about this fix is written to binary restart files.

200

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is generated.
The global vector has 4 values:

1 = total counts in the histogram•
2 = values that were not histogrammed (see beyond keyword)•
3 = min value of all input values, including ones not histogrammed•
4 = max value of all input values, including ones not histogrammed•

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the total
count (not including missing counts), so that the values in the 3rd column sum to 1.0.

Restrictions: none

Related commands:

compute, fix ave/time, variable

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, beyond = ignore, and title 1,2,3 =
strings as described above.

201

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/surf command

Syntax:

fix ID ave/surf group-ID Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/surf = style name of this fix command•
group-ID = group ID for which surface elements to perform calculation on•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps zero or more input values can be listed•
value = c_ID, c_ID[i], f_ID, f_ID[i], v_name

 c_ID = per-surf vector (or array) calculated by a compute with ID
 c_ID[I] = Ith column of per-surf array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = per-surf vector (or array) calculated by a fix with ID
 f_ID[I] = Ith column of per-surf array calculated by a fix with ID, I can include wildcard (see below)

•

zero or more keyword/arg pairs may be appended

keyword = ave
ave args = one or running

 one = output a new average value every Nfreq steps
 running = accumulate average continuously

•

Examples:

fix 1 ave/surf all 1 100 100 c_surf ave running
fix 1 ave/surf leftcircle 10 20 1000 c_mine[2]
fix 1 ave/surf leftcircle 10 20 1000 c_mine[*]

Description:

Use one or more per-surf vectors as inputs every few timesteps, and average them surface element by surface
element by over longer timescales, applying appropriate normalization factors. The resulting per-surf averages
can be used by other output commands such as the dump surf command. Only surface elements in the surface
group specified by group-ID are included in the averaging. See the group surf command for info on how surface
elements can be assigned to surface groups.

Each input value can be the result of a compute or fix. The compute or fix must produce a per-surf vector or array,
not a global or per-particle or per-grid quantity. If you wish to time-average global quantities from a compute or
fix then see the fix ave/time command. To time-average per-grid quantities, see the fix ave/grid command.

Each per-surf value of each input vector is averaged independently.

Computes that produce per-surf vectors or arrays are those which have the word surf in their style name. See the
doc pages for individual fixes to determine which ones produce per-surf vectors or arrays.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A

202

http://sparta.sandia.gov

trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2 fix
ave/surf commands are equivalent, since the compute surf command creates a per-surf array with 4 columns:

compute mySurf all all n fx fy fz
fix 1 all ave/surf 10 20 1000 c_mySurf[*]
fix 1 all ave/surf 10 20 1000 c_mySurf[1] c_mySurf[2] &
 c_mySurf[3] c_mySurf[4]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed term is appended, and the compute calculates a per-surf vector, then the per-surf vector is used. If
c_ID[I] is used, then I must be in the range from 1-M, which will use the Ith column of the M-column per-surf
array calculated by the compute. See the discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, and the fix calculates a per-surf vector, then the per-surf vector is used. If f_ID[I] is
used, then I must be in the range from 1-M, which will use the Ith column of the M-column per-surf array
calculated by the fix. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

For averaging of a value that comes from a compute or fix, normalization is performed as follows. If the compute
or fix is summing over particles to calculate a per-surf quantity (e.g. pressure or energy flux), this takes the form
of a numerator divided by a denominator. For example, see the formulas discussed on the compute surf doc page,
where the denominator is 1 (for keyword n), area times dt (timestep) for the other quantities (press, shx, ke, etc).
When this command averages over a series of timesteps, the numerator and denominator are summed separately.
This means the numerator/denominator division only takes place when this fix produces output, every Nfreq
timesteps.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other. Normalization as described above is performed, and all tallies are zeroed before accumulating over the next

203

Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus the output at any Nfreq timestep is normalized
over all previously accumulated samples since the fix was defined. The tallies can only be zeroed by deleting the
fix via the unfix command, or by re-defining the fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-surf vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array of
values is produced, where the number of columns is the number of quantities averaged. The per-surf values can
only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed.

Surface elements not in the specified group-ID will have zeroes for all their values.

Restrictions: none

Related commands:

compute, "fix ave/time

Default:

The option defaults are ave = one.

204

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/time command

Syntax:

fix ID ave/time Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/time = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps•
one or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = global scalar or vector or array calculated by a compute with ID
 c_ID[I] = Ith component of global vector or Ith column of global array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = global scalar or vector or array calculated by a fix with ID
 f_ID[I] = Ith component of global vector or Ith column of global array calculated by a fix with ID, I can include wildcard (see below)
 v_name = global value calculated by an equal-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or off or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are global scalars
 vector = all input values are global vectors or global arrays

ave args = one or running or window M
 one = output a new average value every Nfreq steps
 running = output cummulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

off arg = M = do not average this value
 M = value # from 1 to Nvalues

file arg = filename
 filename = name of file to output time averages to

title1 arg = string
 string = text to print as 1st line of output file

title2 arg = string
 string = text to print as 2nd line of output file

title3 arg = string
 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 all ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 all ave/time 100 5 1000 c_myCount[2] c_myCount[3] ave window 20 &
 title1 "My output values"
fix 1 all ave/time 100 5 1000 c_myCount[*] ave window 20
fix 1 all ave/time 1 100 1000 f_indent f_indent[1] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as stats_style custom, and can also be written to a
file. Note that if no time averaging is done, this command can be used as a convenient way to simply output one

205

http://sparta.sandia.gov

or more global values to a file.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each case,
the compute, fix, or variable must produce a global quantity, not a per-grid or per-surf quantity. If you wish to
time-average those quantities, see the fix ave/grid and fix ave/surf commands.

Computes that produce global quantities are those which do not have the word particle or grid or surf in their
style name. Only a few fixes produce global quantities. See the doc pages for individual fixes for info on which
ones produce such values. Variables of style equal are the only ones that can be used with this fix. Variables of
style particle cannot be used, since they produce per-particle values.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword. In both cases, the averaging is performed independently on each input value. I.e. each input scalar is
averaged independently and each element of each input vector (or array) is averaged independently.

If mode = scalar, then the input values must be scalars, or vectors with a bracketed term appended, indicating the
Ith value of the vector is used.

If mode = vector, then the input values must be vectors, or arrays with a bracketed term appended, indicating the
Ith column of the array is used. All vectors must be the same length, which is the length of the vector or number
of rows in the array.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual elements of the vector or columns of the array had been listed
one by one. E.g. these 2 fix ave/time commands are equivalent, since the compute count command creates, in this
case, a global vector with 3 values.

compute 1 count Ar He O
fix 1 ave/time 100 1 100 c_1 file tmp.count
fix 1 ave/time 100 1 100 c_1[1] c_1[2] c_1[3] file tmp.count

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a mlutiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated on timesteps
100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. If a bracketed
term is appended, the Ith column of the global array calculated by the compute is used. See the discussion above

206

for how I can be specified with a wildcard asterisk to effectively specify multiple values.

Note that there is a compute reduce command which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/time. Also Note that users can also write code for
their own compute styles and add them to SPARTA; their output can then be processed by this fix.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global vector calculated by the fix is used. If a bracketed term is appended, the Ith column
of the global array calculated by the fix is used. See the discussion above for how I can be specified with a
wildcard asterisk to effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Variables can only be used as input for mode = scalar. Only equal-style variables can be referenced. See the
variable command for details. Note that variables of style equal define a formula which can reference stats_style
keywords, or they can invoke other computes, fixes, or variables when they are evaluated, so this is a very general
means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global vectors, or columns of global arrays. They
can also be global arrays, which are converted into a series of global vectors (one per column), as explained
above.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced on
previous steps that were multiples of Nfreq, before they are accessed by another output command or written to a
file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other; they are output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged in a cummulative sense before being output. Each output value is thus the average of the value produced
on that timestep with all preceding values. This running average begins when the fix is defined; it can only be
restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g. if M =
3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values can
be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the inputs
produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they are being

207

written to a file with other time-averaged values for purposes of creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one column of
numbers for each input value. For mode = vector, an array of numbers is written each time output is performed.
The number of rows is the length of the input vectors, and the number of columns is the number of values. Thus
the file ends up to be a series of these array sections.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. SPARTA uses default values for each of these, so
they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep value1 value2 ...

In the first line, ID is replaced with the fix-ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the title3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row value1 value2 ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the first
of each section of output. In the third line the values are replaced with the appropriate fields from the fix ave/time
command.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a global scalar or global vector or global array which can be accessed by various output
commands. The values can only be accessed on timesteps that are multiples of Nfreq since that is when averaging
is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if multiple
input values are averaged for mode = scalar, or a single input value for mode = vector. In the first case, the length
of the vector is the number of inputs. In the second case, the length of the vector is the same as the length of the
input vector. An array is produced if multiple input values are averaged and mode = vector. The global array has #
of rows = length of the input vectors and # of columns = number of inputs.

Restrictions: none

Related commands:

>compute, fix ave/grid, fix ave/surf, variable

Default: none

208

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described above,
and no off settings for any input values.

209

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix balance command

Syntax:

fix ID balance Nfreq thresh bstyle args

ID is documented in fix command•
balance = style name of this fix command•
Nfreq = perform dynamic load balancing every this many steps•
thresh = rebalance if imbalance factor is above this threshhold•
bstyle = random or proc or rcb

random args = none
proc args = none
rcb args = weight

 weight = cell or part

•

Examples:

fix 1 balance 1000 1.1 rcb cell
fix 2 balance 10000 1.0 random

Description:

This command dynamically adjusts the assignment of grid cells and their particles to processors as a simulation
runs, to attempt to balance the computational cost (load) evenly across processors. The load balancing is
"dynamic" in the sense that rebalancing is performed periodically during the simulation. To perform "static"
balancing, before or between runs, see the balance_grid command.

This command is useful to use during simulations where the spatial distribution of particles varies with time,
leading to load imbalance.

After grid cells have been assigned, they are migrated to new owning processors, along with any particles they
own or other per-cell attributes stored by fixes. The internal data structures within SPARTA for grid cells and
particles are re-initialized with the new decomposition.

The details of how child cells are assigned to processors by the various options of this command are described
below. The cells assigned to each processor will either be "clumped" or "dispersed".

The rcb keyword will produce clumped assignments of child cells to each processor. This means each processor's
cells will be geometrically compact. The random and proc keywords will produce dispersed assignments of child
cells to each processor.

IMPORTANT NOTE: See Section 5.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

Rebalancing is attempted by this command once every Nfreq timesteps, but only if the current imbalance factor
exceeds the specified thresh. This factor is defined as the maximum number of particles owned by any processor,
divided by the average number of particles per processor. Thus an imbalance factor of 1.0 is perfect balance. For
10000 particles running on 10 processors, if the most heavily loaded processor has 1200 particles, then the factor
is 1.2, meaning there is a 20% imbalance. The thresh setting must be >= 1.0.

210

http://sparta.sandia.gov

IMPORTANT NOTE: This command attempts to minimize the imbalance factor, as defined above. But
computational cost is not strictly proportional to particle count, depending on the collision and chemistry models
being used. Also, changing the assignment of grid cells and particles to processors may lead to additional
communication overheads, e.g. when migrating particles between processors. Thus you should benchmark the run
times of your simulation to judge how often balancing should be performed, and how aggressively to set the
thresh value.

The random keyword means that each grid cell will be assigned randomly to one of the processors. In this case
every processor will typically not be assigned exactly the same number of grid cells.

The proc keyword means that each processor will choose a random processor to assign its first grid cell to. It will
then loop over its grid cells and assign each to consecutive processors, wrapping around the collection of
processors if necessary. In this case every processor will typically not be assigned exactly the same number of
grid cells.

The rcb keyword uses a recurvise coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of
grid cells to processors. Each grid cell has a "weight" in this algorithm so that each processor is assigned an equal
total weight of grid cells, as nearly as possible. If the weight argument is specified as cell, then the weight for each
grid cell is 1.0, so that each processor will end up with an equal number of grid cells. If the weight argument is
specified as part, than the weight for each grid cell is the number of particles it currently owns, so that each
processor will end up with an equal number of particles.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal
number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors
than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an
example of a clumped distribution where each processor's assigned cells can be compactly bounded by a
rectangle. Click for a larger version of the image.

Restart, output info:

211

No information about this fix is written to binary restart files.

This fix computes a global scalar which is the imbalance factor after the most recent rebalance and a global vector
of length 2 with additional information about the most recent rebalancing. The 2 values in the vector are as
follows:

1 = max # of particles per processor•
2 = imbalance factor before the last rebalance was performed•

As explained above, the imbalance factor is the ratio of the maximum number of particles on any processor to the
average number of particles per processor.

Restrictions: none

Related commands:

create_grid, balance_grid

Default: none

212

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/face command

Syntax:

fix ID emit/face mix-ID face1 face2 ... keyword value(s) ...

ID is documented in fix command•
emit/face = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
face1,face2,... = one or more of all or xlo or xhi or ylo or yhi or zlo or zhi•
zero or more keyword/value(s) pairs may be appended•
keyword = n or nevery or perspecies or region or subsonic

n value = Np = number of particles to create
nevery value = Nstep = add particles every this many timesteps
perspecies value = yes or no
region value = region-ID
subsonic values = Psub Tsub

 Psub = pressure setting at inflow boundary (pressure units)
 Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

•

Examples:

fix in emit/face air all
fix in emit/face mymix xlo yhi n 1000 nevery 10 region circle
fix in emit/face air xlo subsonic 0.1 300
fix in emit/face air xhi subsonic 0.05 NULL

Description:

Emit particles from one or more faces of the simulation box, continuously during a simulation. If invoked every
timestep, this fix creates a continuous influx of particles thru the face(s).

The properties of the added particles are determined by the mixture with ID mix-ID. This sets the number and
species of added particles, as well as their streaming velocity, thermal temperature, and internal energy modes.
The details are explained below.

One or more faces of the simulation box can be specified via the face1, face2, etc arguments. The 6 possible faces
can be specified as xlo, xhi, ylo, yhi, zlo, or zhi. Specifying all is the same as specifying all 6 individual faces.

On each insertion timestep, each grid cell with one or more of its faces touching a specified boundary face
performs the following computations to add particles. The particles are added at the beginning of the SPARTA
timestep.

The molecular flux across a grid cell face per unit time is given by equation 4.22 of (Bird94). The number of
particles M to insert on a particular grid cell face is based on this flux and additional global, flow, and cell face
properties:

global property: fnum ratio as specified by the global command•
flow properties: number density, streaming velocity, and thermal temperature•
cell face properties: area of face and its orientation relative to the streaming velocity•

213

http://sparta.sandia.gov

The flow properties are defined for the specified mixture via the mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location on the grid cell face. The particle species is chosen randomly
in accord with the frac settings of the collection of species in the mixture, as set by the mixture command.

IMPORTANT NOTE: The preceeding calculation is actually done using face areas associated with weighted cell
volumes. Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings of the
mixture and the rotate and vibrate options of the collide_modify command. Note that if the collide command has
not been specified (free molecular flow), then no rotational or vibrational energy will be assigned to created
particles.

If the final particle velocity is not directed "into" the grid cell, then the velocity sampling procedure is repeated
until it is. This insures that all added particles enter the simulation domain, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles entering the simulation box.

The n keyword can alter how many particles are added, which can be useful for debugging purposes. If Np is set
to 0, then the number of added particles is a function of fnum, nrho, and other mixture settings, as described
above. If Np is set to a value > 0, then the fnum and nrho settings are ignored, and exactly Np particles are added
on each insertion timestep. This is done by dividing Np by the total number of grid cells that are adjacent to the
specified box faces and adding an equal number of particles per grid cell.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M in a grid cell is calculated for each species, which is a
function of the relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional
value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th depending on the value of a
random number.

If perspecies is set to no, then a single target insertion number M in a grid cell is calculated for all the species.
Each time a particle is added, a random number is used to choose the species of the particle, based on the relative
number fractions of all the species in the mixture. As before, if M has a fractional value, e.g. 12.5, then 12
particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell adds 10 particles from that mixture. If
perspecies is set to yes, then exactly 5 particles of each species will be added on every timestep insertions take
place. If perspecies is set to no, then exactly 10 particles will be added every time and on average there will be 5
particles of each of the two species. But on one timestep it might be 6 of the first and 4 of the second. On another
timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the boundary face. Note that the side option for the

214

region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added on an
insertion timestep. This is because grid cells will be candidates for particle insertion, unless they are entirely
outside the bounding box that encloses the region. Particles those grid cells attempt to add are included in the
count for N, even if some or all of the particle insertions are rejected due to not being inside the region.

The subsonic keyword uses the method of Fang and Liou (Fang02) to determine the number of particles to insert
in each grid cell on the emitting face(s). They used the method of characteristics to calculate the mean properties
of the incoming molecular flux, so that the prescribed pressure condition is achieved. These properties are then
applied to calculate the molecular flux across a grid cell face per unit time, as given by equation 4.22 of (Bird94).

This keyword allows specification of both the pressure and temperature at the boundary or just the pressure (by
specifying the temperature as NULL). If specified, the temperature must be > 0.0. Currently, instantaneous values
for the density, temperature, and stream velocity of particles in the cells adjacent to the boundary face(s) are
computed and used to determine the properties of inserted particles on each timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using this keyword, you should also use an appropriate boundary collision or
chemistry model via the boundary or bound_modify or surf_collide or surf_react commands, so that particles
hitting the surface disappear as if they were exiting the simulation domain. That is necessary to produce the
correct subsonic conditions that the particle insertions due to this command are trying to achieve.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element
is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Restrictions:

Particles cannot be emitted from periodic faces of the simulation box. Particles cannot be emitted from z faces of
the simluation box for a 2d simulation.

A n setting of Np > 0 can only be used with a perspecies setting of no.

A warning will be issued if a specified face has an inward normal in a direction opposing the streaming velocity.
Particles will still be emitted from that face, so long as a small fraction have a thermal velocity large enough to
overcome the outward streaming velocity, so that their net velocity is inward. The threshold for this is that a
thermal velocity 3 sigmas from the mean thermal velocity is large enough to overcome the outward streaming
velocity and produce a net velocity into the simulation box.

Related commands:

215

mixture, create_particles, fix emit/face/file

Default:

The keyword defaults are n = 0, nevery = 1, perspecies = yes, region = none, no subsonic settings.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Fang02) Y. Fang and W. W. Liou, Microfluid Flow Computations Using a Parallel DSMC Code, AIAA
2002-1057. (2002).

216

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/face/file command

Syntax:

fix ID emit/face/file mix-ID face filename boundary-ID keyword value ...

ID is documented in fix command•
emit/face/file = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
face = xlo or xhi or ylo or yhi or zlo or zhi•
filename = input data file with boundary values for the emission•
boundary-ID = section of data file to read•
zero or more keyword/value pairs may be appended•
keyword = frac or nevery or perspecies or region

frac value = fraction = 0.0 to 1.0 fraction of particles to insert
nevery value = Nstep = insert every this many timesteps
perspecies value = yes or no
region value = region-ID

•

Examples:

fix in emit/face/file air xlo input.data xlo
fix in emit/face/file mymix ylo file.txt oneface frac 0.1 nevery 10

Description:

Emit particles from a face of the simulation box, continuously during a simulation. The particles are added using
properties of the specified mixture and values read from an input file that can override those properties. The input
file can thus be used to create an influx of particles that varies spatially over the surface of the face. This can be
useful, for example, to model an object inserted into a plume flow where the flow has spatially varying properties.
If invoked every timestep, this fix creates a continuous influx of particles thru the face.

The properties of the added particles are determined by the mixture with ID mix-ID and the input file. Together
they set the number and species of added particles, as well as their streaming velocity, thermal temperature, and
internal energy modes. Settings for a subsonic pressure boundary condition is also allowed. The details are
explained below.

Only one face of the simulation box can be specified via the face argument. The 6 possible faces are xlo, xhi, ylo,
yhi, zlo, or zhi. This command can be used multiple times to add particles on multiple faces.

On each insertion timestep, each grid cell with a face touching the specified boundary face performs the following
computations to add particles. The particles are added at the beginning of the SPARTA timestep.

The molecular flux across a grid cell face per unit time is given by equation 4.22 of (Bird94). The number of
particles M to add on a particular grid cell face is based on this flux and additional global, flow, and cell face
properties:

global property: fnum ratio as specified by the global command•
flow properties: number density, streaming velocity, and thermal temperature•
cell face properties: area of face and its orientation relative to the streaming velocity•

217

http://sparta.sandia.gov

The flow properties are defined for the specified mixture via the mixture command. Any or all them can be
overridden by values in the input data file, which affect individual grid cells as described below.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location on the grid cell face. The particle species is chosen randomly
in accord with the frac settings of the collection of species in the mixture, as set by the mixture command. These
can also be overridden by spatially varying number fraction values in the input data file, as described below.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings and the
rotate and vibrate options of the collide_modify command. Note that if the collide command has not been
specified (free molecular flow), then no rotational or vibrational energy will be assigned to created particles.

If the final particle velocity is not directed "into" the grid cell, then the velocity sampling procedure is repeated
until it is. This insures that all added particles enter the simulation domain, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles entering the simulation box.

For 3d simulations, the input data file defines a 2d mesh of data points which conceptually overlays some portion
or all of the specified face of the simulation box. For a 2d simulation, a 1d mesh is defined. The mesh is
topologically regular, but can have uniform or non-uniform spacing in each of its two or one dimensions (for 3d
or 2d problems). One or more values can be defined at every mesh point, which override any of the mixture
settings defined by the mixture command. These are the flow properties discussed above (number density,
streaming velocity, and thermal temperature), as well as the number fraction of any species in the mixture. Any
value not defined in the input data file defaults to the mixture value.

For 3d simulations, a 2d mesh is defined in the file using I,J indices. (The 1d mesh for 2d simulations is described
below). I and J map to any of the simulation box faces in this manner. A simulation box face has two varying
dimensions (e.g. ylo face = x and z dimensions). The I index in the file corresponds to the "lowest" of these
dimensions, where x < y < z. The J index in the file corresponds to the higher. Thus for face ylo, I = x and J = z. A
low I or J value corresponds to a low x or z value, regardless of whether the mapping is to the ylo or yhi face. A
1d mesh for a 2d simulation is defined in an analogous manner, e.g. for face xlo, I = y.

For a 3d simulation, interpolation from values on the 2d mesh to any grid cell face that is on the corresponding
simulation box face is done in the following manner. There are 3 cases to consider.

(a) For a grid cell face that is entirely inside the area defined by the file mesh, the centroid (center point) of the
grid cell face is surrounded geometrically by 4 file mesh points. The 4 values defined on those 4 file points are
averaged in a weighted manner using bilinear interpolation (described below) to determine the value for the grid
cell face. This value is then used for the calculation described above for M = the number of particles to add on the
cell face as well as the properties of the added particles.

(b) For a grid cell face that is entirely outside the area defined by the file mesh, no particles are added in that grid
cell.

(c) For a grid cell face that partially overlaps the area defined by the file mesh, the extent of the overlap is
computed. The centroid (center point) of the overlap area is surrounded geometrically by 4 file mesh points. The
values for those 4 points are used as in (a) above to determine properties of particles added in that grid cell. Note
that the area of insertion, used to calculate M, is the overlap area, which is smaller than the grid cell face area.
Also, particles are only added within the overlap area of the grid cell face.

218

For a 2d simulation, the 3 cases are similar, except for (a) and (c) the centroid is the midpoint of a line segment,
the centroid is surrounded by 2 file mesh points, and linear interpolation (described below) is performed to
determine the value for the grid face.

The format of the input data file is a series of one or more sections, defined as follows (without the parenthesized
comments). Note that one file can contain many sections, each with a different set of tabulated values. The
sections can be a mix of 2d and 3d formats. SPARTA reads the file section by section, skipping sections with
non-matching boundary IDs, until it finds one that matches the specified boundary-ID. The lines that follow must
be in this order:

plume ABC info (one or more comment or blank lines)

PLUME_ABC (boundary-ID is first word on line)
NIJ 4 10 (mesh size: Ni by Nj)
NV 3 (Nv = number of values per mesh point)
VALUES nrho temp Ar (list of Nv values per mesh point)
IMESH 0.0 0.3 0.9 1.0 (mesh coordinates in I direction)
JMESH ... (mesh coordinates in J direction)
 (blank)
1 1 1.0 300.0 0.5 (I, J, value1, value2, ...)
1 2 1.02 310.0 0.5
...
4 10 3.0 400.0 0.7

This format is for a 3d simulation. For a 2d simulation, there are 3 changes:

"NIJ 4 10" is replaced by "NI 6"
JMESH line is not included
"I,J,value1,..." is replaced by "I,value1,..."

A section begins with a non-blank line whose first character is not a "#". Blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a boundary-ID which identifies the section. The
line can contain additional text, but the initial text must match the boundary-ID specified in the fix emit/face/file
command. Otherwise the section is skipped.

The VALUES line lists Nv keywords. The list of possible keywords is as follows, along with the meaning of the
numeric value specified for the mesh point:

nrho = number density•
vstream = 3 components of streaming velocity•
temp = thermal temperature•
trot = rotational temperature•
tvib = vibrational temperature•
press = pressure for subsonic boundary condition•
species = number fraction of any species in the mixture•

The IMESH and JMESH lines must list values that are monotonically increasing.

Following a blank line, the next N = Ni x Nj lines (or N = Ni lines for a 2d simulation) list the tabulated values.
The format of each line is I,J followed by Nv values. The N lines can be in any order, but all unique I,J (or I for
2d) indices must be listed.

Note that if number fractions are specified for one or more species in the mixture, then they override number
fraction values for the mixture itself, as set by the mixture command. However, for each grid cell, the rule that the
number fraction of all species in the mixture must sum to 1.0 is enforced, just as it is for the mixture. This means

219

that number fractions of species not specified in the file or in the mixture may be reset (for that grid cell) to insure
the sum = 1.0, as explained on the mixture command doc page. If this cannot be done, an error will be generated.

If the press keyword is used, this means a subsonic pressure boundary condition is used for the face, similar to
how the subsonic keyword is used for the fix emit/face command. If just the press keyword is specified, but not
the temp keyword, then it is similar to the "subsonic press NULL" setting for the fix emit/face command. If both
keywords are used it is similar to the "subsonic press temp" setting for the fix emit/face command. The difference
with this command is that both the press and temp values can be vary spatially across the box face, like the other
keyword values.

The subsonic pressure boundary condition is uses the method of Fang and Liou (Fang02) to determine the number
of particles to insert in each grid cell on the emitting face(s). They used the method of characteristics to calculate
the mean properties of the incoming molecular flux, so that the prescribed pressure condition is achieved. These
properties are then applied to calculate the molecular flux across a grid cell face per unit time, as given by
equation 4.22 of (Bird94).

As explained above the input data file can specify both the pressure and temperature at the boundary or just the
pressure. If specified, the temperature must be > 0.0. Currently, instantaneous values for the density, temperature,
and stream velocity of particles in the cells adjacent to the boundary face(s) are computed and used to determine
the properties of inserted particles on each timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using a subsonic prsesure boundary condition, you should also use an appropriate
boundary collision or chemistry model via the boundary or bound_modify or surf_collide or surf_react
commands, so that particles hitting the surface disappear as if they were exiting the simulation domain. That is
necessary to produce the correct subsonic conditions that the particle insertions due to this command are trying to
achieve.

For 3d simulations, bilinear interpolation from the 2d mesh of values specified in the file is performed using this
equation to calculate the value at the centroid point (i,j) in the grid cell face:

f(i,j) = 1/area * (f(i1,j1)*(i2-i)*(j2-j) + f(i2,j1)*(i-i1)*(j2-j) +
 f(i2,j2)*(i-i1)*(j-j1) + f(i1,j2)*(i2-i)*(j-j1))

where the 4 surrounding file mesh points are (i1,j1), (i2,j1), (i2,j2), and (i1,j2). The 4 f() values on the right-hand
side are the values defined at the file mesh points. The sum is normalized by the area of the overlap between the
grid cell face and file mesh.

For 2d simulations, linear interpolation from the 1d mesh of values specified in the file is performed using this
equation to calculate the value at the centroid poitn (i) in the grid cell line:

f(i) = 1/length * (f(i1)*(i2-i) + f(i2)*(i-i1)
 = f(i1) + (i - i1)/(i2 - i1) * (f(i2) - f(i1))

where the 2 surrounding file mesh points are (i1) and (i2). The 2 f() values on the right-hand side are the values
defined at the file mesh points. The sum is normalized by the length of the overlap between the grid cell line and
file mesh.

220

The frac keyword can alter how many particles are added, which can be useful for debugging purposes. If frac is
set to 1.0 (the default) then the number of particles added is the sum of the M values computed for each grid cell
that overlaps with the mesh defined in the file, as described above. If frac < 1.0 then M is scaled by frac to
determine the number of particles added in each grid cell. Thus a simulation with less particles can easily be run
to test if it is setup correctly.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M in a grid cell is calculated for each species, which is a
function of the relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional
value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th depending on the value of a
random number.

If perspecies is set to no, then a single target insertion number M in a grid cell is calculated for all the species.
Each time a particle is added, a random number is used to choose the species of the particle, based on the relative
number fractions of all the species in the mixture. As before, if M has a fractional value, e.g. 12.5, then 12
particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell adds 10 particles from that mixture. If
perspecies is set to yes, then exactly 5 particles of each species will be added on every timestep insertions take
place. If perspecies is set to no, then exactly 10 particles will be added every time and on average there will be 5
particles of each of the two species. But on one timestep it might be 6 of the first and 4 of the second. On another
timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the boundary face. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element
is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Restrictions:

Particles cannot be added on periodic faces of the simulation box. Particles cannot be added on z faces of the
simluation box for a 2d simulation.

Unlike the fix emit/face command, no warning is issued if the specified emission face has an inward normal in a
direction opposing the streaming velocity, as defined by the mixture. This is because the streaming velocity as
defined by the specified mixture may be overridden by values in the file.

221

For that grid cell, particles will still be emitted from that face, so long as a small fraction have a thermal velocity
large enough to overcome the outward streaming velocity, so that their net velocity is inward. The threshold for
this is the thermal velocity for particles 3*sigma from the mean thermal velocity.

Related commands:

mixture, create_particles, fix emit/face

Default:

The keyword defaults are frac = 1.0, nevery = 1, perspecies = yes, region = none.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

222

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/surf command

Syntax:

fix ID emit/surf mix-ID group-ID keyword value ...

ID is documented in fix command•
emit/surf = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
group-ID = ID of surface group that emits particles•
zero or more keyword/value pairs may be appended•
keyword = n or normal or nevery or perspecies or region or subsonic

n value = Np = number of particles to create
normal value = yes or no = emit normal to surface elements or with streaming velocity
nevery value = Nstep = add particles every this many timesteps
perspecies value = yes or no
region value = region-ID
subsonic values = Psub Tsub

 Psub = pressure setting at inflow boundary (pressure units)
 Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

•

Examples:

fix in emit/surf air all
fix in emit/face mymix myPatch region circle normal yes
fix in emit/surf air all subsonic 0.1 300
fix in emit/surf air all subsonic 0.05 NULL

Description:

Emit particles from a group of surface elements, continuously during a simulation. If invoked every timestep, this
fix creates a continuous outflux of particles from the surface elements in the group.

The properties of the added particles are determined by the mixture with ID mix-ID. This sets the number and
species of added particles, as well as their streaming velocity, thermal temperature, and internal energy modes.
The details are explained below.

Which surface elements emit particles is specified by the group-ID for a surface group, which defines a set of
surface elements. The group surf is used to define surface groups.

On each insertion timestep, each grid cell that overlaps with one or more emitting surface elements performs the
following computations to add particles for each grid cell/surface element pairing. The particles are added at the
beginning of the SPARTA timestep.

The molecular flux emitted from a surface element per unit time is given by equation 4.22 of (Bird94). The
number of particles M to insert on the portion of a surface element that is contained within a grid cell is based on
this flux and additional global, flow, and surface element properties:

global property: fnum ratio as specified by the global command•
flow properties: number density, streaming velocity, and thermal temperature•

223

http://sparta.sandia.gov

surface element properties: portion of surface element area that overlaps with the grid cell and its
orientation relative to the streaming velocity

•

The flow properties are defined for the specified mixture via the mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location within the portion of the surface element that overlaps with
the grid cell. The particle species is chosen randomly in accord with the frac settings of the collection of species
in the mixture, as set by the mixture command.

IMPORTANT NOTE: The preceeding calculation is actually done using surface element areas associated with
weighted cell volumes. Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings of the
mixture and the rotate and vibrate options of the collide_modify command. Note that if the collide command has
not been specified (free molecular flow), then no rotational or vibrational energy will be assigned to created
particles. See the discussion of the normal keyword below for a way to change the velocity assignment to be
oriented in the direction normal to the surface element, rather than in the direction of the streaming velocity.

If the final particle velocity is not directed "out of" the surface element, then the velocity sampling procedure is
repeated until it is. This insures that all added particles emit from the surface element, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles emitting from each surface element.

The n keyword can alter how many particles are added, which can be useful for debugging purposes. If Np is set
to 0, then the number of added particles is a function of fnum, nrho, and other mixture settings, as described
above. If Np is set to a value > 0, then the fnum and nrho settings are ignored, and exactly Np particles are added
on each insertion timestep. This is done by dividing Np by the total number of grid cell/surface element pairs and
adding an equal number of particles per pair.

The normal keyword can be used to alter how velocities are set for added particles. If normal is set to no, then a
particle's velocity is set as described above, using the mixture's streaming velocity superposed with a thermal
velocity sampled from the temperature of the mixture. Note that the same streaming velocity is used for all
emitting surface elements, regardless of their orientation with respect to the streaming velocity. If normal is set to
yes, then each surface element is assigned its own "streaming" velocity in the following manner. The streaming
velocity points in the direction of the outward normal of the surface element, and its magnitude is set to the
magnitude of the mixture's streaming velocity. A velocity is then assigned to the particle in the same manner as
before. It is assigned the outward streaming velocity superposed with a thermal velocity sampled fromt he
temperature of the mixture. The effect is that particles effectively stream outward from each emitting surface
element.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M for a grid cell/surface element pair is calculated for
each species, which is a function of the relative number fraction of the species, as set by the mixture nfrac
command. If M has a fractional value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th

224

depending on the value of a random number.

If perspecies is set to no, then a single target insertion number M for a grid cell/surface element pair is calculated
for all the species. Each time a particle is added, a random number is used to choose the species of the particle,
based on the relative number fractions of all the species in the mixture. As before, if M has a fractional value, e.g.
12.5, then 12 particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell/surface element pair adds 10 particles
from that mixture. If perspecies is set to yes, then exactly 5 particles of each species will be added on every
timestep insertions take place. If perspecies is set to no, then exactly 10 particles will be added every time and on
average there will be 5 particles of each of the two species. But on one timestep it might be 6 of the first and 4 of
the second. On another timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the collective area of the specified group of surface
elements. Note that the side option for the region command can be used to define whether the inside or outside of
the geometric region is considered to be "in" the region.

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added on an
insertion timestep. This is because grid cell/suface element pairs will be candidates for particle insertion, unless
the grid cell is entirely outside the bounding box that encloses the region. Particles those grid cell/surface element
pairs will attempt to add are included in the count for N, even if some or all of the particle insertions are rejected
due to not being inside the region.

The subsonic keyword uses the method of Fang and Liou (Fang02) to determine the number of particles to insert
in each grid cell on the emitting face(s). They used the method of characteristics to calculate the mean properties
of the incoming molecular flux, so that the prescribed pressure condition is achieved. These properties are then
applied to calculate the molecular flux across a grid cell face per unit time, as given by equation 4.22 of (Bird94).

This keyword allows specification of both the pressure and temperature at the surface or just the pressure (by
specifying the temperature as NULL). If specified, the temperature must be > 0.0. Currently, instantaneous values
for the density, temperature, and stream velocity of particles in the cells containing the surface elements are
computed and used to determine the properties of inserted particles on each timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using this keyword, you should also use an appropriate surface collision or
chemistry model via the surf_collide or surf_react commands, so that particles hitting the surface disappear as if
they were exiting the simulation domain. That is necessary to produce the correct subsonic conditions that the
particle insertions due to this command are trying to achieve.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element

225

is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Restrictions:

A n setting of Np > 0 can only be used with a perspecies setting of no.

If normal is set to no, which is the default, then unlike the fix emit/face command, no warning is issued if a
surface element has an inward normal in a direction opposing the streaming velocity, as defined by the mixture.

For that surface element, particles will still be emitted, so long as a small fraction have a thermal velocity large
enough to overcome the outward streaming velocity, so that their net velocity is inward. The threshold for this is
the thermal velocity for particles 3*sigma from the mean thermal velocity.

Related commands:

mixture, create_particles, fix emit/face

Default:

The keyword defaults are n = 0, normal = no, nevery = 1, perspecies = yes, region = none, no subsonic settings.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Fang02) Y. Fang and W. W. Liou, Microfluid Flow Computations Using a Parallel DSMC Code, AIAA
2002-1057. (2002).

226

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix grid/check command

Syntax:

fix ID grid/check N outflag

ID is documented in fix command•
grid/check = style name of this fix command•
N = check every N timesteps•
outflag = error or warn or silent•

Examples:

fix 1 grid/check 100 error

Description:

Check if particles are inside the grid cell they are supposed to be, based on their current coordinates. This is useful
as a debugging check to insure that no particles have been assigned to the incorrect grid cell during the particle
move stage of the SPARTA timestepping algorithm.

The check is performed once every N timesteps. Particles not inside the correct grid cell are counted and the value
of the count can be monitored (see below). A value of 0 is "correct", meaning that no particle was found outside
its assigned grid cell.

If the outflag setting is error, SPARTA will print an error and stop if it finds a particle in an incorrect grid cell.
For warn, it will print a warning message and continue. For silent, it will print no message, but the count of such
occurrences can be monitored as described below, e.g. by outputting the value with the stats command.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the count of
how many particles were not in the correct grid cell. The count is cummulative over all the timesteps the check
was performed since the start of the run. It is initialized to zero each time a run is performed.

Restrictions: none

Related commands: none

Default: none

227

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix move/surf command

Syntax:

fix ID move/surf Nevery Nlarge args ...

ID is documented in fix command•
move/surf = style name of this fix command•
Nevery = move surfaces incrementally every this many steps•
Nlarge = move surfaces the entire distance after this many timesteps•
args = all remaining args are identical to those defined for the move_surf command•

Examples:

fix 1 move/surf 100 1000 all trans 1 0 0
fix 1 move/surf 100 10000 all rotate 360 0 0 1 5 5 0
fix 1 move/surf 100 50000 object2 rotate 360 0 0 1 5 5 0

Description:

This command performs on-the-fly movement of a selected set of surface elements via one of several styles.
Surface element moves can also be performed before or between simulations by using the move_surf command.

Moving surfaces during a simulation run can be useful if you want to to track transient changes in a flow while
some attribute of the surface elements change, e.g. the separation between two spheres.

All of the command arguments which appear after Nfreq, which determine which surface elements move and how
they move, are exactly the same as for the move_surf command. See its doc page for details.

Nevery specifies how often surface elements are moved incrementally along the path towards their final position.
The current timestep must be a multiple of Nevery.

Nlarge must be a multiple of Nevery and specifies how long it will take the surface elements to move to their final
position.

Thus if Nlarge = 100*Nevery, each surface elements will move 1/100 of its total distance every Nevery steps.

The same rules that the move_surf command follows for particle deletion after surface elements move, are
followed by this command as well. The criteria are applied after every incremental move. This is to prevent
particles from ending up inside surface objects.

Restart, output info:

No information about this fix is written to binary restart files. No global or per-particle or per-grid quantities are
stored by this fix for access by various output commands.

Restrictions:

An error will be generated if any surface element vertex is moved outside the simulation box.

Related commands:

228

http://sparta.sandia.gov

read_surf, move_surf, remove_surf

Default: none

229

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix print command

Syntax:

fix ID print N string keyword value ...

ID is documented in fix command•
print = style name of this fix command•
N = print every N steps•
string = text string to print with optional variable names•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen or title

file value = filename
append value = filename
screen value = yes or no
title value = string

 string = text to print as 1st line of output file

•

Examples:

fix extra print 100 "Coords of marker particle = $x $y $z"
fix extra print 100 "Coords of marker particle = $x $y $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be used for diagnostic purposes or as a
debugging tool to monitor some quantity during a run. The text string must be a single argument, so it should be
enclosed in quotes if it is more than one word. If it contains variables it must be enclosed in quotes to insure they
are not evaluated when the input script line is read, but will instead be evaluated each time the string is printed.

See the variable command for a description of equal style variables which are the most useful ones to use with the
fix print command, since they are evaluated afresh each timestep that the fix print line is output. Equal-style
variables calculate formulas involving mathematical operations, statistical properties, global values calculated by
a compute or fix, or references to other variables.

If the file or append keyword is used, a filename is specified to which the output generated by this fix will be
written. If file is used, then the filename is overwritten if it already exists. If append is used, then the filename is
appended to if it already exists, or created if it does not exist.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be printed as the first line of the output file, assuming
the file keyword was used. By default, the title line is as follows:

Fix print output for fix ID

where ID is replaced with the fix-ID.

Restart, output info:

230

http://sparta.sandia.gov

No information about this fix is written to binary restart files. No global or per-particle or per-grid quantities are
stored by this fix for access by various output commands.

Restrictions: none

Related commands:

variable, print

Default:

The option defaults are no file output, screen = yes, and title string as described above.

231

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

global command

Syntax:

global keyword values ...

one or more keyword/value pairs•
keyword = fnum or nrho or vstream or temp or gravity or surfmax or surfpush or gridcut or comm/sort or
comm/style or weight

fnum value = ratio
 ratio = Fnum ratio of physical particles to simulation particles

nrho value = density
 density = number density of background gas (# per length^3 units)

vstream values = Vx Vy Vz
 Vx,Vy,Vz = streaming velocity of background gas (velocity units)

temp values = thermal
 thermal = temperature of background gas (temperature units)

gravity values = mag ex ey ez
 mag = magnitude of acceleration due to gravity (acceleration units)
 ex,ey,ez = direction vector that gravity acts in

surfmax value = Nsurf
 Nsurf = max # of surface elements allowed in single grid cell

surfpush value(s) = no/yes or slo shi svalue
 no = do not push surface element points near cell surface
 yes = push surface element points near cell surface if necessary
 slo,shi = push points within this range
 svalue = push points to this value

gridcut value = cutoff
 cutoff = acquire ghost cells up to this far away (distance units)

comm/sort value = yes or no
 yes/no = sort incoming messages by proc ID if yes, else no sort

comm/style value = neigh or all
 neigh = setup particle comm with subset of near-neighbor processor
 all = allow particle comm with potentially any processor

weight value = wstyle mode
 wstyle = cell
 mode = none or volume or radius

•

Examples:

global fnum 1.0e20
global vstream 100.0 0 0 fnum 5.0e18
global temp 1000
global weight cell radius

Description:

Define global properties of the system.

The fnum keyword sets the ratio of real, physical molecules to simulation particles. E.g. a value of 1.0e20 means
that one particle in the simulation represents 1.0e20 molecules of the particle species.

The nrho keyword sets the number density of the background gas. For 3d simulations the units are #/volume. For
2d, the units are effectively #/area since the z dimension is treated as having a length of 1.0.

232

http://sparta.sandia.gov

Assuming your simulation is populated by particles from the background gas, the fnum and nrho settings can
determine how many particles will be present in your simulation, when using the create_particles or fix emit
command variants.

The vstream keyword sets the streaming velocity of the background gas.

The temp keyword sets the thermal temperature of the background gas. This is a Gaussian velocity distribution
superposed on top of the streaming velocity.

The gravity keyword sets an acceleration term which is included in the motion of particles. The magnitude of
gravity is set by the mag keyword. Its direction of action is set as (ex,ex,ez). The direction does not have to be a
unit vector. If the magnitude is set to 0.0, no acceleration term is included, which is the default.

The surfmax keyword determines the maximum number of surface elements (lines in 2d, triangles in 3d) that can
overlap a single grid cell. The default is 100, which should be large enough for any simulation, unless you define
very coarse grid cells (relative to the size of surface elements).

The surfpush keyword is only useful to use when SPARTA is having problems embedding a surface in the
simulation grid, which occurs when when surface elements are defined via the read_surf command. Or for
debugging purposes.

In rare cases, if a surface element point is just slightly inside or outside a grid cell, but within an epsilon distance
from the surface of the grid cell, a numerical round-off error can occur when computing the cut volume. The error
can be avoided if such points are shifted (pushed) to a slightly different location, which only induces a tiny
change in the computed cut volume. By default the surfpush keyword is set to yes, which will perform this "push"
operation on a grid cell if the numerical issue is flagged. SPARTA prints out how many grid cells needed this
push operation.

If you set surfpush to no, then the push operation is not performed, which will result in an error if the numerical
issue occurs.

If the default surfpush yes still gives an error, then setting the slo, shi, and svalue allows experimentation with a
different mode of pushing.

These 3 values are all multipliers on an epsilon of 1.0e-6 which is set internally in the code. Epsilon refers to a
fraction of the size of a grid cell in each of its dimensions. Negative values for any of the 3 values distances inside
a grid cell (inward from the cell face). Positive values are distances outside a grid cell (outward from the cell
face). Zero values are exactly on the cell face. If any surface point (end points of 2d lines, corner points of 3d
triangles) is between a slo to shi distance from any of the cell faces, then it is pushed to be a distance svalue from
the face.

When surfpush is set to yes, SPARTA tries 2 kinds of pushing first, if the numerical issue is encountered for a
grid cell. The first is slo = -1, shi = 1, svalue = 1, which means any point within a fractional distance (in each
dimension) of 1.0e-6 inside the cell to 1.0e-6 outside the cell, is shifted to be a distance 1.0e-6 outside the cell.
The second try is with slo = -1, shi = 1, svalue = 0, which puts the point on the face. If you set slo, shi, svalue
explicitly, it will be the third option tried.

If you cannot get a surface to embed properly in a grid, meaning you get errors with the default setting of surfpush
yes, then please contact the SPARTA developers. We will want to figure out what is unusual about your surface
file!

233

The gridcut keyword determines the cutoff distance at which ghost grid cells will be stored by each processor.
Assuming the processor owns a compact clump of grid cells (see below), it will also store ghost cell information
from nearby grid cells, up to this distance away. If the setting is -1.0 (the default) then each processor owns a
copy of ghost cells for all grid cells in the simulation. This can require too much memory for large models. If the
cutoff is 0.0, processors own a minimal number of ghost cells. This saves memory but may require multiple
passes of communication each timestep to move all the particles and migrate them to new owning processors.
Typically a cutoff the size of 2-3 grid cell diameters is a good compromise that requires only modest memory to
store ghost cells and allows all particle moves to complete in only one pass of communication.

An example of the gridcut cutoff applied to a clumped assignment is shown in this zoom-in of a 2d hierarchical
grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid
cells colored orange. A bounding rectangle around the orange cells, extended by a short cutoff distance, is drawn
as a purple rectangle. The rectangle contains only a few ghost grid cells owned by other processors.

IMPORTANT NOTE: Using the gridcut keyword with a cutoff >= 0.0 is only allowed if the grid cells owned by
each processor are "clumped". If each processor's grid cells are "dispersed", then ghost cells cannot be created
with a gridcut cutoff >= 0.0. Whenever ghost cells are generated, a warning to this effect will be triggered. At a
later point when surfaces are read in or a simulation is performed, an error will result. The solution is to use the
balance_grid command to change to a clumped grid cell assignment. See Section 5.8 of the manual for an
explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.

IMPORTANT NOTE: If grid cells have already been defined via the create_grid, read_grid, or read_restart
commands, when the gridcut cutoff is specified, then any ghost cell information that is currently stored will be
erased. As discussed in the preceeding paragraph, a balance_grid command must then be invoked to regenerate
ghost cell information. If this is not done before surfaces are read in or a simulation is performed, an error will
result.

The comm/sort keyword determines whether the messages a proc receives for migrating particles (every step) and
ghost grid cells (at setup and after re-balance) are sorted by processor ID. Doing this requires a bit of overhead,
but can make it easier to debug in parallel, because simulations should be reproducible when run on the same
number of processors. Without sorting, messages may arrive in a randomized order, which means lists of particles
and grid cells end up in a different order leading to statistical differences between runs.

The comm/style keyword determines the style of particle communication that is performed to migrate particles
every step. The most efficient method is typically for each processor to exchange messages with only the
processors it has ghost cells for, which is the method used by the neigh setting. The all setting performs a
relatively cheap, but global communication operation to determine the exact set of neighbors that need to be
communicated with at each step. For small processor counts there is typically little difference. On large processor
counts the neigh setting can be significantly faster. However, if the flow is streaming in one dominant direction,
there may be no particle migration needed to upwind processors, so the all method can generate smaller counts of
neighboring processors.

234

Note that the neigh style only has an effect (at run time) when the grid is decomposed by the RCB option of the
balance or fix balance commands. If that is not the case, SPARTA performs the particle communication as if the
all setting were in place.

The weight keyword determines whether particle weighting is used. Currently the only style allowed, as specified
by wstyle = cell, is per-cell weighting. This is a mechanism for inducing every grid cell to contain roughly the
same number of particles (even if cells are of varying size), so as to minimize the total number of particles used in
a simulation while preserving accurate time and spatial averages of flow quantities. The cell weights also affect
how many particles per cell are created by the create_particles and fix emit command variants.

If the mode is set to none, per-cell weighting is turned off if it was previously enabled. For mode = volume or
radius, per-cell weighting is enabled, which triggers two computations. First, at the time this command is issued,
each grid cell is assigned a "weight" which is calculated based either on the cell volume or radius, as specified by
the mode setting. For the volume setting, the weight of a cell is its 3d volume for a 3d model, and the weight is its
2d area for a 2d model. For an axi-symmetric model, the weight is the 3d volume of the 2d axi-symmetric cell, i.e.
the volume the area sweeps out when rotated around the y=0 axis of symmetry. The radius setting is only allowed
for axisymmetric systems. The weight in this case is the distance the cell's midpoint is from the y=0 axis of
symmetry. See Section 4.2 for more details on axi-symmetric models.

Second, when a particle moves from an initial cell to a final cell, the initial/final ratio of the two cell weights is
calculated. If the ratio > 1, then additional particles may be created in the final cell, by cloning the attributes of the
incoming particle. E.g. if the ratio = 3.4, then two extra particle are created, and a 3rd is created with probability
0.4. If the ratio < 1, then the incoming particle may be deleted. E.g. if the ratio is 0.7, then the incoming particle is
deleted with probability 0.3.

Note that the first calculation of weights is performed whenever the global weight command is issued. If particles
already exist, they are not cloned or destroyed by the new weights. The second calculation only happens when a
simulation is run.

Restrictions:

The global surfmax command must be used before surface elements are defined, e.g. via the read_surf command.

Related commands:

mixture

Default:

The keyword defaults are fnum = 1.0, nrho = 1.0, vstream = 0.0 0.0 0.0, temp = 273.15, gravity = 0.0 0.0 0.0 0.0,
surfmax = 100, surfpush = yes, gridcut = -1.0, comm/sort = no, comm/style = neigh, weight = cell none.

235

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

group command

Syntax:

group ID which style args

ID = user-defined name of the grid or surface group•
which = grid or surf•
style options for which = grid: none yet implemented•
style options for which = surf: type or id or region or subtract or union or intersect or clear

type or id args
 args = list of one or more surface element types or IDs
 any entry in list can be a range formatted as A:B
 A = starting index, B = ending index
 args = logical value
 logical = "" or ">=" or "==" or "!="
 value = a surface element type or ID
 args = logical value1 value2
 logical = ""
 value1,value2 = surface element types or IDs

region args = region-ID rflag
 region-ID = ID of region which surface element must be in
 rflag = one or all or center

any = one (or more) corner point of surface element in region
all = all corner points of surface element in region
any = center point of surface element in region

subtract args = two or more group IDs
union args = one or more group IDs
intersect args = two or more group IDs
clear = no args

•

Examples:

group sphere surf type 1 3
group sphere surf id 50 100:150
group sphere surf id <= 1000
group sphere surf id 50 250
group patch surf region cutout
group boundary surf subtract all a2 a3
group boundary surf union lower upper
group boundary surf intersect upper leftside

Description:

Assign grid cells to grid groups or surface elements to surface groups. In SPARTA, a "grid group" is a collection
of one or more grid cells. A "surface" group is a collection or more surface elements (line segements in 2d,
triangles in 3d). Other commands take group IDs as arguments so that they act on a set of grid cells or surface
elements. For example, see the compute grid, compute surf, fix ave/grid, fix ave/surf, dump grid, or dump surf
commands.

IMPORTANT NOTE: Grid groups are not yet fully implemented in SPARTA.

An individual grid cell can be part of multiple grid groups. An individual surface elements being part of multiple
surface groups. Each grid or surface group has a name which is specified as the ID in this command. Each grid

236

http://sparta.sandia.gov

group and surface group ID must be unique, though the same ID can be used for both a grid and surface group.
IDs can only contain alphanumeric characters and underscores.

If the specified group ID already exists, grid cells or surface elements are added to the group. Otherwise a new
group is created. This means the group command can be used multiple times with the same group ID to
incrementally add grid cells or surface elements to the group.

A grid group with the ID all is predefined. All grid cells belong to this group. Likewise, a surface group with the
ID all is predefined. All surface elements belong to this group.

The following styles can be used for grid groups.

IMPORTANT NOTE: No grid group styles are implemented yet. Stay tuned.

The following styles can be used for surface groups.

The type and id styles put all surface elements with the specified types or surface element IDs into the group.
These two styles can use arguments specified in one of two formats.

For surface elements, the "type" of each element is defined when the elements are read from a surface file, via the
read_surf command. In the file, a positive integer type value can be optionally defined for each element (default =
1). The specified type values can also be incremented using the typeadd keyword of the read_surf commmand.

For surface elements, the "ID" of each element is simply its index from 1 to N, for all N surface elements that
have been read in via the read_surf command. The ordering of IDs is determined by the order the elements appear
in the read-in surface file. If multiple files are read (or the same file multiple times), IDs increase monotonically
each time new surface elements are added.

The first format is a list of values (types or IDs). For example, the first command in the examples above puts all
surface elements of type 1 and 3 into the group named sphere. Each entry in the list can optionally be a
colon-separated range A:B, as in the second axample above. A "range" is a series of values (types or IDs). The
second example with 100:150 adds all surface elements with IDs from 100 to 150 (inclusive) to the group named
sphere, along with element 50 since it also appears in the list of values.

The second format is a logical operator followed by one or two values (type or ID). The 7 valid logicals are listed
above. All the logicals except "" take a single argument. The third example above adds all surface elements with
IDs from 1 to 1000 to the group named sphere. The logical "" means "between" and takes 2 arguments. The fourth
example above adds all surface elements IDs from 50 to 250 (inclusive) to the group named sphere.

The region style puts all surface elements in the region volume associated with the region-ID into the group. See
the region command for details on what kind of geometric regions can be defined. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

The rflag setting determines how a surface element is judged to be in the region or not. For rflag = one, it is in the
region if any of its corner points (3 for triangle, 2 for line) is in the region. For rflag = all, all its corner points
must be in the region. For rflag = center, the center point of the line segment or centroid point of the triangle must
be in the region.

The following styles can be used for either grid or surface groups.

237

The subtract style takes a list of two or more existing group names as arguments. All grid cells or surface
elements that belong to the 1st group, but not to any of the other groups are added to the specified group.

The union style takes a list of one or more existing group names as arguments. All grid cells or surface elements
that belong to any of the listed groups are added to the specified group.

The intersect style takes a list of two or more existing group names as arguments. Grid cells or surface elements
that belong to every one of the listed groups are added to the specified group.

The clear style un-assigns all grid cells or surface elements that were assigned to that group. This is a way to
empty a group before adding more grid cells or surface elements to it.

Restrictions:

No more than 32 grid groups and no more than 32 surface groups can be defined, including "all".

Related commands:

dump, region, compute surf

Default:

All grid cells belong to the "all" grid group. All surface elements belong to the "all" surface group.

238

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

if command

Syntax:

if boolean then t1 t2 ... elif boolean f1 f2 ... elif boolean f1 f2 ... else e1 e2 ...

boolean = a Boolean expression evaluated as TRUE or FALSE (see below)•
then = required word•
t1,t2,...,tN = one or more SPARTA commands to execute if condition is met, each enclosed in quotes•
elif = optional word, can appear multiple times•
f1,f2,...,fN = one or more SPARTA commands to execute if elif condition is met, each enclosed in quotes
(optional arguments)

•

else = optional argument•
e1,e2,...,eN = one or more SPARTA commands to execute if no condition is met, each enclosed in quotes
(optional arguments)

•

Examples:

if "${steps} > 1000" then quit
if "${myString} == a10" then quit
if "$x <= $y" then "print X is smaller = $x" else "print Y is smaller = $y"
if "(${eng} > 0.0) || ($n <1000)" then &
 "timestep 0.005" &
elif $n ${eng_previous}" then "jump file1" else "jump file2"

Description:

This command provides an in-then-else capability within an input script. A Boolean expression is evaluted and
the result is TRUE or FALSE. Note that as in the examples above, the expression can contain variables, as
defined by the variable command, which will be evaluated as part of the expression. Thus a user-defined formula
that reflects the current state of the simulation can be used to issue one or more new commands.

If the result of the Boolean expression is TRUE, then one or more commands (t1, t2, ..., tN) are executed. If it is
FALSE, then Boolean expressions associated with successive elif keywords are evaluated until one is found to be
true, in which case its commands (f1, f2, ..., fN) are executed. If no Boolean expression is TRUE, then the
commands associated witht the else keyword, namely (e1, e2, ..., eN), are executed. The elif and else keywords
and their associated commands are optional. If they aren't specified and the initial Boolean expression is FALSE,
then no commands are executed.

The syntax for Boolean expressions is described below.

Each command (t1, f1, e1, etc) can be any valid SPARTA input script command, except an include command,
which is not allowed. If the command is more than one word, it must enclosed in quotes, so it will be treated as a
single argument, as in the examples above.

IMPORTANT NOTE: If a command itself requires a quoted argument (e.g. a print command), then double and
single quotes can be used and nested in the usual manner, as in the examples above and below. See Section
commands 2 of the manual for more details on using quotes in arguments. Only one of level of nesting is allowed,
but that should be sufficient for most use cases.

239

http://sparta.sandia.gov

Note that by using the line continuation character "&", the if command can be spread across many lines, though it
is still a single command:

if "$a <$b" then &
 "print 'Minimum value = $a'" &
 "run 1000" &
else &
 'print "Minimum value = $b"' &
 "run 50000"

Note that if one of the commands to execute is quit, as in the first example above, then executing the command
will cause SPARTA to halt.

Note that by jumping to a label in the same input script, the if command can be used to break out of a loop. See
the variable delete command for info on how to delete the associated loop variable, so that it can be re-used later
in the input script.

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if '$b > 2' then "print 'Jumping to another script'" "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

The Boolean expressions for the if and elif keywords have a C-like syntax. Note that each expression is a single
argument within the if command. Thus if you want to include spaces in the expression for clarity, you must
enclose the entire expression in quotes.

An expression is built out of numbers (which start with a digit or period or minus sign) or strings (which start with
a letter and can contain alphanumeric characters or underscores):

0.2, 100, 1.0e20, -15.4, etc
InP, myString, a123, ab_23_cd, etc

and Boolean operators:

A == B, A != B, A <B, A <= B, A > B, A >= B, A && B, A || B, !A

Each A and B is a number or string or a variable reference like $a or ${abc}, or A or B can be another Boolean
expression.

If a variable is used it can produce a number when evaluated, like an equal-style variable. Or it can produce a
string, like an index-style variable. For an individual Boolean operator, A and B must both be numbers or must
both be strings. You cannot compare a number to a string.

240

Expressions are evaluated left to right and have the usual C-style precedence: the unary logical NOT operator "!"
has the highest precedence, the 4 relational operators "", and ">=" are next; the two remaining relational operators
"==" and "!=" are next; then the logical AND operator "&&"; and finally the logical OR operator "||" has the
lowest precedence. Parenthesis can be used to group one or more portions of an expression and/or enforce a
different order of evaluation than what would occur with the default precedence.

When the 6 relational operators (first 6 in list above) compare 2 numbers, they return either a 1.0 or 0.0 depending
on whether the relationship between A and B is TRUE or FALSE. When the 6 relational operators compare 2
strings, they also return a 1.0 or 0.0 for TRUE or FALSE, but the comparison is done by the C function strcmp().

When the 3 logical operators (last 3 in list above) compare 2 numbers, they also return either a 1.0 or 0.0
depending on whether the relationship between A and B is TRUE or FALSE (or just A). The logical AND
operator will return 1.0 if both its arguments are non-zero, else it returns 0.0. The logical OR operator will return
1.0 if either of its arguments is non-zero, else it returns 0.0. The logical NOT operator returns 1.0 if its argument
is 0.0, else it returns 0.0. The 3 logical operators can only be used to operate on numbers, not on strings.

The overall Boolean expression produces a TRUE result if the result is non-zero. If the result is zero, the
expression result is FALSE.

Restrictions: none

Related commands:

variable, print

Default: none

241

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPARTA commands from that file. When the new
file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script A
includes script B, and B includes A, then SPARTA could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

242

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop
jump SELF runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
SPARTA commands from that file. Unlike the include command, the original file is not returned to, although by
using multiple jump commands it is possible to chain from file to file or back to the original file.

If the word "SELF" is used for the filename, then the current input script is re-opened and read again.

IMPORTANT NOTE: The SELF option is not guaranteed to work when the current input script is being read
through stdin (standard input), e.g.

spa_g++ <in.script

since the SELF option invokes the C-library rewind() call, which may not be supported for stdin on some systems
or by some MPI implementations. This can be worked around by using the -in command-line argument, e.g.

spa_g++ -in in.script

or by using the -var command-line argument to pass the script name as a variable to the input script. In the latter
case, a variable called "fname" could be used in place of SELF, e.g.

spa_g++ -var fname in.script <in.script

The 2nd argument to the jump command is optional. If specified, it is treated as a label and the new file is scanned
(without executing commands) until the label is found, and commands are executed from that point forward. This
can be used to loop over a portion of the input script, as in this example. These commands perform 10 runs, each
of 10000 steps, and create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after
10 iterations. When the "a" variable has been incremented for the tenth time, it will cause the next jump command
to be skipped.

variable a loop 10
label loop
dump 1 all atom 100 file.$a
run 10000
undump 1
next a
jump in.flow loop

243

http://sparta.sandia.gov

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, SPARTA is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

If you jump to a file and it does not contain the specified label, SPARTA will come to the end of the file and exit.

Related commands:

variable, include, label, next

Default: none

244

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

245

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

log command

Syntax:

log file keyword

file = name of new logfile•

keyword = append if output should be appended to logfile (optional)•

Examples:

log log.equil
log log.equil append

Description:

This command closes the current SPARTA log file, opens a new file with the specified name, and begins logging
information to it. If the specified file name is none, then no new log file is opened. If the optional keyword
append is specified, then output will be appended to an existing log file, instead of overwriting it.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.sparta" is the default log file for a SPARTA run. The name of the initial log file can also be set by
the command-line switch -log. See Section 2.6 for details.

Restrictions: none

Related commands: none

Default:

The default SPARTA log file is named log.sparta

246

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

mixture command

Syntax:

mixture ID species1 species2 ... keyword args ...

ID = user-defined name of the mixture•
species1, species2, ... = zero or more species IDs to include in the mixture•
zero or more keyword/arg pairs may be appended•
keyword = nrho or vstream or temp or frac or group or copy or delete

nrho arg = density
 density = number density of entire mixture (# per length^3 units)

vstream args = Vx Vy Vz
 Vx,Vy,Vz = streaming velocity of entire mixture (velocity units)

temp arg = thermal
 thermal = temperature of entire mixture (temperature units)

trot arg = Trot
 Trot = rotational temperature of entire mixture (temperature units)

tvib arg = Tvib
 Tvib = vibrational temperature of entire mixture (temperature units)

frac arg = fraction
 fraction = number fraction for each listed species (0 to 1)

group arg = SELF or group-ID
 SELF = put each listed species (or all species if none listed) in its own group
 group-ID = put the listed species (or all species if none listed) in a group with this ID

copy arg = new-ID
 new-ID = ID of new mixture to create, as a copy of this one

delete args = sp1 sp2 ...
 sp1,sp2,... = species to delete from the mixture

•

Examples:

mixture air N O NO group lite
mixture air N O NO vstream 250.0 0.0 0.0 group species
mixture air N frac 0.8
mixture air O frac 0.2 copy myAir
mixture background N O
mixture air delete N NO

Description:

Define a gas mixture and its properties. A mixture can be referenced by its ID in several other SPARTA
commands such as create_particles or per-grid computes. Any number of mixtures can be defined and used in a
simulation.

A mixture is a collection of one or more particle species as defined by the species command. Each species
belongs to a named group within the mixture so that particles of all species in the group can be acted on together
by other commands. The mixture has both global attributes and per-species attributes. All attributes have default
values unless they are explicitly specified.

The ID for a mixture is used to identify the mixture in other commands. Each mixture ID must be unique. The ID
can only contain alphanumeric characters and underscores.

247

http://sparta.sandia.gov

Note that the mixture command can be used multiple times with the same ID, to add species to the mixture, define
groups within the mixture, or change its attributes. Also note that a species can belong to more than one mixture.

There are 2 default mixtures defined by SPARTA that always exist.

The first default mixture has an ID = "all", and contains all species that have been defined. When new species are
created via the "species" command, they are automatically added to this mixture. This mixture has only a single
group, also named "all", which all species belong to.

The second default mixture has an ID = "species", and also contains all species that have been defined. When new
species are created via the "species" command, they are also automatically added to this mixture. This mixture
defines one group per species, each with the species name, so that each species in the mixture belongs to its own
group.

Zero or more species can be specified in the mixture command. If a listed species is not already in the mixture,
due to a previous mixture command with the same ID, then that species is added to the mixture. As discussed
below, it will be assigned to a default group and assigned default per-species attributes, unless the appropriate
keywords are also specified.

Species can be specified which are already part of the mixture, to change their group assignment or their
per-species proerties, as disussed below.

Zero species can be specified, if other keywords are used which alter group assignments or change global
attributes of the mixture, as discussed below.

These keywords set global attributes of the mixture.

The nrho keyword sets a global attribute of the mixture, namely its density. For 3d simulations the units of the
specified density are #/volume. For 2d, the units are effectively #/area, since the z-dimension thickness of the
simulation box = 1.0.

The vstream keyword sets a global attribute of the mixture, namely the streaming velocity. Particles created using
the mixture will use the specified Vx,Vy,Vz values.

The temp keyword sets a global attribute of the mixture, namely the thermal temperature of its particles. When
particles are created, this value is used to sample a Gaussian velocity distribution, which is superposed on the
streaming velocity, when each particle's velocity is initialized.

The trot keyword sets a global attribute of the mixture, namely the rotational temperature of its particles. When
particles are created, this value is used to sample a Gaussian energy distribution to define each particle's rotational
energy. If this keyword is not specified, the thermal temperature is used as the default.

The tvig keyword sets a global attribute of the mixture, namely the vibrational temperature of its particles. When
particles are created, this value is used to sample a Gaussian energy distribution to define each particle's
vibrational energy. If this keyword is not specified, the thermal temperature is used as the default.

This keyword sets per-species attributes of the mixture.

The frac keyword sets a per-species attribute for individual species in the mixture. Each species has a relative
fractional density, such as 0.2, meaning one out of 5 particles is that species. The sum of this value across all
species in the mixture must equal 1.0. The frac keyword sets this value for the listed species. If this value has
never been set for M species out of the total N species in the mixture, then when a simulation is run, the frac value

248

for each of the M species is set to (1 - sum)/M, where sum is the sum of the frac values for the N-M assigned
species.

Each species in a mixture is assigned to exactly one group. The group keyword can be used to set or change these
assignments. Every mixture has one or more named groups.

As described by the collide command, mixture groups are used when performing collisions so that collisions
attempts, partners, and parameters can be treated on a per-group basis for accuracy and efficiency. Per-grid
computes also use mixture groups to calculate per-grid quantities on a per-grid-cell, per-group basis, i.e. on
subsets of particles within each grid cell.

If the group keyword is not used in a mixture command, no changes to group assignements are made for species
that are already in the mixture. If one or more new species are specified, then all of them are assigned to a group
with "default" as the group ID. Note that this means that mixtures defined with mixture commands that never use
the group keyword will have just a single group.

If the group keyword is used, the group ID can be any string you choose. Similar to the mixture ID, it can only
contain alphanumeric characters and underscores. Using SELF for the group ID has a special meaning as
discussed below.

The operation of the group keyword depends on whether no species or some species are specified explicitly in the
mixture command. It also depends on whether the group ID is SELF or a user-defined name. In each case, after
the operation is done, any group IDs for the mixture that have no species assigned to them are deleted. This
includes the "default" group if it was implicitly created by a previous mixture command.

If no species are listed in the mixture command and the group ID is SELF, then every species already in
the mixture is assigned to a group with its species ID as the group ID. I.e. there will now be one species
per group.

•

If one or more species are listed and the group ID is SELF, then each listed species is assigned to a group
with its species ID as the group ID.

•

If no species are listed and the group ID is not SELF, then all species already in the mixture are assigned
to a group with the specified ID.

•

If one or more species are listed and the group ID is not SELF, then the listed species are all assigned to a
group with the specified ID.

•

These keywords operate on one or more mixtures.

The copy keyword creates a new mixture with new-ID which is an identical copy of the mixture with ID.
Regardless of where the copy keyword appears in the command, the operation is delayed until all other keywords
have been invoked.

This is useful if you wish to create a new mixture which is nearly the same as the current mixture. Subsequent
mixture commands can be used to change the properties of the new mixture.

The delete keyword removes one or more species from the mixture, specified as sp1, sp2, etc. No other keywords
can be used with delete. All arguments that follow it are assumed to be species IDs that are currently in the
mixture. When using delete, no species can be defined before the keyword, i.e. species1, species2, etc cannot be
defined in the comand syntax described above.

After the listed species are removed, any group IDs for the mixture that have no species assigned to them are also
deleted.

249

Restrictions:

The streaming velocity and thermal temperature of the mixture cannot both be zero. A zero streaming velocity
means a zero vector = (0,0,0).

The restrictions on use of the delete keyword are described above.

Related commands:

global, create_particles

Default:

The nrho, vstream, and temp defaults are those defined for the background gas density, as set by the global
command. The trot and tvib defaults are to use the thermal temperature temp, either its default or the value
specified by this command. The frac default is described above. The group keyword has no default; if it is not
used, new species not already in the mixture are assigned to a group with a group ID = "default".

250

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

move_surf command

Syntax:

move_surf groupID style args ...

group-ID =

style = file or trans or rotate
file args = filename entry
trans args = Dx Dy Dz

 Dx,Dy,Dz = displacement applied to all surface points (distance units)
rotate args = theta Rx Ry Rz Ox Oy Oz

 theta = rotate surface points by this angle in counter-clockwise direction (degrees)
 Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction
 Ox,Oy,Oz = origin to rotate around (distance units)

•

Examples:

move_surf all trans 1 0 0
move_surf all rotate 360 0 0 1 5 5 0
move_surf object2 rotate 360 0 0 1 5 5 0

Description:

This command performs a one-time movement of all the surface elements in the specified group via the specified
style. This command can be invoked as many times as desired, before or between simulation runs. Surface points
can also be moved on-the-fly during a simulation by using the fix move/surf command.

Moving surfaces between simulations can be useful if you want to perform a series of runs from one input script,
where some attribute of the surface elements change, e.g. the separation between two spheres.

IMPORTANT NOTE: The file style is not yet implemented. It will allow new positions of points to be listed in a
file.

In 2d, surface elements are line segments with 2 vertices each. In 3d, surface elements are triangles with 3 vertices
each. If a line segment or triangle belongs to the specified group, all of its vertices are moved. This effectively
moves the entire surface element. Note that if two (or more) surface elements share the same vertex and one (or
more) of the elements is not in the specified group, the shape of that surface element may also be affected, since
only some of its vertices may move.

The trans style shifts or displaces each vertex by the vector (Dx,Dy,Dz).

The rotate style rotates the coordinates of all vertices by an angle theta in a counter-clockwise direction, around
the vector starting at (Ox,Oy,Oz) and pointing in the direction Rx,Ry,Rz. Any desired rotation can be represented
by an appropriate choice of (Ox,Oy,Oz), theta, and (Rx,Ry,Rz).

After the surface has been moved, then all particles in grid cells that meet either of these criteria are deleted:

the grid cell is now inside a surface•
the grid cell overlaps with a surface element that moved•

251

http://sparta.sandia.gov

This is to prevent particles from ending up inside surface objects.

Note that in this context, "overlaps" means that any part of the surface element touches any part of the grid cell,
including its surface. Also note that if a surface element object (e.g. a sphere) moved a long distance then grid
cells that were inside the object in its old position and thus contained no particles, will still have no particles
immediately after the move. This will effectively leave a "void" in the flow until particles re-fill the grid cells that
are now outside the object.

Restrictions:

An error will be generated if any surface element vertex is moved outside the simulation box.

Related commands:

read_surf, fix move/surf, remove_surf

Default: none

252

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in SPARTA input scripts.
If a variable name is a single lower-case character from "a" to "z", it can be used in an input script command as $a
or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, file, universe, or uloop. An exception is that universe- and uloop-style variables can be mixed in the
same next command.

All the variables specified with the next command are incremented by one value from their respective list of
values. A file-style variable reads the next line from its associated file. String- or particle- or equal- or world-style
variables cannot be used with the the next command, since they only store a single value.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit. As explained
in the variable command, the variable that has exhausted its values is also deleted. This allows it to be used and
re-defined later in the input script. File-style variables are exhausted when the end-of-file is reached.

When the next command is used with index- or loop-style variables, the next value is assigned to the variable for
all processors. When the next command is used with file-style variables, the next line is read from its file and the
string assigned to the variable.

When the next command is used with universe- or uloop-style variables, all universe- or uloop-style variables
must be listed in the next command. This is because of the manner in which the incrementing is done, using a
single lock file for all variables. The next value (for each variable) is assigned to whichever processor partition
executes the command first. All processors in the partition are assigned the same value(s). Running SPARTA on
multiple partitions of processors via the "-partition" command-line switch is described in Section 2.6 of the
manual. Universe- and uloop-style variables are incremented using the files "tmp.sparta.variable" and
"tmp.sparta.variable.lock" which you will see in your directory during and after such a SPARTA run.

Here is an example of running a series of simulations using the next command with an index-style variable. If this
input script is named in.flow, 8 simulations would be run using surface data files from directories run1 thru run8.

253

http://sparta.sandia.gov

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
create_box 0 10 0 10 0 10
create_grid 100 100 100
read_surf data.surf 1
...
run 10000
shell cd ..
clear
next d
jump in.flow

If the variable "d" were of style universe, and the same in.flow input script were run on 3 partitions of processors,
then the first 3 simulations would begin, one on each set of processors. Whichever partition finished first, it would
assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations were finished.

Jump and next commands can also be nested to enable multi-level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 read_surf data.surf.ij 1
 print Running simulation $i.$j
 run 10000
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

254

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

partition command

Syntax:

partition style N command ...

style = yes or no•
N = partition number (see asterisk form below)•
command = any SPARTA command•

Examples:

partition yes 1 processors 4 10 6
partition no 5 print "Active partition"
partition yes *5 fix all nve
partition yes 6* fix all nvt temp 1.0 1.0 0.1

Description:

This command invokes the specified command on a subset of the partitions of processors you have defined via the
-partition command-line switch. See Section 2.6 of the manual for an explanation of the switch.

Normally, every input script command in your script is invoked by every partition. This behavior can be modified
by defining world- or universe-style variables that have different values for each partition. This mechanism can be
used to cause your script to jump to different input script files on different partitions, if such a variable is used in a
jump command.

The "partition" command is another mechanism for having an input script operate differently on different
partitions. It is basically a prefix on any SPARTA command. The commmand will only be invoked on the
partition(s) specified by the style and N arguments.

If the style is yes, the command will be invoked on any partition which matches the N argument. If the style is no
the command will be invoked on all the partitions which do not match the Np argument.

Partitions are numbered from 1 to Np, where Np is the number of partitions specified by the -partition
command-line switch.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to span a range of partition numbers. This takes the form "*" or "*n" or "n*" or
"m*n". An asterisk with no numeric values means all partitions from 1 to Np. A leading asterisk means all
partitions from 1 to n (inclusive). A trailing asterisk means all partitions from n to Np (inclusive). A middle
asterisk means all partitions from m to n (inclusive).

Restrictions: none

Related commands: none

Default: none

255

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

print command

Syntax:

print string keyword value:pre

string = text string to print, which may contain variables•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen

file value = filename
append value = filename
screen value = yes or no

•

Examples:

print "Done with equilibration"
print 'Done with equilibration'
print "Done with equilibration" file info.dat

compute myTemp temp
variable t equal c_myTemp
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. One line of output is generated. The text string must be a single
argument, so it should be enclosed in quotes if it is more than one word. If it contains variables, they will be
evaluated and their current values printed.

If the file or append keyword is used, a filename is specified to which the output will be written. If file is used,
then the filename is overwritten if it already exists. If append is used, then the filename is appended to if it already
exists, or created if it does not exist.

If the screen keyword is used, output to the screen and logfile can be turned on or off as desired.

If you want the print command to be executed multiple times (e.g. with changing variable values), there are 3
options. First, consider using the fix print command, which will print a string periodically during a simulation.
Second, the print command can be used as an argument to the every option of the run command. Third, the print
command could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal-style variables can calculate formulas involving mathematical operations,
global values calculated by a compute or fix, or references to other variables.

Restrictions: none

Related commands:

fix print, variable

Default:

256

http://sparta.sandia.gov

The option defaults are no file output and screen = yes.

257

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

quit command

Syntax:

quit

Examples:

quit
if "$n > 10000" then quit

Description:

This command causes SPARTA to exit, after shutting down all output cleanly.

It can be used as a debug statement in an input script, to terminate the script at some intermediate point.

It can also be used as an invoked command inside the "then" or "else" portion of an if command.

Restrictions: none

Related commands:

if

Default: none

258

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

react command

Syntax:

react style args

style = none or tce or qk or tce/qk•
args = arguments for that style

none args = none
tce args = infile

 infile = file with list of gas-phase chemistry reactions
qk args = infile

 infile = file with list of gas-phase chemistry reactions
tce/qk args = infile

 infile = file with list of gas-phase chemistry reactions

•

Examples:

react none
react tce air.tce
react qk air.tce

Description:

Define chemical reactions to perform in the gas phase when particle-particle collisions occur. See the surf_react
command for specification of surface chemistry reactions.

The none style means that no chemistry will be performed, which is the default.

For other styles, a file is specified which contains a list of chemical reactions, with their associated parameters.
The reactions are read into SPARTA and stored in a list. Each time a simulation is run via the run command, the
list is scanned. Only reactions for which all the reactants and all the products are currently defined as species-IDs
will be active for the simulation. Thus the file can contain more reactions than are used in a particular simulation.
See the species command for how species IDs are defined.

The reaction models for the various styles are described below. When a pair of particles collide, the list of all
reactions with those two species as reactants is looped over. A probability for each reaction is calculated, using
the formulas discussed below, and a random number is used to decide which reaction (if any) takes place. No
check is made that the sum of probabilities for all possible reactions is <= 1.0, but that should normally be the
case if reasonable reaction coefficients are defined.

The format of the reaction file is the same for all three of the currently defined styles, and is also described below.
The various styles interpret and compute the specified reactions in different ways. The data directory in the
SPARTA distribution contains reaction files for these reaction models, all with the suffix ".tce".

The tce style is Bird's Total Collision Energy (TCE) model. When this style is specified, all computed reactions
will use the TCE model.

Using kinetic theory, the TCE model allows for reaction probabilities to be defined based on known, measured,
reaction rates. The model is described in detail in (Bird94); see chapter 6. The required input parameters for each
reaction (discussed below) are values that permit its effective Arrhenius rate to be calculated, namely

259

http://sparta.sandia.gov

where K(T) is the forward reaction rate, T is the temperature of the participating molecules which is a function of
their velocities and internal energy states, k the Boltzmann constant, and A,b,Ea are input parameters as discussed
below.

All 5 reactions coefficients read from the reaction file (described below) are used to calculate terms in equation
6.10 of (Bird94) for the probability that a reaction takes place.

The C2, C3, C4 values are the Arrhenius activation energy Ea, prefactor A, and exponent b, used in the rate
formula above.

The qk style is Bird's Quantum-Kinetic model (QK). When this style is specified, all computed reactions will use
the QK model.

The QK model implemented is that of (Bird09) as validated (Gallis09) and modified (Gallis10).

The QK model depends solely on properties of the colliding molecules and unlike the TCE model makes no use
of measured reaction rates or adjustable parameters. The macroscopic properties used in the QK model are the
available collision energy, activation energies, and quantized vibrational energy levels.

According to the QK model dissociation reactions take place when the maximum obtainable vibrational energy
after an inelastic energy exchange is higher than the dissociation level (Bird09).

Exchange reactions take place when the vibrational energy after a trial energy exchange is above the activation
energy of the exchange reaction (Gallis10).

A new version of the QK model for exchange reactions has been proposed by (Bird11). This will be implemented
in future releases of SPARTA.

For the QK model, SPARTA reads the same 5 coefficients per reaction from the reaction file (described below) as
for the TCE model. Three of the coefficients (C1,C2,C5) are used to calculate terms in equation 6.10 of (Bird94)
for the probability that a reaction takes place. The Arrhenius rate parameters C3 and C4 are ignored by the QK
model.

The tce/qk style is a hybrid model which can be used to compute reactions using both the TCE and QK models.
When this style is specified, reactions from the input file that are flagged with an A = Arrhenius style will be
computed using the TCE model. Reactions from the input file that are flagged with a Q = Quantum style will be
computed using the QK model.

260

The format of the input reaction file is as follows. Comments or blank lines are allowed in the file. Comment lines
start with a "#" character. All other entries must come in 2-line pairs with values separated by whitespace in the
following format

R1 + R2 + ... --> P1 + P2 + ...
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1, R2, etc are one or more reactants, listed as
species IDs. P1, P2, etc are one or more products, also listed as species IDs. The number of allowed reactants and
products depends on the reaction type, as discussed below. In most cases there is no restriction on the order or
listed reactants or products on what species are listed. Exceptions are detailed below. Note that individual
reactants and products must be separated by whitespace and a "+" sign. The left-hand and right-hand sides of the
equation must be separated by whitespace and "-->".

The type of each reaction is a single character (upper or lower case) with the following meaning. The type
determines how many reactants and products can be specified in the first line.

D = dissociation = 2 reactants and 3 products
E = exchange = 2 reactants and 2 products
I = ionization = 2 reactants and 2 or 3 products
R = recombination = 2 reactants and 1 product (see below)

A dissociation reaction means that R1 dissociates into P1 and P2 when it collides with R2. R2 is preserved in the
collision, so P3 = R2 is required.

An exchange reaction is a collision between R1 and R2 that results in new products P1 and P2. There is no
restriction on the species involved in the reaction.

An ionization reaction with 2 products is typically a collision between R1 and R2 that results in a positively
charged ion and an election. However, SPARTA does not check for this, so there is no restriction on the species
involved in the reaction.

An ionization reaction with 3 products is typically a collision between a neutral R1 and an electon R2 which
ejects an electron from the neutral species, resulting in P1 and P2. Again, SPARTA does not check for this, so
there is no restriction on the species involved in the reaction. R2 is preserved in the collision, so P3 = R2 is
required.

A recombination reaction is a collision between R1 and R2 that results in P1. There is no restriction on the species
involved in the reaction.

Note that recombination reactions actually involve a 3rd particle whose species is not altered by the reaction but
whose velocity is, in order to balance energy and momentum. So conceptually it can be thought of as both a
reactant and a product. There are 3 ways you can specify recombination reactions, to include information about
which species of 3rd particles are eligible to participate:

R1 + R2 -> P1
R1 + R2 -> P1 + atom/mol
R1 + R2 -> P1 + P2

In the first case, no info for a 3rd particle is listed. This means any species of 3rd particle can be used. In the
second case, a non-species keyword is used, either "atom" or "mol". This means the 3rd particle must be either an
atomic species, or a molecular species. This is based on the vibrational degrees of freedom listed in the species
file. A non-zero DOF is molecular; zero DOF is atomic. In the third case, a specific species P2 is listed. This
means the 3rd particle must be that species.

261

Note that for the same R1 and R2, multiple recombination reactions can be listed in the reaction file. When two
particles R1 and R2 are selected for collision and a possible reaction, if any recombination reaction is defined for
R1 and R2, then a 3rd particle in the same grid cell is randomly selected. Its species P2 is used to match at most
one of the possibly multiple recombination reactions for R1 and R2. Only that recombination reaction is checked
for a reaction as a possible outcome of the collision.

This matching is done from most-specific to least-specific, i.e. the reverse ordering of the 3 cases above. If there
is a defined reaction that lists P2 (third case, most specific), it is used. If not, and there is a defined reaction for
"atom" or "mol" that corresponds to P2 (second case, intermediate specificity), then it is used. If not, and there is a
defined reaction with no P2 (first case, least specific), then it is used. If none of these matches occur, no
recombination reaction is possible for that collision between R1 and R2. Note that these matching rules means
that for the same R1 and R2, you can list two reactions, one with P2 = "atom", and one with P2 = "mol". And/or
you can list multiple reactions of the third kind, each with a unique P2.

IMPORTANT NOTE: If the ambipolar approximation is being used, via the fix ambipolar and collide_modify
ambipolar yes commands, then reactions which involve either ambipolar ions or the ambipolar electron have more
restricitve rules about the ordering of reactants and products. See the next section for a discussion of these
requirements.

The style of each reaction is a single character (upper or lower case) with the following meaning:

A = Arrhenius•
Q = Quantum•

The style determines how many reaction coefficients are listed as C1, C2, etc, and how they are interpreted by
SPARTA.

For both the A = Arrhenius style and Q = Quantum style, there are 5 coefficients:

C1 = number of internal degrees of freedom (as defined by the TCE model)•
C2 = Arrhenius activation energy Ea•
C3 = Arrhenius prefactor A•
C4 = Arrhenius exponent b•
C5 = overall reaction energy (positive for exothermic)•

The different reaction styles use these values in different ways, as explained above.

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve either
ambipolar ions or the ambipolar electron have more restricitve rules about the ordering of reactants and products,
than those described in the preceeding section.

Note that ambipolar collisions are turned on via the collide_modify ambipolar yes commands, which in turn
requries that the fix ambipolar is defined in your input script. This fix defines a particular species as an ambipolar
electron, written as "e" in the reactions that follow. It also defines a list of ambipolar ions, which are written as
species with a trailing "+" sign in the rules that follow. Other written species (without "+") can be any
non-ambipolar species.

These rules only apply to reactions that involve ambipolar species (ions or electrons) as a reactant or product.

Ambipolar dissociation reactions must list their reactants and products in one of the following orders:

AB + e -> A + e + B
AB+ + e -> A+ + e + B

262

Ambipolar ionization reactions with 2 or 3 products must be in one of the following orders:

A + e -> A+ + e + e
A + B -> AB+ + e

Ambipolar exchange reactions must be one of the following orders:

AB+ + C -> A + BC+
C + AB+ -> A + BC+

Ambipolar recombination reactions must be in the following order:

A+ + e -> A

IMPORTANT NOTE: Ambipolar recombination reactions are not yet supported in SPARTA.

Restrictions: none

Related commands:

collide, surf_react

Default:

style = none

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Bird09) G. A. Bird, Chemical Reactions in DSMC Rarefied Gas Dynamics, Editor T Abe, AIP Conference
Proceedings (2009).

(Bird11) G. A. Bird, "The Q-K model for gas-phase chemical reaction rates", Physics of Fluids, 23, 106101,
(2011).

(Gallis09) M. A. Gallis, R. B. Bond, and J. R. Torczynski, "A Kinetic-Theory Approach for Computing
Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows", J Chem Phys, 131, 124311, (2009).

(Gallis10) M. A. Gallis, R. B. Bond, and J. R.Torczynski, "Assessment of Collision-Energy-Based Models for
Atmospheric-Species Reactions in Hypersonic Flows", J Thermophysics and Heat Transfer, (2010).

263

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

react_modify command

Syntax:

react_modify keyword values ...

one or more keyword/value pairs may be listed•
keywords = recomb or rboost

recomb value = yes or no = enable or disable defined recombination reactions
rboost value = rfactor

 rfactor = boost probability of recombination reactions by this factor

•

Examples:

react_modify recomb no
react_modify rboost 100.0

Description:

Set parameters that affect how reactions are performed.

The recomb keyword turns on or off recombination reactions. It is only relevant if recombination reactions were
defined in the reaction file read in by the react command. If the setting is no then they will be disabled even if
they were listed in the reaction file. This is useful to turn recombination reactions off, to see if they affect
simulation results.

The rboost keyword is a setting for recombination reactions. It is ignored if no recombination reactions exist, or
the recomb keyword is set to no. The rboost setting does not affect the overalll statistical results of recombination
reactions, but tries to improve their computational efficiency. Recombination reactions typically occur with very
low probability, which means the code spends time testing for reactions that rarely occur. If the rfactor is set to N
> 1, then recombination reactions are skipped N-1 out of N times, when one or more such reactions is defined for
a pair of colliding particles. A random number us used to select on that probability. To compensate, when a
recombination reaction is actually tested for occurrence, its rate is boosted by a factor of N, making it N times
more likely to occur.

The smallest value rboost can be set to is 1.0, which effectively applies no boost factor.

IMPORTANT NOTE: Setting rboost too large could meant the probability of a recombination reaction becomes >
1.0, when it is does occur. SPARTA does not check for this, so you should estimate the largest boost factor that is
safe to use for your model.

Restrictions: none

Related commands:

react

Default:

The option defaults are recomb = yes and rboost = 1000.0.

264

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_grid command

Syntax:

read_grid filename

filename = name of grid file•

Examples:

read_grid grid.overlay

Description:

Read in a grid description from a file, which will overlay the simulation domain defined by the create_box
command. The grid can also be defined by the create_grid command.

The grid in SPARTA is hierarchical. The entire simulation box is a single parent grid cell at level 0. It is
subdivided into Nx by Ny by Nz cells at level 1. Each of those cells can be a child cell (no further sub-division) or
can be a parent cell which is further subdivided into Nx by Ny by Nz cells at level 2. This can recurse to as many
levels as desired. Different cells can stop recursing at different levels. Each parent cell can define its own unique
Nx, Ny, Nz values for subdivision. Note that a grid with a single level is simply a uniform grid with Nx by Ny by
Nz cells in each dimension.

In the current SPARTA implementation, all processors own a copy of all parent cells. Each child cell is owned by
a unique processor. They are assigned by this command to processors in a round-robin fashion, as they are created
at each level when the file is read. This is a "dispersed" assignment of child cells to each processor.

IMPORTANT NOTE: See Section 5.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs. The balance_grid command can be used after the grid is
created, to assign child cells to processors in different ways. The "fix balance" command can be used to re-assign
them in a load-balanced manner periodically during a running simulation.

The specified file can be a text file or a gzipped text file (detected by a .gz suffix).

A grid file contains only a listing of parent cells. Child cells are inferred from the parent cell definitions.

A grid file has a header and a body. The header appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at a time. Lines can have a trailing comment
starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it is skipped. If the
line contains a header keyword, the corresponding value is read from the line. If it doesn't contain a header
keyword, the line begins the body of the file.

The body of the file contains one or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines in a section depends on the
section keyword as described below. Zero or more blank lines can be used between sections. Sections can appear
in any order.

The formatting of individual lines in the grid file (indentation, spacing between words and numbers) is not
important except that header and section keywords must be capitalized as shown and can't have extra white space

265

http://sparta.sandia.gov

between their words.

These are the recognized header keywords (only one for this file). Header lines can come in any order. The
value(s) are read from the beginning of the line. Thus the keyword parents should be in a line like "1000 parents".

parents = # of parent cells in file•

These are the recognized section keywords for the body of the file (only one for this file).

Parents•

The Parents section consists of N consecutive entries, where N = # of parents, each of this form:

index parent-ID Nx Ny Nz

The index is ignored; it is only added to assist in examining the file. Typically, the indices should run
consecutively from 1 to N.

The parent-ID is a string of numbers (one per level) separated by dashes, e.g. 12-352-65, where level 1 is the
coarsest grid overlaying the simulation domain, level 2 is the refined grid within a level 1 cell, etc.

The first number in the ID string is which level 1 cell (from 1 to N1) this parent cell descends from, the second
number is which level 2 cell (from 1 to N2) this parent cell descends from, etc. The final number is which cell this
cell is within its own parent.

As an example, consider the parent ID 12-352-65. Assume the simulation box was partitioned with a 10x10x10
level 1 grid, or 1000 level 1 grid cells. These are numbered from 1 to 1000, with x varying fastest, then y, finally
z. The parent cell with ID 12-352-65 is inside the 12th of those level 1 cells. If that cell were sub-divided into
8x6x10 cells, there would be 480 level 2 cells within the 12th level 1 cell. The parent cell with ID 12-352-65 is
inside the 352nd of those level 2 cells. Likewise it is within the 65th of the level 3 cells inside the 352nd level 2
cell.

The Nx, Ny, Nz values determine how the parent cell is sub-divided into Nx by Ny by Nz cells at the next level.
Each of those cells could be a child cell or yet another parent cell. Nz must be specified as 1 for 2d grids.

For example, this entry:

index 12-352-65 2 2 2

means the parent cell 12-352-65 at level 3 is further sub-divided into 2x2x2 level 4 cells. The IDs of the 8 new
cells will be 12-352-65-1, 12-352-65-2, ..., 12-352-65-8.

The lines in the Parents section must be ordered such that no parent cell is listed before its own parent cell
appears. A simple way to insure this is to list the single level 0 cell first, all level 1 parent cells next, then level 2
parent cells, etc.

The parent cell with ID = 0 is a special case. It can be thought of as the "root" cell, or the single level 0 cell, which
represents the entire simulation domain. Its specification in the grid file defines the level 1 grid that overlays the
simulation domain. Thus the first line of the Parents section should be formatted something like this:

1 0 10 10 20

which means the level 1 grid has 10x10x20 cells.

266

Restrictions:

This command can only be used after the simulation box is defined by the create_box command.

To read gzipped grid files, you must compile SPARTA with the -DSPARTA_GZIP option - see Section 2.2 of the
manual for details.

The hierarchical grid used by SPARTA is encoded in a 32-bit or 64-bit integer ID. The precision is set by the
-DSPARTA_BIG or -DSPARTA_SMALL or -DSPARTA_BIGBIG compiler switch, as described in Section 2.2.
The number of grid levels that can be used depends on the resolution of the grid at each level. For a minimal
refinement of 2x2x2, a level uses 4 bits of the integer ID. Thus a maximum of 7 levels can be used for 32-bit IDs
and 15 levels for 64-bit IDs.

Related commands:

create_box, create_grid

Default: none

267

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_particles command

Syntax:

read_particles file Nstep

file = dump file to read snapshot from•
Nstep = timestep to read•

Examples:

read_particles dump.sphere 10500

Description:

Read a snapshot of particles from a previously created dump file and add them to the simulation domain. This is a
means of reading in particles from a previous SPARTA simulation or created as output by another code. The
create_particles, fix emit/face, and read_restart commands are alternate ways to generate particles for a
simulation.

The dump file must be in the SPARTA format created by the dump particles command which is described on its
doc page.

Currently, each line of particle data in the file must have 8 fields in the following order. At some point we may
generalize this format.

id, type, x, y, z, vx, vy, vz

The id is any positive integer, which can simply be set to values from 1 to Nparticles if desired. The type is the
species ID from 1 to Nspecies. The value corresponds to the order in which species are defined in the current
input script via the species command. The x,y,z values are the particle coordinates which must be inside (or on the
surface of) the simulation box. If a particle is outside the box it will be skipped when the file is read. For 2d or
axisymmetric simulations z = 0.0 should be used, though SPARTA does not check for this. The vx,vy,vz values
are the particle velocity. The rotational and vibrational energies for the new particles are set to 0.0.

When the reading of particles is complete, the number of particles read is printed to the screen. If the number is
smaller than the particles in the file, it is because some were outside the simulation box.

A check is made for any particle inside a surface object which triggers an error. However the check is only for
grid cells entirely inside a surface object. Particles in grid cells which are cut by surfaces are not checked. It is
your responsibility to insure particles close to surfaces are actually outside the surface object. If this is not the
case, errors may be triggered once particles begin to move.

Restrictions: none

Related commands:

create_particles, fix emit/face

Default: none

268

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_restart command

Syntax:

read_restart file keyword args ...

file = name of binary restart file to read in•
zero or one keyword/args pair may be listed•

keywords = gridcut or balance
gridcut arg = cutoff

 cutoff = acquire ghost cells up to this far away (distance units)
balance args = same as for balance_grid command

Examples:

read_restart save.10000
read_restart restart.*
read_restart flow.*.%
read_restart save.10000 gridcut -1.0
read_restart save.10000 balance rcb cell

Description:

Read in a previously saved simulation from a restart file. This allows continuation of a previous run on the same
or different number of processors. Information about what is stored in a restart file is given below. Basically this
operation will re-create the simulation box with all its particles, the hierarchical grid used to track particles, and
surface elements embedded in the grid, all with their attributes at the point in time the information was written to
the restart file by a previous simluation.

Although restart files are saved in binary format to allow exact regeneration of information, the random numbers
used in the continued run will not be identical to those used if the run had been continued. Hence the new run will
not be identical to the continued original run, but should be statistically similar.

IMPORTANT NOTE: Because restart files are binary, they may not be portable to other machines. SPARTA will
print an error message if it cannot read a restart file for this reason.

If a restarted run is performed on the same number of processors as the original run, then the assignment of grid
cells (and their particles) to processors will be the same as in the original simulation. If the processor count
changes, then the assignment will necessarily be different. In particular, even if the original assignment was
"clumped", meaning each processor's cells were geometrically compact, the new assignment will not be clumped;
it will be "dispersed". See Section 5.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

Note that the restart file contains the setting for the global gridcut command. If it is >= 0.0 and the assignment of
grid cells to processors is "dispersed" (as described in the preceeding paragraph), and there are surface elements
defined in the restart file, an error will be triggered. This is because the read_restart command needs to mark all
the grid cells as inside vs outside the defined surface and cannot do this without ghost cell information. As
explained on the doc page for the global gridcut command, ghost cells cannot be setup with gridcut >= 0.0 and
"dispersed" grid cells.

269

http://sparta.sandia.gov

The solution is to use one of the two keywords listed above, either gridcut or balance. The former allows you to
reset the grid cutoff to -1.0 so that ghost cells can be setup. Note however that this means each processor will own
a copy of all grid cells (at least until you change it later), which may be undesirable or even impossible for large
problems if it requires too much memory. The other solution is to use the balance keyword to trigger a re-balance
of the grid cells to processors as soon as the read_restart command reads them in. The arguments for the balance
keyword are identical to those for the balance_grid command. If you choose a balancing style that results in a
"clumped" assignment, then ghost cells will be setup successfully.

Similar to how restart files are written (see the write_restart and restart commands), the restart filename can
contain two wild-card characters. If a "*" appears in the filename, the directory is searched for all filenames that
match the pattern where "*" is replaced with a timestep value. The file with the largest timestep value is read in.
Thus, this effectively means, read the latest restart file. It's useful if you want your script to continue a run from
where it left off. See the run command and its "upto" option for how to specify the run command so it doesn't
need to be changed either.

If a "%" character appears in the restart filename, SPARTA expects a set of multiple files to exist. The restart and
write_restart commands explain how such sets are created. Read_restart will first read a filename where "%" is
replaced by "base". This file tells SPARTA how many processors created the set and how many files are in it.
Read_restart then reads the additional files. For example, if the restart file was specified as save.% when it was
written, then read_restart reads the files save.base, save.0, save.1, ... save.P-1, where P is the number of
processors that created the restart file.

Note that P could be the total number of processors in the previous simulation, or some subset of those processors,
if the fileper or nfile options were used when the restart file was written; see the restart and write_restart
commands for details. The processors in the current SPARTA simulation share the work of reading these files;
each reads a roughly equal subset of the files. The number of processors which created the set can be different the
number of processors in the current SPARTA simulation. This can be a fast mode of input on parallel machines
that support parallel I/O.

A restart file stores only the following information about a simulation, as specified by the associated commands:

units•
dimension•
simulation box size and boundary conditions•
global settings•
particles with their individual attributes and custom attributes defined by fixes•
particle species info•
mixtures•
geometry of the hierarchical grid that overlays the simulation domain as created or read from a file•
geometry of all defined surface elements•
group definitions for grid cells and surface elements•
current timestep number•

No other information is stored in the restart file. Specifically, information about these simulation entities and their
associated commands is NOT stored:

random number seed•
computes•
fixes•
collision model•
chemistry (reaction) model•
surface collision models•

270

surface reaction models•
assignment of surfaces/boundaries to surface models•
variables•
regions•
output options for stats, dump, restart files•
timestep size•

This means any information specified in the original input script by these commands needs to be re-specified in
the restart input script, assuming the continued simulation needs the information.

Also note that many commands can be used after a restart file is read, to override a setting that was stored in the
restart file. For example, the global command can be used to reset the values of its specified keywords.

In particular, take note of the following issues:

The status of time-averaging fixes, such as fix ave/time, fix ave/grid, fix ave/surf, does not carry over into the
restarted run. E.g. if the ave running option is used with those commands in the original script and again specified
in the restart script, the running averaged quantities do not persist into the new run.

The surf_modify command must be used in the restart script to assign surface collision models, specified by the
surf_collide command, to all global boundaries of type "s", and to any surfaces contained in the restart file, as
read in by the read_surf command.

If a collision model is specified in the restart script, and the collide_modify vremax or remain command is used to
enable Vremax and fractional collision count to persist for many timesteps, no information about these quantities
persists from the original simulation to the restarted simulation. The initial run in the restart script will re-initialize
these data structures.

If a fix is used which defines custom attributes of particles, the vectors or arrays for these attributes are stored in
the restart file. See the fix ambipolar command as an example; it creates a custom vector called "ionambi" and a
custom array called "velambi". However, the restart script must specify the same fix before the first run command
it uses, so that the same custom attributes are re-created, otherwise the custom attribute info from the restart file
will be deleted.

Restrictions: none

Related commands:

read_grid, read_surf, write_restart, restart

Default: none

271

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_surf command

Syntax:

read_surf filename keyword args ...

filename = name of surface file•
zero or more keyword/args pairs may be appended•
keyword = origin or trans or atrans or ftrans or scale or rotate or invert or clip or group or typeadd or
particle

 origin args = Ox Oy Oz
 Ox,Oy,Oz = set origin of surface to this point (distance units)
 trans args = Dx Dy Dz
 Dx,Dy,Dz = translate origin by this displacement (distance units)
 atrans args = Ax Ay Az
 Ax,Ax,Az = translate origin to this absolute point (distance units)
 ftrans args = Fx Fy Fz
 Fx,Fy,Fz = translate origin to this fractional point in simulation box
 scale args = Sx Sy Sz
 Sx,Sy,Sz = scale surface by these factors around origin
 rotate args = theta Rx Ry Rz
 theta = rotate surface by this angle in counter-clockwise direction (degrees)
 Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction
 invert args = none
 clip args = none or fraction
 fraction = push points close to the box boundary to the boundary (optional)
 group arg = group-ID
 group-ID = new or existing surface group to assign the surface elements to
 typeadd arg = Noffset
 Noffset = add Noffset to the type value of each element
 particle args = none or check or keep
 none = allow no particles in simulation when read surfs
 check = delete particles inside surfs or in cells intersected by surfs
 keep = keep all particles

•

Examples:

read_surf surf.sphere
read_surf surf.sphere group sphere2 typeadd 1
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip 1.0e-6

Description:

Read the geometry of a surface from the specified file. In SPARTA, a "surface" is a collection of surface elements
that represent the surface of one or more physical objects which will be embedded in the global simulation box.
Surface elements are triangles in 3d or line segments in 2d. Surface elements for each physical object are required
to be a complete, connected set that tile the entire surface of the object. See the discussion of watertight surfaces
below.

Particles collide with surface elements as they advect. Each surface element is assigned to a collision model,
specified by the surf_collide command which affects how a particle bounces off the surface. Each surface
elements can optionally be assigned to a reaction model, specified by the surf_react command which determines if
any surface chemistry occurs during a collision. Statistics for each surface element due to their interactions with

272

http://sparta.sandia.gov

particles can be tallied via the compute surf command, time-averaged via the fix ave/surf command, and ouput via
the dump surface command.

Surface elememts can be assigned to surface groups via the group surf command. Surface group IDs are used by
other commands to operate on selected sets of elements. This command has group and typeadd keywords which
can be used to help assign different elements or different objects to different groups.

Note that the read_surf command can be used multiple times to read multiple objects from multiple files and add
them to the simulation domain. The format of a surface file is discussed below. Optional keywords allow the
vertices in the file to be translated, scaled, and rotated in various ways. This allows a single surface file, e.g.
containing a unit sphere, to be used multiple times in a single simulation or in different simulations.

The tools directory contains tools that can create surface files with simple geometric objects (spheres, blocks, etc).
It also has tools that can convert surface files in other formats to the SPARTA format, e.g. for files created by a
mesh-generation program.

The specified file can be a text file or a gzipped text file (detected by a .gz suffix).

A surface file has a header and a body. The header appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at a time. Lines can have a trailing comment
starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it is skipped. If the
line contains a header keyword, the corresponding value is read from the line. If it doesn't contain a header
keyword, the line begins the body of the file.

The body of the file contains one or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines in a section depends on the
section keyword as described below. Zero or more blank lines can be used between sections. Sections can appear
in any order.

The formatting of individual lines in the surface file (indentation, spacing between words and numbers) is not
important except that header and section keywords must be capitalized as shown and can't have extra white space
between their words.

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from the
beginning of the line. Thus the keyword points should be in a line like "1000 points".

points = # of points in surface•
lines = # of line segments in surface (only allowed for 2d)•
triangles = # of triangles in surface (only allowed for 3d)•

These are the recognized section keywords for the body of the file.

Points, Lines, Triangles•

The Points section consists of N consecutive entries, where N = # of points, each of this form:

point-ID x y z (for 3d)
point-ID x y (for 2d)

The point-ID is ignored; it is only added to assist in examining the file. The point-IDs should run consecutively
from 1 to N. X,y,z are the coordinates of the point in distance units. Note that for 2d simulations, z should be
omitted.

273

The Lines section is only allowed for 2d simulations and consists of N entries, where N = # of lines, each of this
form:

line-ID (type) p1 p2

The line-ID is ignored; it is only added to assist in examining the file. Type is an optional integer value which
must be specified for all or none of the lines. If used, it must be a positive integer value for each line. If not
specified, the type of each line is set to 1. Line types can be used to assign lines to surface groups via the group
surf command.

P1 and p2 are the point-IDs of the 2 end points of the line segment. Each is a value from 1 to Npoints, as
described above.

The ordering of p1 and p2 is important as it defines the direction of the outward normal for the line segment when
a particle collides with it. Molecules only collide with the "outer" edge of a line segment. This is defined by a
right-hand rule. The outward normal N = (0,0,1) x (p2-p1). In other words, a unit z-direction vector is crossed into
the vector from p1 to p2 to determine the normal.

The Triangles section is only allowed for 3d simulations and consists of N entries, where N = # of triangles, each
of this form:

tri-ID (type) p1 p2 p3

The tri-ID is ignored; it is only added to assist in examining the file. Type is an optional integer value which must
be specified for all or none of the triangles. If used, it must be a positive integer value for each triangle. If not
specified, the type of each triangle is set to 1. Triangle types can be used to assign triangles to surface groups via
the group surf command.

P1 and p2 and p3 are the point-IDs of the 3 corner points of the triangle. Each is a value from 1 to Npoints, as
described above.

The ordering of p1 and p2 and p3 is important as it defines the direction of the outward normal for the triangle
when a particle collides with it. Molecules only collide with the "outer" face of a triangle. This is defined by a
right-hand rule. The outward normal N = (p2-p1) x (p3-p1). In other words, the edge from p1 to p2 is crossed into
the edge from p1 to p3 to determine the normal.

The following optional keywords affect the geometry of the read-in surface elements. The geometric
transformations they describe are performed in the order they are listed, which gives flexibility in how surfaces
can be manipulated. Note that the order may be important; e.g. performing an origin operation followed by a
rotate operation may not be the same as a rotate followed by a origin.

Most of the keywords perform a geometric transformation on all the vertices in the surface file with respect to an
origin point. By default the origin is (0.0,0.0,0.0), regardless of the position of individual vertices in the file.

The origin keyword resets the origin to the specified Ox,Oy,Oz. This operation has no effect on the vertices.

The trans keyword shifts or displaces the origin by the vector (Dx,Dy,Dz). It also displaces each vertex by
(Dx,Dy,Dz).

The atrans keyword resets the origin to an absolute point (Ax,Ay,Az) which implies a displacement (Dx,Dy,Dz)
from the current origin. It also displaces each vertex by (Dx,Dy,Dz).

274

The ftrans keyword resets the origin to a fractional point (Fx,Fy,Fz). Fractional means that Fx = 0.0 is the lower
edge/face in the x-dimension and Fx = 1.0 is the upper edge/face in the x-dimension, and similarly for Fy and Fz.
This change of origin implies a displacement (Dx,Dy,Dz) from the current origin. This operation also displaces
each vertex by (Dx,Dy,Dz).

The scale keyword does not change the origin. It computes the displacement vector of each vertex from the origin
(delx,dely,delz) and scales that vector by (Sx,Sy,Sz), so that the new vertex coordinate is (Ox + Sx*delx,Oy +
Sy*dely,Oz + Sz*delz).

The rotate keyword does not change the origin. It rotates the coordinates of all vertices by an angle theta in a
counter-clockwise direction, around the vector starting at the origin and pointing in the direction Rx,Ry,Rz. Any
rotation can be represented by an appropriate choice of origin, theta and (Rx,Ry,Rz).

The invert keyword does not change the origin or any vertex coordinates. It flips the direction of the outward
surface normal of each surface element by changing the ordering of its vertices. Since particles only collide with
the outer surface of a surface element, this is a mechanism for using a surface files containing a single sphere (for
example) as either a sphere to embed in a flow field, or a spherical outer boundary containing the flow.

The clip keyword does not change the origin. It truncates or "clips" a surface that extends outside the simulation
box in the following manner. In 3d, each of the 6 clip planes represented by faces of the global simulation box are
considered in turn. Any triangle that straddles the face (with points on both sides of the clip plane), is truncated at
the plane. New points along the edges that cross the plane are created. A triangle may also become a trapezoid, in
which case it turned into 2 triangles. Then all the points on the side of the clip plane that is outside the box, are
projected onto the clip plane. Finally, all triangles that lie in the clip plane are removed, as are any points that are
unused after the triangle removal. After this operation is repeated for all 6 faces, the remaining surface is entirely
inside the simulation box, though some of its triangles may include points on the faces of the simulation box. A
similar operation is performed in 2d with the 4 clip edges represented by the edges of the global simulation box.

If you use the clip keyword, you should check the resulting statistics of the clipped surface printed out by this
command, including the minimum size of line and triangle edge lengths. It is possible that very short lines or very
small triangles will be created near the box surface due to the clipping operation, depending on the coordinates of
the initial unclipped points.

If this is the case, an optional fraction argument can be appended to the clip keyword. Fraction is a unitless value
which is converted to a distance delta in each dimension where delta = fraction * (boxhi - boxlo). If a point is
nearer than delta to the lo or hi boundary in a dimension, the point is moved to be on the boundary, before the
clipping operation takes place. This can prevent tiny surface elements from being created due to clipping. If
fraction is not specified, the default value is 0.0, which means points are not moved. If specified, fraction must be
a value between 0.0 and 0.5.

Note that the clip operation may delete some surface elements and create new ones. Likewise for the points that
define the end points or corner points of surface element lines (2d) or triangles (3d). The resulting altered set of
surface elements can be written out to a file by the write_surf command, which can then be used an input to a new
simulation or for post-processing and visualization.

The following optional keywords affect group and type settings of the read-in surface elements.

Surface groups are collections of surface elements. Each surface element belongs to one or more surface groups;
all elements belong to the "all" group, which is created by default. Surface group IDs are used by other commands
to identify a group of suface elements to operate on. See the group surf command for more details.

275

Every surface element also stores a type which is a positive integer. Type values are useful for flagging subsets of
elements or different objects in the surface file. For example, a patch of triangles on a sphere. Or one sphere out
of several that the file contains. Surface element types can be used to define surface groups. See the group surf
command for details.

The group keyword specifies an extra surface group-ID to assign all the read-in surface elements to. All the
read-in elements are assigned to the "all" group and to group-ID. If group-ID does not exist, a new surface group
is created. If it does exist the read-in surface elements are added to that group.

The typeadd keyword defines an Noffset value which is added to the type of each read-in surface element. The
default is Noffset = 0, which means the read-in type values are not altered. If type values are not included in the
file, they default to 1 for every element, but can still be altered by the typeadd keyword.

Note that use of the group and typeadd keywords allow the same surface file to be read multiple times (e.g. with
different origins, tranlations, rotations, etc) to define multiple objects, and assign their surface elements to
different groups or different type values.

The particle keyword determines how particles in the simulation are affected by the new surface elements. If the
setting is none, which is the default, then no particles can exist in the simulation. If the setting is check, then
particles in grid cells that are inside the new watertight surface object(s) or in grid cells intersected by the new
surface elements are deleted. This is to insure no particles will end up inside a surface object, which will typically
generate errors when particles move. If the setting is keep then no particles are deleted. It is up to you to insure
that no particles are inside surface object(s), else an error may occur later. This setting can be useful if a
remove_surf was used to remove a surface object, and a new object is being read in, and you know the new object
is smaller than the one it replaced. E.g. for a model of a shrinking or ablating object.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command, and after a grid
has been created by the create_grid command. If particles already exist in the simulation, you must insure
particles do not end up inside the added surfaces. See the particle keyword for options with regard to particles.

To read gzipped surface files, you must compile SPARTA with the -DSPARTA_GZIP option - see Section 2.2 of
the manual for details.

Every vertex in the final surface (after translation, rotation, scaling, etc) must be inside or on the surface of the
global simulation box. Note that using the clip operation guarantees that this will be the case.

The surface elements in a single surface file must represent a "watertight" surface. For a 2d simulation this means
that every point is part of exactly 2 line segments. For a 3d simulation it means that every triangle edge is part of
exactly 2 triangles. Exceptions to these rules allow for triangle edges (in 3d) that lie entirely in a global face of the
simulation box, or for line points (in 2d) that are on a global edge of the simulation box. This can be the case after
clipping, which allows for use of watertight surface object (e.g. a sphere) that is only partially inside the
simulation box, but which when clipped to the box becomes non-watertight, e.g. half of a sphere.

Note that this definition of watertight does not require that the surface elements in a file represent a single
physical object; multiple objects (e.g. spheres) can be represented, provided each is watertight.

Another restriction on surfaces is that they do not represent an object that is "infinitely thin", so that two sides of
the same object lie in the same plane (3d) or on the same line (2d). This will not generate an error when the
surface file is read, assuming the watertight rule is followed. However when particles collide with the surface,
errors will be generated if a particle hits the "inside" of a surface element before hitting the "outside" of another

276

element. This can occur for infinitely thin surfaces due to numeric round-off.

When running a simulation with multiple objects, read from one or more surface files, you should insure they do
not touch or overlap with each other. SPARTA does not check for this, but it will typically lead to unphysical
particle dynamics.

Related commands:

write_surf

Default:

The default origin for the vertices in the surface file is (0,0,0). The defaults for group = all, type = no, toffset = 0,
particle = none.

277

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

region command

Syntax:

region ID style args keyword value ...

ID = user-assigned name for the region•
style = block or cylinder or plane or sphere or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

plane args = px py pz nx ny nz
 px,py,pz = point on the plane (distance units)
 nx,ny,nz = direction normal to plane (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

union args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to join together

intersect args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to intersect

•

zero or more keyword/value pairs may be appended•
keyword = side

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

•

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 INF
region outside union 4 side1 side2 side3 side4

Description:

This command defines a geometric region of space. Various other commands use regions.

IMPORTANT NOTE: Currently, only the dump_modify command can use a region to limit its output. Usage by
other commands will be added in the future.

Commands which use regions typically test whether a point is contained in the region or not. For this purpose,
coordinates exactly on the region boundary are considered to be interior to the region. This means, for example,
for a spherical region, a point on the sphere surface would be part of the region if the sphere were defined with the
side in keyword, but would not be part of the region if it were defined using the side out keyword. See more
details on the side keyword below.

278

http://sparta.sandia.gov

The lo/hi values for the block or cylinder styles can be specified as INF which means a large negative or positive
number (1.0e20).

For style cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis dimension.
For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example above
specifies a cylinder with its axis in the y-direction located at x = 2.0 and z = 3.0, with a radius of 5.0, and
extending in the y-direction from -5.0 to infinity.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect style
creates a region consisting of the volume that is common to all the listed regions.

IMPORTANT NOTE: Regions in SPARTA are always 3d geometric objects, regardless of whether the dimension
of the simulation 2d or 3d. Thus when using regions in a 2d simulation, for example, you should be careful to
define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric extent you
want.

The side keyword determines whether the region is considered to be inside or outside of the specified geometry.
Using this keyword in conjunction with union and intersect regions, complex geometries can be built up. For
example, if the interior of two spheres were each defined as regions, and a union style with side = out was
constructed listing the region-IDs of the 2 spheres, the resulting region would be all the volume in the simulation
box that was outside both of the spheres.

Restrictions: none

Related commands:

dump_modify

Default:

The option default is side = in.

279

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

remove_surf command

Syntax:

remove_surf surfID

surfID = group ID for which surface elements to remove•

Examples:

remove_surf topsurf

Description:

Remove a group of surface elements that have previously been read-in via the read_surf command. The group
surf or read_surf can be used to assign each surface element to one or more groups. This command removes all
surface elements in the specified surfID group.

Note that the remaining surface elements must still constitute a "watertight" surface or an error will be generated.
The definition of watertight is explained in the Restrictions section of the read_surf doc page.

After surface elements have been deleted, any surface points that are no longer part of a surface element are also
deleted. The remaining surface points and elements are renumbered to create compressed, contiguous lists. The
new list of surface elements can be output via the write_surf command.

Restrictions: none

Related commands:

read_surf

Default: none

280

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

reset_timestep command

Syntax:

reset_timestep N

N = timestep number•

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally comes after the timestep has been set by
reading a restart file via the read_restart command, or a previous simulation advanced the timestep.

The create_box command sets the timestep to 0; the read_restart command sets the timestep to the value it had
when the restart file was written.

Restrictions: none

This command cannot be used when any fixes are defined that keep track of elapsed time to perform certain kinds
of time-dependent operations. Examples are the fix ave/time, fix ave/grid, and fix ave/surf commands. Thus these
fixes should be specified after the timestep has been reset.

Resetting the timestep clears flags for computes that may have calculated some quantity from a previous run. This
means these quantity cannot be accessed by a variable in between runs until a new run is performed. See the
variable command for more details.

Related commands: none

Default: none

281

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

restart command

Syntax:

restart 0
restart N root keyword value ...
restart N file1 file2 keyword value ...

N = write a restart file every this many timesteps•
N can be a variable (see below)•
root = filename to which timestep # is appended•
file1,file2 = two full filenames, toggle between them when writing file•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

restart 0
restart 1000 flow.restart
restart 1000 restart.*.equil
restart 10000 flow.%.1 flow.%.2 nfile 10
restart v_mystep flow.restart

Description:

Write out a binary restart file every so many timesteps, in either or both of two modes, as a run proceeds. A value
of 0 means do not write out any restart files. The two modes are as follows. If one filename is specified, a series
of filenames will be created which include the timestep in the filename. If two filenames are specified, only 2
restart files will be created, with those names. SPARTA will toggle between the 2 names as it writes successive
restart files.

Note that you can specify the restart command twice, once with a single filename and once with two filenames.
This would allow you, for example, to write out archival restart files every 100000 steps using a single filenname,
and more frequent temporary restart files every 1000 steps, using two filenames. Using restart 0 will turn off both
modes of output.

Similar to dump files, the restart filename(s) can contain two wild-card characters.

If a "*" appears in the single filename, it is replaced with the current timestep value. This is only recognized when
a single filename is used (not when toggling back and forth). Thus, the 3rd example above creates restart files as
follows: restart.1000.equil, restart.2000.equil, etc. If a single filename is used with no "*", then the timestep value
is appended. E.g. the 2nd example above creates restart files as follows: flow.restart.1000, flow.restart.2000, etc.

If a "%" character appears in the restart filename(s), then one file is written for each processor and the "%"
character is replaced with the processor ID from 0 to P-1. An additional file with the "%" replaced by "base" is
also written, which contains global information. For example, the files written on step 1000 for filename restart.%
would be restart.base.1000, restart.0.1000, restart.1.1000, ..., restart.P-1.1000. This creates smaller files and can

282

http://sparta.sandia.gov

be a fast mode of output and subsequent input on parallel machines that support parallel I/O. The optional fileper
and nfile keywords discussed below can alter the number of files written.

Restart files are written on timesteps that are a multiple of N but not on the first timestep of a run or minimization.
You can use the write_restart command to write a restart file before a run begins. A restart file is not written on
the last timestep of a run unless it is a multiple of N. A restart file is written on the last timestep of a minimization
if N > 0 and the minimization converges.

Instead of a numeric value, N can be specifed as an equal-style variable, which should be specified as v_name,
where name is the variable name. In this case, the variable is evaluated at the beginning of a run to determine the
next timestep at which a restart file will be written out. On that timestep, the variable will be evaluated again to
determine the next timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq()
and stride() math functions for equal-style variables, as examples of useful functions to use in this context. Other
similar math functions could easily be added as options for equal-style variables.

For example, the following commands will write restart files every step from 1100 to 1200, and could be useful
for debugging a simulation where something goes wrong at step 1163:

variable s equal stride(1100,1200,1)
restart v_s tmp.restart

See the read_restart command for information about what is stored in a restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary (to enable exact restarts), it may not be readable on another machine.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
restart file name(s). As explained above, the "%" character causes the restart file to be written in pieces, one piece
for each of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of
processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a restart file.

Restrictions: none

Related commands:

write_restart, read_restart

Default:

restart 0

283

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

run command

Syntax:

run N keyword values ...

N = # of timesteps•
zero or more keyword/value pairs may be appended•
keyword = upto or start or stop or pre or post or every

upto value = none
start value = N1

 N1 = timestep at which 1st run started
stop value = N2

 N2 = timestep at which last run will end
pre value = no or yes
post value = no or yes
every values = M c1 c2 ...

 M = break the run into M-timestep segments and invoke one or more commands between each segment
 c1,c2,...,cN = one or more SPARTA commands, each enclosed in quotes
 c1 = NULL means no command will be invoked

•

Examples:

run 10000
run 1000000 upto
run 100 start 0 stop 1000
run 1000 pre no post yes
run 100000 start 0 stop 1000000 every 1000 "print 'Temp = $t'"
run 100000 every 1000 NULL

Description:

Run or continue a simulation for a specified number of timesteps.

A value of N = 0 is acceptable; only the statistics of the system are computed and printed without taking a
timestep.

The upto keyword means to perform a run starting at the current timestep up to the specified timestep. E.g. if the
current timestep is 10,000 and "run 100000 upto" is used, then an additional 90,000 timesteps will be run. This
can be useful for very long runs on a machine that allocates chunks of time and terminate your job when time is
exceeded. If you need to restart your script multiple times (reading in the last restart file), you can keep restarting
your script with the same run command until the simulation finally completes.

The start or stop keywords can be used if multiple runs are being performed and you want a variable or fix
command that changes some value over time (e.g. target temperature) to make the change across the entire set of
runs and not just a single run.

For example, consider these commands followed by 10 run commands:

variable myTemp equal ramp(300,500)
surf_collide 1 diffuse v_myTemp 0.5
run 1000 start 0 stop 10000
run 1000 start 0 stop 10000

284

http://sparta.sandia.gov

...
run 1000 start 0 stop 10000

The ramp() function in the variable and its use in the "surf_collide" command will ramp the target temperature
from 300 to 500 during a run. If the run commands did not have the start/stop keywords (just "run 1000"), then
the temperature would ramp from 300 to 500 during the 1000 steps of each run. With the start/stop keywords, the
ramping takes place smoothly over the 10000 steps of all the runs together.

The pre and post keywords can be used to streamline the setup, clean-up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g. SPARTA
is being called as a library which is doing other computations between successive short SPARTA runs).

By default (pre and post = yes), SPARTA zeroes statistical counts before every run and initializes other fixes and
computes as needed. And after every run it gathers and prints timings statistics. If a run is just a continuation of a
previous run (i.e. no settings are changed), the initial computation is not necessary. So if pre is specified as "no"
then the initial setup is skipped, except for printing statistical info. Note that if pre is set to "no" for the very 1st
run SPARTA performs, then it is overridden, since the initial setup computations must be done.

IMPORTANT NOTE: If your input script changes settings between 2 runs (e.g. adds a fix or compute), then the
initial setup must be performed. SPARTA does not check for this, but it would be an error to use the pre no option
in this case.

If post is specified as "no", the full timing and statistical output is skipped; only a one-line summary timing is
printed.

The every keyword provides a means of breaking a SPARTA run into a series of shorter runs. Optionally, one or
more SPARTA commands (c1, c2, ..., cN) will be executed in between the short runs. If used, the every keyword
must be the last keyword, since it has a variable number of arguments. Each of the trailing arguments is a single
SPARTA command, and each command should be enclosed in quotes, so that the entire command will be treated
as a single argument. This will also prevent any variables in the command from being evaluated until it is
executed multiple times during the run. Note that if a command itself needs one of its arguments quoted (e.g. the
print command), then you can use a combination of single and double quotes, as in the example above or below.

The every keyword is a means to avoid listing a long series of runs and interleaving commands in your input
script. For example, a print command could be invoked or a fix could be redefined, e.g. to reset a load balancing
parameter. Or this could be useful for invoking a command you have added to SPARTA that wraps some other
code (e.g. as a library) to perform a computation periodically during a long SPARTA run. See Section 8 of the
manual for info about how to add new commands to SPARTA. See Section 4.7 of the manual for ideas about how
to couple SPARTA to other codes.

With the every option, N total steps are simulated, in shorter runs of M steps each. After each M-length run, the
specified commands are invoked. If only a single command is specified as NULL, then no command is invoked.
Thus these lines:

compute t temp
variable myT equal c_t
run 6000 every 2000 "print 'Temp = $myT'"

are the equivalent of:

compute t temp
variable myT equal c_t
run 2000
print "Temp = $myT"

285

run 2000
print "Temp = $myT"
run 2000
print "Temp = $myT"

which does 3 runs of 2000 steps and prints the x-coordinate of a particular atom between runs. Note that the
variable "$q" will be evaluated afresh each time the print command is executed.

Note that by using the line continuation character "&", the run every command can be spread across many lines,
though it is still a single command:

run 100000 every 1000 &
 "print 'Minimum value = $a'" &
 "print 'Maximum value = $b'" &
 "print 'Temp = $c'"

If the pre and post options are set to "no" when used with the every keyword, then the 1st run will do the full
setup and the last run will print the full timing summary, but these operations will be skipped for intermediate
runs.

IMPORTANT NOTE: You might hope to specify a command that exits the run by jumping out of the loop, e.g.

compute t temp
variable T equal c_t
run 10000 every 100 "if '$T <300.0' then 'jump SELF afterrun'"

Unfortunately this will not currently work. The run command simply executes each command one at a time each
time it pauses, then continues the run. You can replace the jump command with a simple quit command and cause
SPARTA to exit during the middle of a run when the condition is met.

Restrictions:

The number of specified timesteps N must fit in a signed 32-bit integer, so you are limited to slightly more than 2
billion steps (2^31) in a single run. However, you can perform successive runs to run a simulation for any number
of steps (ok, up to 2^63 steps).

Related commands: none

Default:

The option defaults are start = the current timestep, stop = current timestep + N, pre = yes, and post = yes.

286

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

scale_particles command

Syntax:

scale_particles mix-ID factor

mix-ID = ID of mixture to use when scaling particles•
factor = scale factor•

Examples:

scale_particles air 0.5
scale_particles air 4.0

Description:

Scale the number of particles in the simulation by cloning or deleting individual particles. This can be useful
between runs, or after reading a restart file, to increase or decrease the particle count before a new run command
is issued, as if the global fnum value had been changed. For example, an initial coarse simulation can be
performed, followed by a simulation at higher resolution.

Only particles of species in the specified mixture are considered for cloning/deleting. See the mixture command
for how it defines a collection of species.

The specified factor can be any value >= 0.0.

If factor < 1.0, then for each particle, a random number R is generated. If R > factor, the particle is deleted.

If factor > 1.0, then for each particle additional particles may be created, by cloning all attributes of the original
particle, except for a new random particle ID assigned to each new particle. E.g. if factor = 3.4, then two extra
particles are created, and a 3rd is created with probability 0.4.

Restrictions: none

Related commands:

create_particles

Default: none

287

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

seed command

Syntax:

seed Nvalue

Nvalue = seed for a random number generator (positive integer)•

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number generator. This generator is used by
SPARTA to initialize auxiliary random number generators, which in turn are used for all operations in the code
requiring random numbers. This means you can effectively run a statistically-independent simulation by simply
changing this single seed.

The various random number generators used in SPARTA are portable, which means they produce the same
random number streams on any machine.

This command is required to perform a SPARTA simulation.

Restrictions: none

Related commands: none

Default: none

288

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

shell command

Syntax:

shell cmd args

cmd = cd or mkdir or mv or rm or rmdir or putenv or arbitrary command

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

putenv args = var1=value1 var2=value2
 var=value = one of more definitions of environment variables
 anything else is passed as a command to the shell for direct execution

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.sparta hold/log.1
shell rm TMP/file1 TMP/file2
shell putenv SPARTA_DATA=../../data
shell my_setup file1 10 file2
shell my_post_process 100 dump.out

Description:

Execute a shell command. A few simple file-based shell commands are supported directly, in Unix-style syntax.
Any command not listed above is passed as-is to the C-library system() call, which invokes the command in a
shell.

This is means to invoke other commands from your input script. For example, you can move files around in
preparation for the next section of the input script. Or you can run a program that pre-processes data for input into
SPARTA. Or you can run a program that post-processes SPARTA output data.

With the exception of cd, all commands, including ones invoked via a system() call, are executed by only a single
processor, so that files/directories are not being manipulated by multiple processors.

The cd cmd executes the Unix "cd" command to change the working directory. All subsequent SPARTA
commands that read/write files will use the new directory. All processors execute this command.

The mkdir cmd executes the Unix "mkdir" command to create one or more directories.

The mv cmd executes the Unix "mv" command to rename a file and/or move it to a new directory.

289

http://sparta.sandia.gov

The rm cmd executes the Unix "rm" command to remove one or more files.

The rmdir cmd executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

The putenv cmd defines or updates an environment variable directly. Since this command does not pass through
the shell, no shell variable expansion or globbing is performed, only the usual substitution for SPARTA variables
defined with the variable command is performed. The resulting string is then used literally.

Any other cmd is passed as-is to the shell along with its arguments as one string, invoked by the C-library
system() call. For example, these lines in your input script:

variable n equal 10
variable foo string file2
shell my_setup file1 $n ${foo}

would be the same as invoking

% my_setup file1 10 file2

from a command-line prompt. The executable program "my_setup" is run with 3 arguments: file1 10 file2.

Restrictions:

SPARTA does not detect errors or print warnings when any of these commands execute. E.g. if the specified
directory does not exist, executing the cd command will silently do nothing.

Related commands: none

Default: none

290

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

species command

Syntax:

species file ID1 ID2 ...

file = filename that lists species•
ID1, ID2, ... = one or more species names listed in file•
multi-species abbreviations can also be used (see below)•

Examples:

species species.data air
species species.data air Cl
species species.data O2 N2 NO
species myfile H+ Cl- HCl

Description:

Define one or more particle species to use in the simulation. This command can be used as many times as desired
to add species to the list of species that the simulation recognizes.

The specified file is the name of a file containing definitions for some number of species, not all of which need to
used by this simulation. Only those requested by ID will be extracted from the file and they must be present in the
file. The format of the species file is discussed below. The data directory in the SPARTA distribution contains
several species files, all with the suffix ".species".

Each ID is a character string used to identify the species, such as N or O2 or NO or D or Fe-. The string can be
any combination of alphanumeric characters or "+", "-", or underscore.

Instead of specifying IDs for single species, one of several pre-defined multi-species names can be used, each of
which is expanded into a list of several individual species IDs. The list of recognized abbreviations is as follows:

air = N, O, NO•

These abbreviations can be used in combination with single-species IDs as in the 2nd example above.

The format of a species file is as follows. Comments or blank lines are allowed in the file. Comment lines start
with a "#" character. All other lines must have the following format with values separated by whitespace:

species-ID prop1 prop2 ... prop9

The species-ID is a string that will be matched against the requested species-ID, as described above. The
properties are as follows:

prop1 = molecular weight (atomic mass units, e.g. 16 for oxygen)•
prop2 = molecular mass (mass units)•
prop3 = rotational degrees of freedom (integer)•
prop4 = inverse rotational relaxtion number (unitless)•
prop5 = vibrational degrees of freedom (integer)•
prop6 = inverse vibrational relaxation number (unitless)•

291

http://sparta.sandia.gov

prop7 = vibrational temperature (temperature units)•
prop8 = species weight (unitless)•
prop9 = multiple of electon charge (1 for a proton)•

Restrictions: none

Related commands: none

Default: none

292

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats command

Syntax:

stats N

N = output statistics every N timesteps•

Examples:

stats 100

Description:

Compute and print statistical info (e.g. particle count, temperature) on timesteps that are a multiple of N and at the
beginning and end of a simulation run. A value of 0 will only print statistics at the beginning and end.

The content and format of what is printed is controlled by the stats_style and stats_modify commands.

The timesteps on which statistical output is written can also be controlled by a variable. See the stats_modify
every command.

Restrictions: none

Related commands:

stats_style, stats_modify

Default:

stats 0

293

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats_modify command

Syntax:

stats_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = flush or format or every

flush value = yes or no
format values = line string, int string, float string, M string, or none

 string = C-style format string
 M = integer from 1 to N, where N = # of quantities being output

every value = v_name
 v_name = an equal-style variable name

•

Examples:

stats_modify flush yes
stats_modify format 3 %15.8g
stas_modify format line "%ld %g %g %15.8g"

Description:

Set options for how statistical information is computed and printed by SPARTA.

The flush keyword invokes a flush operation after statistical info is written to the log file. This insures the output
in that file is current (no buffering by the OS), even if SPARTA halts before the simulation completes.

The format keyword can be used to change the default numeric format of any of quantities the stats_style
command outputs. All the specified format strings are C-style formats, e.g. as used by the C/C++ printf()
command. The line keyword takes a single argument which is the format string for the entire line of stats output,
with N fields, which you must enclose in quotes if it is more than one field. The int and float keywords take a
single format argument and are applied to all integer or floating-point quantities output. The setting for M string
also takes a single format argument which is used for the Mth value output in each line, e.g. the 5th column is
output in high precision for "format 5 %20.15g".

The format keyword can be used multiple times. The precedence is that for each value in a line of output, the M
format (if specified) is used, else the int or float setting (if specified) is used, else the line setting (if specified) for
that value is used, else the default setting is used. A setting of none clears all previous settings, reverting all values
to their default format.

NOTE: The stats output values step and atoms are stored internally as 8-byte signed integers, rather than the usual
4-byte signed integers. When specifying the format int option you can use a "%d"-style format identifier in the
format string and SPARTA will convert this to the corresponding 8-byte form when it is applied to those
keywords. However, when specifying the line option or format M string option for step and natoms, you should
specify a format string appropriate for an 8-byte signed integer, e.g. one with "%ld".

The every keyword allows a variable to be specified which will determine the timesteps on which statistical
output is generated. It must be an equal-style variable, and is specified as v_name, where name is the variable
name. The variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot
will be written out. On that timestep, the variable will be evaluated again to determine the next timestep, etc. Thus

294

http://sparta.sandia.gov

the variable should return timestep values. See the stagger() and logfreq() math functions for equal-style variables,
as examples of useful functions to use in this context. Other similar math functions could easily be added as
options for equal-style variables. In addition, statistical output will always occur on the first and last timestep of
each run.

For example, the following commands will output statistical info at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
stats_modify 1 every v_s

Note that the every keyword overrides the output frequency setting made by the stats command, by setting it to 0.
If the stats command is later used to set the output frequency to a non-zero value, then the variable setting of the
stats_modify every command will be overridden.

Restrictions: none

Related commands:

stats, stats_style

Default:

The option defaults are flush = no, format int = "%8d", format float = "%12.8g", and every = non-variable setting
provided by the stats command.

295

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats_style command

Syntax:

stats_style arg1 arg2 ...

arg1,arg2,... = list of keywords

 possible keywords = step, elapsed, elaplong, dt, cpu, tpcpu, spcpu, wall,
 np, npave, ntouch, ntouchave, ncomm, ncommave,
 nbound, nboundave, nexit, nexitave,
 nscoll, nscollave, nscheck, nscheckave,
 ncoll, ncollave, nattempt, nattemptave,
 nreact, nreactave, nsreact, nsreactave,
 nparent, nchild, nsplit,
 vol, lx, ly, lz,
 xlo, xhi, ylo, yhi, zlo, zhi,
 s_ID[I], r_ID[I],
 c_ID, c_ID[I], c_ID[I][J],
 f_ID, f_ID[I], f_ID[I][J],
 v_name

 step = timestep
 elapsed = timesteps since start of this run
 elaplong = timesteps since start of initial run in a series of runs
 dt = timestep size
 cpu = elapsed CPU time in seconds within a run
 tpcpu = time per CPU second
 spcpu = timesteps per CPU second
 wall = wallclock time in seconds
 np,npave = # of particles (this step, per-step)
 ntouch,ntouchave = # of cell touches by particles (this step, per-step)
 ncomm,ncommave = # of particles communicated (this step, per-step)
 nbound,nboundave = # of boundary collisions (this step, per-step)
 nexit,nexitave = # of boundary exits (this step, per-step)
 nscoll,nscollave = # of surface collisions (this step, per-step)
 nscheck,nscheckave = # of surface checks (this step, per-step)
 ncoll,ncollave = # of particle/particle collisions (this step, per-step)
 nattempt,nattemptave = # of attempted collisions (this step, per-step)
 nreact,nreactave = # of chemical reactions (this step, per-step)
 nsreact,nsreactave = # of chemical reactions on surfs and boundaries (this step, per-step)
 nparent,nchild,nsplit = # of parent, child, split cells
 vol = volume of simulation box
 lx,ly,lz = simulation box lengths
 xlo,xhi,ylo,yhi,zlo,zhi = box boundaries,
 s_ID[I] = Ith component of global vector calculated by a surface collision model with ID
 r_ID[I] = Ith component of global vector calculated by a surface reaction model with ID
 c_ID = global scalar value calculated by a compute with ID
 c_ID[I] = Ith component of global vector calculated by a compute with ID, I can include wildcard (see below)
 c_ID[I][J] = I,J component of global array calculated by a compute with ID
 f_ID = global scalar value calculated by a fix with ID
 f_ID[I] = Ith component of global vector calculated by a fix with ID, I can include wildcard (see below)
 f_ID[I][J] = I,J component of global array calculated by a fix with ID
 v_name = scalar value calculated by an equal-style variable with name

•

Examples:

stats_style step cpu np
stats_style step cpu spcpu np xlo xhi c_myCount[2]

296

http://sparta.sandia.gov

stats_style step cpu spcpu np xlo xhi c_myCount[*]

Description:

Determine what statistical data is printed to the screen and log file.

The values printed by the various keywords are instantaneous values, calculated on the current timestep. The
exception is the keywords suffixed by "ave", which print a running total divided by the number of timesteps.

Options invoked by the stats_modify command can be used to set the numeric precision of each printed value, as
well as other attributes of the statistics.

The step and elapsed keywords refer to timestep count. Step is the current timestep. Elapsed is the number of
timesteps elapsed since the beginning of this run. Elaplong is the number of timesteps elapsed since the beginning
of an initial run in a series of runs. See the start and stop keywords for the run command for info on how to
invoke a series of runs that keep track of an initial starting time. If these keywords are not used, then elapsed and
elaplong are the same value.

The cpu keyword is elapsed CPU seconds since the beginning of this run. The tpcpu and spcpu keywords are
measures of how fast your simulation is currently running. The tpcpu keyword is simulation time per CPU
second, where simulation time is in time units. The spcpu keyword is the number of timesteps per CPU second.
Both quantities are on-the-fly metrics, measured relative to the last time they were invoked. Thus if you are
printing out statistical output every 100 timesteps, the two keywords will continually output the time and timestep
rate for the last 100 steps.

The wall keyword is elapsed time in seconds since SPARTA was launched. This can be used to time portions of
the input script in the following manner:

variable t equal wall
variable t1 equal $t
portion of input script
variable t2 equal $t
variable delta equal v_2-v_1
print "Delta time = $delta"

The np, ntouch, ncomm, nbound, nexit, nscoll, nscheck, ncoll, nattempt, nreact, and nsreact keywords all generate
counts for the current timestep.

The npave, ntouchave, ncommave, nboundave, nexitave, nscollave, nscheckave, ncollave, nattemptave, nreactave,
and nsreactave keywords all generate values that are the cummulative total of the corresponding count divided by
elapsed = the number of timesteps since the start of the current run.

The np keyword is the number of particles.

The ntouch keyword is the number of cells touched by the particles during the move portion of the timestep. E.g.
if a particle moves from cell A to adjacent cell B, it touches 2 cells.

The ncomm keyword is the number of particles communicated to other processors.

The nbound keyword is the number of particles that collided with a global boundary. Crossing a periodic
boundary or exiting an outflow boundary is not counted.

The nexit keyword is the number of particles that exited the simulation box through an outflow boundary.

297

The nscoll keyword is the number of particle/surface collisions that occurred, where a particle collided with a
geometric surface.

The nscheck keyword is the number of particle/surface collisions that were checked for. If a cell is overlapped by
N surface elements, all N must be checked for collisions each time a particle in that cell moves.

The ncoll keyword is the number of particle/particle collisions that occurred.

The nattempt keyword is the number of particle/particle collisions that were attempted.

The nreact keyword is the number of chemical reactions that occurred. The nsreact keyword is the number of
chemical reactions on surfaces that occurred, including the global boundaries if they are treated as reacting
surfaces, via the bound_modify command.

The nparent keyword is the number of parent cells, including the root cell. The nchild keyword is the number of
child cells, which includes both unsplit and split cells. The nsplit keyword is the number of split cells. See Section
howto 4.8 for a description of the hierarchical grid used by SPARTA and a definition of these various kinds of
grid cells.

The vol keyword is the volume (or area in 2d) of the simulation box.

The lx, ly, lz keywords are the dimensions of the simulation box.

The xlo, xhi, ylo, yhi, zlo, zhi keywords are the boundaries of the simulation box.

For output values from a compute or fix, the bracketed index I used to index a vector, as in c_ID[I] or f_ID[I],
can be specified using a wildcard asterisk with the index to effectively specify multiple values. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the size of the vector (for mode = scalar) or the number of columns in
the array (for mode = vector), then an asterisk with no numeric values means all indices from 1 to N. A leading
asterisk means all indices from 1 to n (inclusive). A trailing asterisk means all indices from n to N (inclusive). A
middle asterisk means all indices from m to n (inclusive).

Using a wildcard is the same as if the individual elements of the vector had been listed one by one. E.g. these 2
stats_style commands are equivalent, since the compute reduce command creates a global vector with 6 values.

compute myCount reduce max x y z vx vy vz
stats_style step np c_myCount[*]
stats_style step np c_myCount[1] c_myCount[2] c_myCount[3] &
 c_myCount[4] c_myCount[5] c_myCount[6]

For the following keywords, the ID in the keyword should be replaced by the actual ID of a surface collision
model, surface reaction model, compute, fix, or variable name that has been defined elsewhere in the input script.
See those commands for details. If the entity calculates a global scalar, vector, or array, then the keyword formats
with 0, 1, or 2 brackets will reference a scalar value from the entity.

The s_ID[I] and r_ID[I] keywords allow global values calculated by a surface collision model or surface reaction
model to be output. As discussed on the >surf_collide and surf_react doc pages, these models both calculate a
global vector of quantities.

The c_ID and c_ID[I] and c_ID[I][J] keywords allow global values calculated by a compute to be output. As
discussed on the compute doc page, computes can calculate global, per-particle, per-grid, or per-surf values. Only
global values can be referenced by this command. However, per-particle, per-grid, or per-surf compute values can
be referenced in a variable and the variable referenced, as discussed below. See the discussion above for how the I

298

in c_ID[I] can be specified with a wildcard asterisk to effectively specify multiple values from a global compute
vector.

The f_ID and f_ID[I] and f_ID[I][J] keywords allow global values calculated by a fix to be output. As discussed
on the fix doc page, fixes can calculate global, per-particle, per-grid, or per-surf values. Only global values can be
referenced by this command. However, per-particle or per-grid or per-surf fix values can be referenced in a
variable and the variable referenced, as discussed below. See the discussion above for how the I in f_ID[I] can be
specified with a wildcard asterisk to effectively specify multiple values from a global fix vector.

The v_name keyword allow the current value of a variable to be output. The name in the keyword should be
replaced by the variable name that has been defined elsewhere in the input script. Only equal-style variables can
be referenced. See the variable command for details. Variables of style equal can reference per-particle or per-grid
or per-surf properties or stats keywords, or they can invoke other computes, fixes, or variables when evaluated, so
this is a very general means of creating statistical output.

See Section_modify for information on how to add new compute and fix styles to SPARTA to calculate quantities
that can then be referenced with these keywords to generate statistical output.

Restrictions: none

Related commands:

stats, stats_modify

Default:

stats_style step cpu np

299

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_collide command

Syntax:

surf_collide ID style args keyword values ...

ID = user-assigned name for the surface collision model•
style = specular or diffuse or vanish•
args = arguments for specific style

specular args = none
diffuse args = Tsurf acc

 Tsurf = temperature of surface (temperature units)
 Tsurf can be a variable (see below)
 acc = accommodation coefficient

vanish args = none

•

zero or more keyword/arg pairs may be appended•
keyword = translate or rotate•
values = values for specific keyword

translate args = Vx Vy Vz
 Vx,Vy,Vz = translational velocity of surface (velocity units)

rotate args = Pz Py Pz Wx Wy Wz
 Px,Py,Pz = point to rotate surface around (distance units)
 Wx,Wy,Wz = angular velocity of surface around point (radians/time)

•

Examples:

surf_collide 1 specular
surf_collide 1 diffuse 273.15 0.9
surf_collide heatwall diffuse v_ramp 0.8
surf_collide heatwall diffuse v_ramp 0.8 translate 5.0 0.0 0.0

Description:

Define a model for particle-surface collisions. One or more models can be defined and assigned to different
surfaces or simulation box boundaries via the surf_modify or bound_modify commands. See Section 4.9 for more
details of how SPARTA defines surfaces as collections of geometric elements, triangles in 3d and line segments
in 2d.

The ID for a surface collision model is used to identify it in other commands. Each surface collision model ID
must be unique. The ID can only contain alphanumeric characters and underscores.

The specular style computes a simple specular reflection model. It requires no arguments. Specular reflection
means that a particle reflects off a surface element with its incident velocity vector reversed with respect to the
outward normal of the surface element. The particle's speed is unchanged.

The diffuse style computes a simple diffusive reflection model.

The model has 2 parameters set by the Tsurf and acc arguments. Tsurf is the temperature of the surface. Acc is an
accommodation coefficient.

300

http://sparta.sandia.gov

Diffuse reflection emits the particle from the surface with no dependence on its incident velocity. A new velocity
is assigned to the particle, sampled from a Gaussian distribution consistent with the surface temperature. The new
velocity will have thermal components in the direction of the outward surface normal and the plane tangent to the
surface given by:

The Tsurf value can be specified as an equal-style variable. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its value
used to determine the current surface temperature.

Equal-style variables can specify formulas with various mathematical functions, and include stats_style command
keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a
time-dependent temperature.

The vanish style simply deletes any particle which hits the surface.

This is useful if a surface is defined to be an inflow boundary on the simulation domain, e.g. using the fix
emit/surf command. Using this surface collision model will also treat the surface as an outflow boundary. This is
similar to using the fix emit/face command on a simulation box face while also setting the face to be an outflow
boundary via the boundary o command.

Note that the surf_react global command can also be used to delete particles hitting a surface, by setting the
pdelete parameter to 1.0. Using a surf_collide vanish command is simpler.

The keyword translate can only be applied to the diffuse style. It models the surface as if it were translating with a
constant velocity, specified by the vector (Vx,Vy,Vz). This velocity is added to the final post-collisional velocity
of each particle that collides with the surface.

The keyword rotate can only be applied to the diffuse style. It models the surface as if it were rotating with a
constant angular velocity, specified by the vector W = (Wx,Wy,Wz), around the specified point P = (Px,Py,Pz).
Note that W and P define the rotation axis. The magnitude of W defines the speed of rotation. I.e. if the length of
W = 2*pi then the surface is rotating at one revolution per time unit, where time units are defined by the units
command.

When a particle collides with the surface at a point X = (x,y,z), the collision point has a velocity given by V =
(Vx,Vy,Vz) = W cross (X-P). This velocity is added to the final post-collisional velocity of the particle.

The rotate keyword can be used to treat a simulation box boundary as a rotating wall, e.g. the end cap of an
axisymmetric cylinder. Or to model a rotating object consisting of surface elements, e.g. a sphere. In either case,
the wall or surface elements themselves do not change position due to rotation. They are simply modeled as
having a tangential velocity, as if the entire object were rotating.

IMPORTANT NOTE: For both the translate and rotate keywords the added velocity can only be tangential to the
surface, with no normal component since the surface is not actually moving in the normal direction. SPARTA
does not check that the specified translation or rotation produces a tangential velocity. However if does enforce
the condition by subtracting off any component of the added velocity that is normal to the simulation box
boundary or individual surface element.

301

Output info:

All the surface collide models calculate a global vector of length 2. The values can be used by the stats_style
command and by variables that define formulas. The latter means they can be used by any command that uses a
variable as input, e.g. "the fix ave/time command. See Section 4.4 for an overview of SPARTA output options.

The first element of the vector is the count of particles that hit surface elements assigned to this collision model
during the current timestep. The second element is the cummulative count of particles that have hit surface
elements since the current run began.

Restrictions:

The translate and rotate keywords cannot be used together.

Related commands:

read_surf, bound_modify

Default: none

302

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_modify command

Syntax:

surf_modify group-ID keyword args ...

group-ID = ID of the surface group to operate on

one or more keyword/arg pairs may be listed•
keyword = collide or (react)

collide arg = sc-ID
 sc-ID = ID of a surface collision model

react arg = sr-ID
 sr-ID = ID of a surface reaction model or none

•

Examples:

surf_modify sphere collide 1
surf_modify all collide sphere react sphere

Description:

Set parameters for a group of surface elements in the specified group-ID. Surface elements are read in by the
read_surf command. They can be assigned to groups by that command or via the group command.

The collide keyword is used to assign a surface collision model. Surface collision models are defined by the
surf_collide command, which assigns each a surface collision ID, specified here as sc-ID.

The effect of this keyword is that particle collisions with surface elements in group-ID will be computed by the
surface collision model with sc-ID.

The react keyword is used to assign a surface reaction model. Surface reaction models are defined by
thesurf_react command, which assigns each a surface reaction ID, specified here as sr-ID or the word "none".
The latter means no reaction model.

The effect of this keyword is that particle collisions with surface elements in group-ID will induce reactions
which are computed by the surface reaction model with sr-ID. If "none" is used, no surface reactions occur.

Note that if the same surface element is assigned to multiple groups, using this command multiple times may
override the effect of a previous command that assigned a different collision or reaction model to a particular
surface element.

Restrictions:

All surface elements must be assigned to a surface collision model via the collide keyword before a simlulation
can be performed. Using a surface reaction model is optional.

Related commands:

read_surf, bound_modify

•

303

http://sparta.sandia.gov

Default:

The default for surface reactions is none.

304

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_react command

Syntax:

surf_react ID style args

ID = user-assigned name for the surface reaction model•
style = global or prob•
args = arguments for that style

global args = pdelete pcreate
 pdelete = probability that surface collision removes the incident particle
 pcreate = probability that surface collision clones the incident particle

prob args = infile
 infile = file with list of surface chemistry reactions

•

Examples:

surf_react global 0.2 0.15
surf_react prob air.surf

Description:

Define a model for surface chemistry reactions to perform when particles collide with surface elements or the
global boundaries of the simulation box. One or more models can be defined and assigned to different surfaces or
simulation box boundaries via the surf_modify or bound_modify commands. See Section 4.9 for more details of
how SPARTA defines surfaces as collections of geometric elements, triangles in 3d and line segments in 2d. Also
see the react command for specification of a gas-phase chemistry reaction model.

The ID for a surface reaction model is used to identify it in other commands. Each surface reaction model ID must
be unique. The ID can only contain alphanumeric characters and underscores.

The surface reaction models for the various styles are described below. When a a particle collides with a surface
element or boundary. the list of all reactions possible with that species as the reactant is looped over. A
probability for each reaction is calculated, using the formulas discussed below, and a random number is used to
decide which reaction (if any) takes place. A check is made that the sum of probabilities for all possible reactions
is <= 1.0, which should normally be the case if reasonable reaction coefficients are defined.

The global style is a simple model that can be used to test whether surface reactions are occurring as expected.
There is no list of raactions for different species; all species are treated the same.

The global style takes two paramters, pdelete and pcreate. The first is the probability that a "deletion" reaction
takes place when a collision occurs. If it does, the particle is deleted. The second is the probablity that a "creation"
reaction occurs, which clones the particle, so that one particle becomes two. The two particles leave the surface
according to whatever surface collision model is defined by the surf_collide command, and is assigned to that
surface/boundary by the surf_modify collide command.

The sum of pdelete and pcreate must be <= 1.0.

Note that if you simply wish to delete all particles which hit the surface, you can use the surf_collide vanish
command, which is simpler.

305

http://sparta.sandia.gov

For the prob style, a file is specified which contains a list of surface chemical reactions, with their associated
parameters. The reactions are read into SPARTA and stored in a list. Each time a simulation is run via the run
command, the list is scanned. Only reactions for which all the reactants and all the products are currently defined
as species-IDs will be active for the simulation. Thus the file can contain more reactions than are used in a
particular simulation. See the species command for how species IDs are defined.

As explained below each reaction has a specified probability between 0.0 and 1.0. That probability is used to
choose which reaction (if any) is performed.

The format of the input surface reaction file is as follows. Comments or blank lines are allowed in the file.
Comment lines start with a "#" character. All other entries must come in 2-line pairs with values separated by
whitespace in the following format

R1 --> P1 + P2
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1 is a single reactant for the particle that collides
with the surface/boundary, listed as a species IDs. P1 and P2 are one or two products, also listed as species IDs.
The number of reactants is always 1. The number of allowed products depends on the reaction type, as discussed
below. Individual reactants and products must be separated by whitespace and a "+" sign. The left-hand and
right-hand sides of the equation must be separated by whitespace and "-->".

The type of each reaction is a single character (upper or lower case) with the following meaning. The type
determines how many reactants and products can be specified in the first line.

D = dissociation = 1 reactant and 2 products
E = exchange = 1 reactant and 1 product
R = recombination = 1 reactant and 1 product named NULL

A dissociation reaction means that R1 dissociates into P1 and P2 when it collides with the surface/boundary.
There is no restriction on the species involved in the reaction.

An exchange reaction is a collision where R1 becomes a new product P1. There is no restriction on the species
involved in the reaction.

A recombination reaction is a collision where R1 is absorbed by the surface, so that the particle disappears. There
are no products which is indicated in the file by listing a single product as NULL. There is no restriction on the
species involved in the reaction.

The style of each reaction is a single character (upper or lower case) with the following meaning:

S = Surface•

The style determines how many reaction coefficients are listed as C1, C2, etc, and how they are interpreted by
SPARTA.

For S = Surface style, there is a single coefficient:

C1 = probability that the reaction occurs (0.0 to 1.0)•

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve either
ambipolar ions or the ambipolar electron have more restricitve rules about the ordering of reactants and products,

306

than those described in the preceeding section for the prob style.

The first is an "exchange" reaction which converts an ambipolar ion into a neutral species. Internally this removes
the ambipolar electron associated with the ion. In the file of reactions this is done by having the reactant be an
ambipolar ion, and the product not be an ambipolar ion.

The second is a "dissociation" reaction where a neutral species is ionized by colliding with the surface/boundary,
creating an ambipolar ion and ambipolar electron. In the file of reactions this is done by having the reactant not be
an ambipolar ion, the first product be an ambipolar ion, and the second product be an ambipolar electron. The two
products must be specified in this order.

Output info:

All the surface reaction models calculate a global vector of length 2. The values can be used by the stats_style
command and by variables that define formulas. The latter means they can be used by any command that uses a
variable as input, e.g. "the fix ave/time command. See Section 4.4 for an overview of SPARTA output options.

The first element of the vector is the count of particles that performed surface reactions for surface elements
assigned to this reaction model during the current timestep. The second element is the cummulative count of
particles that have performed reactions since the beginning of the current run.

Restrictions: none

Related commands:

react, surf_modify, bound_modify

Default: none

307

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

timestep command

Syntax:

timestep dt

dt = timestep size (time units)•

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent simulations.

Restrictions: none

Related commands:

run

Default:

timestep 1.0

308

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

uncompute command

Syntax:

uncompute compute-ID

compute-ID = ID of a previously defined compute•

Examples:

uncompute 2
uncompute lower-boundary

Description:

Delete a compute that was previously defined with a compute command.

Restrictions: none

Related commands:

compute

Default: none

309

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

undump command

Syntax:

undump dump-ID

dump-ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Delete a dump that was previously defined with a dump command. This also closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

310

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

unfix command

Syntax:

unfix fix-ID

fix-ID = ID of a previously defined fix•

Examples:

unfix 2
unfix lower-boundary

Description:

Delete a fix that was previously defined with a fix command.

Restrictions: none

Related commands:

fix

Default: none

311

http://sparta.sandia.gov

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

units command

Syntax:

units style

style = cgs or si•

Examples:

units cgs

Description:

This command sets the style of units used for a simulation. It determines the units of all quantities specified in the
input script and various input files read by SPARTA, as well as the units of all quantities output to the screen, log
file, dump files, and other output files. Typically, this command is used at the very beginning of an input script.

IMPORTANT NOTE: Internally, this command simply sets the numeric values of conversion factors used by
SPARTA, e.g. the Boltzmann constant used to convert temperature to energy. It is up to you to insure that all
input values used in the input script and other input files (surface data, species files, reaction files) contain
numeric values consistent with the chosen units.

For style cgs, these are the units:

mass = grams•
distance = centimeters•
area = cm^2•
volume = cm^3•
time = seconds•
energy = ergs•
velocity = centimeters/second•
acceleration = centimeters/second^2•
pressure = barye (dyne/cm^2 = 0.1 pascals)•
temperature = degrees K•

For style si, these are the units:

mass = kilograms•
distance = meters•
area = m^2•
volume = m^3•
time = seconds•
energy = Joules•
velocity = meters/second•
acceleration = meters/second^2•
pressure = pascals (newton/meter^2)•
temperature = degrees K•

The units command also sets a default timestep size; see the timestep command to change this value.

312

http://sparta.sandia.gov

For style cgs this is dt = 1.0 sec.•
For style si this is dt = 1.0 sec.•

Restrictions:

This command must be used before the simulation box is defined by a create_box command.

Related commands: none

Default:

units si

313

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = delete or index or loop or world or universe or uloop or string or format or getenv or file or
internal or equal or particle or grid

delete = no args
index args = one or more strings
loop args = N

 N = integer size of loop, loop from 1 to N inclusive
loop args = N pad

 N = integer size of loop, loop from 1 to N inclusive
 pad = all values will be same length, e.g. 001, 002, ..., 100

loop args = N1 N2
 N1,N2 = loop from N1 to N2 inclusive

loop args = N1 N2 pad
 N1,N2 = loop from N1 to N2 inclusive
 pad = all values will be same length, e.g. 050, 051, ..., 100

world args = one string for each partition of processors
universe args = one or more strings
uloop args = N

 N = integer size of loop
uloop args = N pad

 N = integer size of loop
 pad = all values will be same length, e.g. 001, 002, ..., 100

string arg = one string
format args = vname fstr

 vname = name of equal-style variable to evaluate
 fstr = C-style format string

getenv arg = one string
file arg = filename
internal arg = numeric value
equal or particle or grid args = one formula containing numbers, stats keywords, math operations, particle vectors, compute/fix/variable references

 numbers = 0.0, 100, -5.4, 2.8e-4, etc
 constants = PI
 stats keywords = step, np, vol, etc from stats_style
 math operators = (), -x, x+y, x-y, x*y, x/y, x^y, x%y,
 x==y, x!=y, xy, x>=y, x&&y, x||y, !x
 math functions = sqrt(x), exp(x), ln(x), log(x), abs(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
 random(x,y), normal(x,y), ceil(x), floor(x), round(x)
 ramp(x,y), stagger(x,y), logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)
 special functions = sum(x), min(x), max(x), ave(x), trap(x), slope(x), next(x)
 particle vector = mass, type, x, y, z, vx, vy, vz
 compute references = c_ID, c_ID[i], c_ID[i][j]
 fix references = f_ID, f_ID[i], f_ID[i][j]
 surface collision model references = s_ID[i]
 surface reaction model references = r_ID[i]
 variable references = v_name

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable beta equal temp/3.0

314

http://sparta.sandia.gov

variable beta equal "temp / 3.0"
variable b equal c_myTemp
variable b particle x*y/vol
variable foo string myfile
variable foo internal 3.5
variable f file values.txt
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15 pad
variable str format x %.6g
variable x delete

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can thus be useful in several contexts. A variable can be defined and then referenced elsewhere in an
input script to become part of a new input command. For variable styles that store multiple strings, the next
command can be used to increment which string is assigned to the variable. Variables of style equal store a
formula which when evaluated produces a single numeric value which can be output either directly (see the print,
fix print, and run every commands) or as part of statistical output (see the stats_style command), or used as input
to an averaging fix (see the fix ave/time command). Variables of style particle store a formula which when
evaluated produces one numeric value per particle which can be output to a dump file (see the dump particle
command). Variables of style internal are used by a few commands which set their value directly.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When an input script line is encountered that defines a variable of style equal or particle or
grid that contains a formula, the formula is NOT immediately evaluated and the result stored. See the discussion
below about "Immediate Evaluation of Variables" if you want to do this. This is also true of the format style
variable since it evaluates another variable when it is invoked.

Variables of style equal and particle and grid can be used as inputs to various other commands which evaluate
their formulas as needed, e.g. at different timesteps during a run.

Variables of style internal can be used in place of an equal-style variable, except by commands that set the value
stored by the internal-style variable. Thus any command that states it can use an equal-style variable as an
argument, can also use an internal-style variable. This means that when the command evaluates the variable, it
will use the value set (internally) by another command.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re-defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting
the variables; see the jump or include commands. It also means that using the command-line switch -var will
override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style string, getenv, internal, equal, and particle ARE
redefined each time the command is encountered. This allows these style of variables to be redefined multiple

315

times in an input script. In a loop, this means the formula associated with an equal or particle style variable can
change if it contains a substitution for another variable, e.g. $x or v_x.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re-defined in a subsequent variable command.
The delete style does the same thing.

Section 3.2 of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

As explained above, an exhausted variable can be re-used in an input script. The delete style also removes the
variable, the same as if it were exhausted, allowing it to be redefined later in the input script or when the input
script is looped over. This can be useful when breaking out of a loop via the if and jump commands before the
variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if "$a > 2" then "jump in.script break"
next a
jump in.script loop
label break
variable a delete

This section describes how various variable styles are defined and what they store. Many of the styles store one or
more strings. Note that a single string can contain spaces (multiple words), if it is enclosed in quotes in the
variable command. When the variable is substituted for in another input script command, its returned string will
then be interpreted as multiple arguments in the expanded command.

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command-line switch -var; see Section
2.6 of the manual for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N inclusive, if only
one argument N is specified. This allows generation of a long list of runs (e.g. 1000) without having to list N
strings in the input script. Initially, the string "1" is assigned to the variable. Each time a next command is used
with the variable name, the next string ("2", "3", etc) is assigned. All processors assign the same string to the
variable. The loop style can also be specified with two arguments N1 and N2. In this case the loop runs from N1
to N2 inclusive, and the string N1 is initially assigned to the variable. N1 <= N2 and N2 >= 0 is required.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See Section 2.6 of the manual for information on running SPARTA with multiple partitions via the
"-partition" command-line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different

316

partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running SPARTA with multiple partitions via
the "-partition" command-line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.sparta.variable" and "tmp.sparta.variable.lock" which you will see in your directory during such a SPARTA
run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

For the string style, a single string is assigned to the variable. The only difference between this and using the
index style with a single string is that a variable with string style can be redefined. E.g. by another command later
in the input script, or if the script is read again in a loop.

For the format style, an equal-style variable is specified along with a C-style format string, e.g. "%f" or "%.10g",
which must be appropriate for formatting a double-precision floating-point value. This allows an equal-style
variable to be formatted specifically for output as a string, e.g. by the print command, if the default format
"%.15g" has too much precision.

For the getenv style, a single string is assigned to the variable which should be the name of an environment
variable. When the variable is evaluated, it returns the value of the environment variable, or an empty string if it
not defined. This style of variable can be used to adapt the behavior of SPARTA input scripts via environment
variable settings, or to retrieve information that has been previously stored with the shell putenv command. Note
that because environment variable settings are stored by the operating systems, they persist beyond a clear
command.

For the file style, a filename is provided which contains a list of strings to assign to the variable, one per line. The
strings can be numeric values if desired. See the discussion of the next() function below for equal-style variables,
which will convert the string of a file-style variable into a numeric value in a formula.

When a file-style variable is defined, the file is opened and the string on the first line is read and stored with the
variable. This means the variable can then be evaluated as many times as desired and will return that string. There
are two ways to cause the next string from the file to be read: use the next command or the next() function in an
equal- or atom-style variable, as discussed below.

The rules for formatting the file are as follows. A comment character "#" can be used anywhere on a line; text
starting with the comment character is stripped. Blank lines are skipped. The first "word" of a non-blank line,
delimited by white space, is the "string" assigned to the variable.

For the internal style a numeric value is provided. This value will be assigned to the variable until a SPARTA
command sets it to a new value. There is currently only one command that requirew internal variables as inputs,
because it resets them: create_particles. As mentioned above, an internal-style variable can be used in place of an
equal-style variable anywhere else in an input script, e.g. as an argument to another command that allows for
equal-style variables.

For the equal and particle and grid styles, a single string is specified which represents a formula that will be
evaluated afresh each time the variable is used. If you want spaces in the string, enclose it in double quotes so the

317

parser will treat it as a single argument. For equal style variables the formula computes a scalar quantity, which
becomes the value of the variable whenever it is evaluated. For particle style variables the formula computes one
quantity for each particle whenever it is evaluated. For grid style variables the formula computes one quantity for
each grid cell whenever it is evaluated. A grid style variable computes quantites for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells. See Section 4.8 of the manual gives details of
how SPARTA defines child, unsplit, split, and sub cells.

Note that equal and particle and grid variables can produce different values at different stages of the input script
or at different times during a run. For example, if an equal variable is used in a fix print command, different
values could be printed each timestep it was invoked. If you want a variable to be evaluated immediately, so that
the result is stored by the variable instead of the string, see the section below on "Immediate Evaluation of
Variables".

The next command cannot be used with equal or particle or grid style variables, since there is only one string.

The formula for an equal or particle or grid variable can contain a variety of quantities. The syntax for each kind
of quantity is simple, but multiple quantities can be nested and combined in various ways to build up formulas of
arbitrary complexity. For example, this is a valid (though strange) variable formula:

variable x equal "np + c_MyTemp / vol^(1/3)"

Specifically, a formula can contain numbers, stats keywords, math operators, math functions, particle vectors,
compute references, fix references, and references to other variables.

Number 0.2, 100, 1.0e20, -15.4, etc
Constant PI
Stats keywords step, np, vol, etc
Math operators (), -x, x+y, x-y, x*y, x/y, x^y, x%y, x==y, x!=y, xy, x>=y, x&&y, x||y, !x

Math functions
sqrt(x), exp(x), ln(x), log(x), abs(x), sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
atan2(y,x), random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x), ramp(x,y), stagger(x,y),
logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)

Special functions sum(x), min(x), max(x), ave(x), trap(x), slope(x), next(x)
Particle vectors mass, type, x, y, z, vx, vy, vz
Compute
references c_ID, c_ID[i], c_ID[i][j]

Fix references f_ID, f_ID[i], f_ID[i][j]
Surface collision
model references s_ID[i]

Surface reaction
model references r_ID[i]

Other variables v_name

Most of the formula elements produce a scalar value. A few produce a per-particle vector or per-grid vector of
values. These are the particle vectors, compute references that represent a per-particle or per-grid vector, fix
references that represent a per-particle or per-grid vector, and variables that are particle-style or grid-style
variables. Math functions that operate on scalar values produce a scalar value; math function that operate on
per-particle vectors do so element-by-element and produce a per-particle vector.

A formula for equal-style variables cannot use any formula element that produces a per-particle or per-grid vector.
A formula for a particle-style variable can use formula elements that produce either a scalar value or a per-particle

318

vector, but not a per-grid vector. Likewise a particlgrid-style variable can use formula elements that produce
either a scalar value or a per-grid vector, but not a per-particle vector.

The stats keywords allowed in a formula are those defined by the stats_style custom command. If a variable is
evaluated directly in an input script (not during a run), then the values accessed by the stats keyword must be
current. See the discussion below about "Variable Accuracy".

Math Operators

Math operators are written in the usual way, where the "x" and "y" in the examples can themselves be arbitrarily
complex formulas, as in the examples above. In this syntax, "x" and "y" can be scalar values or per-particle or
per-grid vectors. For example, "vol/np" is the division of two scalars, where "vy+vz" is the element-by-element
sum of two per-particle vectors of y and z velocities.

Operators are evaluated left to right and have the usual C-style precedence: unary minus and unary logical NOT
operator "!" have the highest precedence, exponentiation "^" is next; multiplication and division and the modulo
operator "%" are next; addition and subtraction are next; the 4 relational operators "", and ">=" are next; the two
remaining relational operators "==" and "!=" are next; then the logical AND operator "&&"; and finally the
logical OR operator "||" has the lowest precedence. Parenthesis can be used to group one or more portions of a
formula and/or enforce a different order of evaluation than what would occur with the default precedence.

IMPORTANT NOTE: Because a unary minus is higher precedence than exponentiation, the formula "-2^2" will
evaluate to 4, not -4. This convention is compatible with some programming languages, but not others. As
mentioned, this behavior can be easily overridden with parenthesis; the formula "-(2^2)" will evaluate to -4.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. For example the expression x

These relational and logical operators can be used as a masking or selection operation in a formula. For example,
the number of particles whose properties satifsy one or more criteria could be calculated by taking the returned
per-particle vector of ones and zeroes and passing it to the compute reduce command.

Math Functions

Math functions are specified as keywords followed by one or more parenthesized arguments "x", "y", "z", each of
which can themselves be arbitrarily complex formulas. In this syntax, the arguments can represent scalar values or
per-particle or per-grid vectors. In the latter cases, the math operation is performed on each element of the vector.
For example, "sqrt(np)" is the sqrt() of a scalar, where "sqrt(y*z)" yields a per-particle vector with each element
being the sqrt() of the product of one particle's y and z coordinates.

Most of the math functions perform obvious operations. The ln() is the natural log; log() is the base 10 log.

The random(x,y) function takes 2 arguments: x = lo and y = hi. It generates a uniform random number between lo
and hi. The normal(x,y) function also takes 2 arguments: x = mu and y = sigma. It generates a Gaussian variate
centered on mu with variance sigma^2. For equal-style variables, every processor uses the same random number
seed so that they each generate the same sequence of random numbers. For particle-style or grid-style variables, a
unique seed is created for each processor. This effectively generates a different random number for each particle
or grid cell being looped over in the particle-style or grid-style variable.

IMPORTANT NOTE: Internally, there is just one random number generator for all equal-style variables and one
for all particle-style and grid-style variables. If you define multiple variables (of each style) which use the
random() or normal() math functions, then the internal random number generators will only be initialized once.

319

The ceil(), floor(), and round() functions are those in the C math library. Ceil() is the smallest integer not less than
its argument. Floor() if the largest integer not greater than its argument. Round() is the nearest integer to its
argument.

The ramp(x,y) function uses the current timestep to generate a value linearly intepolated between the specified x,y
values over the course of a run, according to this formula:

value = x + (y-x) * (timestep-startstep) / (stopstep-startstep)

The run begins on startstep and ends on stopstep. Startstep and stopstep can span multiple runs, using the start and
stop keywords of the run command. See the run command for details of how to do this.

IMPORTANT NOTE: Currently, the run command does not currently support the start/stop keywords. In the
formula above startstep = 0 and stopstep = the number of timesteps being performed by the run.

The stagger(x,y) function uses the current timestep to generate a new timestep. X,y > 0 and x > y are required.
The generated timesteps increase in a staggered fashion, as the sequence x,x+y,2x,2x+y,3x,3x+y,etc. For any
current timestep, the next timestep in the sequence is returned. Thus if stagger(1000,100) is used in a variable by
the dump_modify every command, it will generate the sequence of output timesteps:

100,1000,1100,2000,2100,3000,etc

The logfreq(x,y,z) function uses the current timestep to generate a new timestep. X,y,z > 0 and y < z are required.
The generated timesteps increase in a logarithmic fashion, as the sequence
x,2x,3x,...y*x,z*x,2*z*x,3*z*x,...y*z*x,z*z*x,2*z*x*x,etc. For any current timestep, the next timestep in the
sequence is returned. Thus if logfreq(100,4,10) is used in a variable by the dump_modify every command, it will
generate the sequence of output timesteps:

100,200,300,400,1000,2000,3000,4000,10000,20000,etc

The stride(x,y,z) function uses the current timestep to generate a new timestep. X,y >= 0 and z > 0 and x <= y are
required. The generated timesteps increase in increments of z, from x to y, I.e. it generates the sequece
x,x+z,x+2z,...,y. If y-x is not a multiple of z, then similar to the way a for loop operates, the last value will be one
that does not exceed y. For any current timestep, the next timestep in the sequence is returned. Thus if
stagger(1000,2000,100) is used in a variable by the dump_modify every command, it will generate the sequence
of output timesteps:

1000,1100,1200, ... ,1900,2000

The vdisplace(x,y) function takes 2 arguments: x = value0 and y = velocity, and uses the elapsed time to change
the value by a linear displacement due to the applied velocity over the course of a run, according to this formula:

value = value0 + velocity*(timestep-startstep)*dt

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See
the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

The swiggle(x,y,z) and cwiggle(x,y,z) functions each take 3 arguments: x = value0, y = amplitude, z = period.
They use the elapsed time to oscillate the value by a sin() or cos() function over the course of a run, according to
one of these formulas, where omega = 2 PI / period:

value = value0 + Amplitude * sin(omega*(timestep-startstep)*dt)

320

value = value0 + Amplitude * (1 - cos(omega*(timestep-startstep)*dt))

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See
the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

Special Functions

Special functions take specific kinds of arguments, meaning their arguments cannot be formulas themselves.

The sum(x), min(x), max(x), ave(x), trap(x), and slope(x) functions each take 1 argument which is of the form
"c_ID" or "c_ID[N]" or "f_ID" or "f_ID[N]". The first two are computes and the second two are fixes; the ID in
the reference should be replaced by the ID of a compute or fix defined elsewhere in the input script. The compute
or fix must produce either a global vector or array. If it produces a global vector, then the notation without "[N]"
should be used. If it produces a global array, then the notation with "[N]" should be used, when N is an integer, to
specify which column of the global array is being referenced.

These functions operate on the global vector of inputs and reduce it to a single scalar value. This is analagous to
the operation of the compute reduce command, which invokes the same functions on per-particle or per-grid
vectors.

The sum() function calculates the sum of all the vector elements. The min() and max() functions find the
minimum and maximum element respectively. The ave() function is the same as sum() except that it divides the
result by the length of the vector.

The trap() function is the same as sum() except the first and last elements are multiplied by a weighting factor of
1/2 when performing the sum. This effectively implements an integratiion via the trapezoidal rule on the global
vector of data. I.e. consider a set of points, equally spaced by 1 in their x coordinate: (1,V1), (2,V2), ..., (N,VN),
where the Vi are the values in the global vector of length N. The integral from 1 to N of these points is trap().

The slope() function uses linear regression to fit a line to the set of points, equally spaced by 1 in their x
coordinate: (1,V1), (2,V2), ..., (N,VN), where the Vi are the values in the global vector of length N. The returned
value is the slope of the line. If the line has a single point or is vertical, it returns 1.0e20.

The next(x) function takes 1 argument which is a variable ID (not "v_foo", just "foo"). It must be for a file-style
or atomfile-style variable. Each time the next() function is invoked (i.e. each time the equal-style or atom-style
variable is evaluated), the following steps occur.

For file-style variables, the current string value stored by the file-style variable is converted to a numeric value
and returned by the function. And the next string value in the file is read and stored. Note that if the line
previously read from the file was not a numeric string, then it will typically evaluate to 0.0, which is likely not
what you want.

Since file-style variables read and store the first line of the file when they are defined in the input script, this is the
value that will be returned the first time the next() function is invoked. If next() is invoked more times than there
are lines in the file, the variable is deleted, similar to how the next command operates.

321

Particle Vectors

Particle vectors generate one value per particle, so that a reference like "vx" means the x-component of each
particles's velocity will be used when evaluating the variable.

The meaning of the different particle vectors is self-explanatory.

Particle vectors can only be used in particle style variables, not in equal or grid style varaibles.

Compute References

Compute references access quantities calculated by a compute. The ID in the reference should be replaced by the
ID of a compute defined elsewhere in the input script. As discussed in the doc page for the compute command,
computes can produce global, per-particle, per-grid, or per-surf values. Only global and per-particle and per-grid
values can be used in a variable. Computes can also produce a scalar, vector, or array. An equal-style variable can
only use scalar values, which means a global scalar, or an element of a global vector or array. Particle-style
variables can use the same scalar values. They can also use per-particle vector values. A vector value can be a
per-particle vector itself, or a column of an per-particle array. Grid-style variables can use the same scalar values.
They can also use per-grid vector values. A vector value can be a per-grid vector itself, or a column of an per-grid
array. See the doc pages for individual computes to see what kind of values they produce.

Examples of different kinds of compute references are as follows. There is no ambiguity as to what a reference
means, since computes only produce global or per-particle or per-grid quantities, never more than one kind of
quantity.

c_ID global scalar, or per-particle or per-grid vector
c_ID[I] Ith element of global vector, or Ith column from per-particle or per-grid array
c_ID[I][J] I,J element of global array

For I and J, integers can be specified or a variable name, specified as v_name, where name is the name of the
variable, like x[v_myIndex]. The variable can be of any style expect particle-style. The variable is evaluated and
the result is expected to be numeric and is cast to an integer (i.e. 3.4 becomes 3), to use an an index, which must
be a value from 1 to N. Note that a "formula" cannot be used as the argument between the brackets, e.g.
x[243+10] or x[v_myIndex+1] are not allowed. To do this a single variable can be defined that contains the
needed formula.

If a variable containing a compute is evaluated directly in an input script (not during a run), then the values
accessed by the compute must be current. See the discussion below about "Variable Accuracy".

Fix References

Fix references access quantities calculated by a fix. The ID in the reference should be replaced by the ID of a fix
defined elsewhere in the input script. As discussed in the doc page for the fix command, fixes can produce global,
per-particle, per-grid, or per-surf values. Only global and per-particle and per-grid values can be used in a
variable. Fixes can also produce a scalar, vector, or array. An equal-style variable can only use scalar values,
which means a global scalar, or an element of a global vector or array. Particle-style variables can use the same
scalar values. They can also use per-particle vector values. A vector value can be a per-particle vector itself, or a
column of an per-particle array. Grid-style variables can use the same scalar values. They can also use per-grid
vector values. A vector value can be a per-grid vector itself, or a column of an per-grid array. See the doc pages
for individual fixes to see what kind of values they produce.

The different kinds of fix references are exactly the same as the compute references listed in the above table,

322

where "c_" is replaced by "f_". Again, there is no ambiguity as to what a reference means, since fixes only
produce global or per-particle or per-grid quantities, never more than one kind of quantity.

f_ID global scalar, or per-particle or per-grid vector
f_ID[I] Ith element of global vector, or Ith column from per-particle or per-grid array
f_ID[I][J] I,J element of global array

For I and J, integers can be specified or a variable name, specified as v_name, where name is the name of the
variable. The rules for this syntax are the same as for the "Compute References" discussion above.

If a variable containing a fix is evaluated directly in an input script (not during a run), then the values accessed by
the fix should be current. See the discussion below about "Variable Accuracy".

Note that some fixes only generate quantities on certain timesteps. If a variable attempts to access the fix on
non-allowed timesteps, an error is generated. For example, the fix ave/time command may only generate averaged
quantities every 100 steps. See the doc pages for individual fix commands for details.

Surface Collision and Surface Reaction Model References

These references access quantities calculated by a surf_collide or surf_react command. The ID in the reference
should be replaced by the ID of a surface collision or surface reaction model defined elsewhere in the input script.
As discussed in the doc pages for the surf_collide and surf_react commands, these commmands produce global
vectors, the elements of which can be accessed by equal-style or particle-style or grid-style variables, e.g.

s_ID[I] Ith element of global vector for a surface collision model
r_ID[I] Ith element of global vector for a surface reaction model

Variable References

Variable references access quantities stored or calculated by other variables, which will cause those variables to
be evaluated. The name in the reference should be replaced by the name of a variable defined elsewhere in the
input script.

As discussed on this doc page, equal-style variables generate a global scalar numeric value; particle-style
variables generate a per-particle vector of numeric values; grid-style variables generate a per-grid vector of
numeric values; all other variables store a string. The formula for an equal-style variable can use any style of
variable except a particle- or grid-style. The formula for a particle-style variable can use any style of variable
except a grid-style. The formula for a grid-style variable can use any style of variable except a particle-style. If a
string-storing variable is used, the string is converted to a numeric value. Note that this will typically produce a
0.0 if the string is not a numeric string, which is likely not what you want. The formula for a particle-style
variable can use any style of variable, including other particle-style variables.

Examples of different kinds of variable references are as follows. There is no ambiguity as to what a reference
means, since variables produce only a global scalar or a per-particle or per-grid vector, never more than one of
these quantities.

v_name scalar, or per-particle or per-grid vector

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $ sign (e.g. $x or ${abc}) versus with a
leading "v_" (e.g. v_x or v_abc). The former can be used in any input script command, including a variable

323

command. The input script parser evaluates the reference variable immediately and substitutes its value into the
command. As explained in Section commands 3.2 for "Parsing rules", you can also use un-named "immediate"
variables for this purpose. For example, a string like this $((xlo+xhi)/2+sqrt(v_area)) in an input script command
evaluates the string between the parenthesis as an equal-style variable formula.

Referencing a variable with a leading "v_" is an optional or required kind of argument for some commands (e.g.
the fix ave/spatial or dump custom or stats_style commands) if you wish it to evaluate a variable periodically
during a run. It can also be used in a variable formula if you wish to reference a second variable. The second
variable will be evaluated whenever the first variable is evaluated.

As an example, suppose you use this command in your input script to define the variable "n" as

variable n equal np

before a run where the particle count changes. You might think this will assign the initial count to the variable
"n". That is not the case. Rather it assigns a formula which evaluates the count (using the stats_style keyword
"np") to the variable "n". If you use the variable "n" in some other command like fix ave/time then the current
particle count will be evaluated continuously during the run.

If you want to store the initial particle count of the system, it can be done in this manner:

variable n equal np
variable n0 equal $n

The second command will force "n" to be evaluated (yielding the initial count) and assign that value to the
variable "n0". Thus the command

stats_style custom step v_n v_n0

would print out both the current and initial particle count periodically during the run.

Also note that it is a mistake to enclose a variable formula in quotes if it contains variables preceeded by $ signs.
For example,

variable nratio equal "${nfinal}/${n0}"

This is because the quotes prevent variable substitution (see Section 2.2 of the manual on parsing input script
commands), and thus an error will occur when the formula for "nratio" is evaluated later.

Variable Accuracy:

Obviously, SPARTA attempts to evaluate variables containing formulas (equal and particle and grid style
variables) accurately whenever the evaluation is performed. Depending on what is included in the formula, this
may require invoking a compute, or accessing a value previously calculated by a compute, or accessing a value
calculated and stored by a fix. If the compute is one that calculates certain properties of the system such as the
pressure induced on a global boundary due to collisions, then these quantities need to be tallied during the
timesteps on which the variable will need the values.

SPARTA keeps track of all of this during a run. An error will be generated if you attempt to evaluate a variable on
timesteps when it cannot produce accurate values. For example, if a stats_style custom command prints a variable
which accesses values stored by a fix ave/time command and the timesteps on which stats output is generated are
not multiples of the averaging frequency used in the fix command, then an error will occur.

324

An input script can also request variables be evaluated before or after or in between runs, e.g. by including them
in a print command. In this case, if a compute is needed to evaluate a variable (either directly or indirectly),
SPARTA will not invoke the compute, but it will use a value previously calculated by the compute, and can do
this only if it was invoked on the current timestep. Fixes will always provide a quantity needed by a variable, but
the quantity may or may not be current. This leads to one of three kinds of behavior:

(1) The variable may be evaluated accurately. If it contains references to a compute or fix, and these values were
calculated on the last timestep of a preceeding run, then they will be accessed and used by the variable and the
result will be accurate.

(2) SPARTA may not be able to evaluate the variable and will generate an error message stating so. For example,
if the variable requires a quantity from a compute that has not been invoked on the current timestep, SPARTA
will generate an error. This means, for example, that such a variable cannot be evaluated before the first run has
occurred. Likewise, in between runs, a variable containing a compute cannot be evaluated unless the compute was
invoked on the last timestep of the preceding run, e.g. by stats output.

One way to get around this problem is to perform a 0-timestep run before using the variable. For example, these
commands

compute myTemp grid all temp
variable t equal c_myTemp1
print "Initial temperature = $t"
run 1000

will generate an error if the run is the first run specified in the input script, because generating a value for the "t"
variable requires a compute for calculating the temperature to be invoked.

However, this sequence of commands would be fine:

compute myTemp grid all temp
variable t equal c_myTemp1
run 0
print "Initial temperature = $t"
run 1000

The 0-timestep run initializes and invokes various computes, including the one for temperature, so that the value it
stores is current and can be accessed by the variable "t" after the run has completed. Note that a 0-timestep run
does not alter the state of the system, so it does not change the input state for the 1000-timestep run that follows.
Also note that the 0-timestep run must actually use and invoke the compute in question (e.g. via stats or dump
output) in order for it to enable the compute to be used in a variable after the run. Thus if you are trying to print a
variable that uses a compute you have defined, you can insure it is invoked on the last timestep of the preceding
run by including it in stats output.

Unlike computes, fixes will never generate an error if their values are accessed by a variable in between runs.
They always return some value to the variable. However, the value may not be what you expect if the fix has not
yet calculated the quantity of interest or it is not current. For example, the fix indent command stores the force on
the indenter. But this is not computed until a run is performed. Thus if a variable attempts to print this value
before the first run, zeroes will be output. Again, performing a 0-timestep run before printing the variable has the
desired effect.

(3) The variable may be evaluated incorrectly. And SPARTA may have no way to detect this has occurred.
Consider the following sequence of commands:

compute myTemp grid all temp
variable t equal c_myTemp1

325

run 1000
create_particles all n 10000
print "Final temperature = $t"

The first run is performed using the current set of particles. The temperature is evaluated on the final timestep and
stored by the compute grid compute (when invoked by the stats_style command). Then new particles are added by
the create_particles command, altering the temperature of the system. When the temperature is printed via the "t"
variable, SPARTA will use the temperature value stored by the compute grid compute, thinking it is current.
There are many other commands which could alter the state of the system between runs, causing a variable to
evaluate incorrectly.

The solution to this issue is the same as for case (2) above, namely perform a 0-timestep run before the variable is
evaluated to insure the system is up-to-date. For example, this sequence of commands would print a temperature
that reflected the new particles:

compute myTemp grid all temp
variable t equal c_myTemp1
run 1000
create_particles all n 10000
run 0
print "Final temperature = $t"

Restrictions:

All universe- and uloop-style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, fix print, print

Default: none

326

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_grid command

Syntax:

write_grid mode file

mode = parent or geom•
file = name of file to write grid info to•

Examples:

write_grid parent data.grid
write_grid geom viz.out

Description:

Write a grid file in text format describing the currently defined hierarchical grid. See the read_grid and
create_grid commands for a definition of hierarchical grids and parent/child cells as used by SPARTA.

The file is written in text format in one of two modes.

If mode is parent then a list of parent cells is written in the same format as the input file used by the read_grid
command. Thus the file can be used to start a subsequent simulation using the same grid topology.

If mode is geom then the geometric description of all the child cells is written in the following format. This file
can be used in conjunction with snapshot files of per-grid properties, written by the dump grid command, to
visualize various properties on the grid.

Description line

N points
M cells

Points

1 x y z
2 x y z
...
N x y z

Cells

1 p1 p2 p3 p4 ...
2 p1 p2 p3 p4 ...
...
M p1 p2 p3 p4 ...

The file will have N points and M grid cells. For each point the x,y,z coordinates are output. For each grid cell,
the indices of the 4 (in 2d) or 8 (in 3d) points comprising the corners of the grid cell are output. Each point index
is an integer from 1 to N. The ordering of the point indices is (LL,LR,UR,UL) or counter-clockwise for 2d grid
cells. For 3d grid cells it is the same where the first 4 indices are the lower-Z indices, and the next 4 are the
upper-Z indices.

327

http://sparta.sandia.gov

IMPORTANT NOTE: The points in the output file will not be unique. Instead there will be 4 or 8 for each grid
cell, with some (x,y,z) coordinates being duplicated since they are shared by multiple grid cells. Converting the
output file to one with a unique list of points is currently a post-processing task.

Restrictions: none

Related commands:

read_grid, create_grid

Default: none

328

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_restart command

Syntax:

write_restart file keyword value ...

file = name of file to write restart information to•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

write_restart restart.equil
write_restart restart.equil.mpiio
write_restart flow.%.* nfile 10

Description:

Write a binary restart file with the current state of the simulation.

During a long simulation, the restart command can be used to output restart files periodically. The write_restart
command is useful at the end of a run or between two runs, whenever you wish to write out a single current restart
file.

Similar to dump files, the restart filename can contain two wild-card characters. If a "*" appears in the filename, it
is replaced with the current timestep value. If a "%" character appears in the filename, then one file is written by
each processor and the "%" character is replaced with the processor ID from 0 to P-1. An additional file with the
"%" replaced by "base" is also written, which contains global information. For example, the files written for
filename restart.% would be restart.base, restart.0, restart.1, ... restart.P-1. This creates smaller files and can be a
fast mode of output and subsequent input on parallel machines that support parallel I/O. The optional fileper and
nfile keywords discussed below can alter the number of files written.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary, it may not be readable on another machine.

IMPORTANT NOTE: Although the purpose of restart files is to enable restarting a simulation from where it left
off, not all information about a simulation is stored in the file. For example, the list of fixes that were specified
during the initial run is not stored, which means the new input script must specify any fixes you want to use. See
the read_restart command for details about what is stored in a restart file.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
restart file name. As explained above, the "%" character causes the restart file to be written in pieces, one piece
for each of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of
processors.

329

http://sparta.sandia.gov

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a restart file.

Restrictions: none

Related commands:

restart, read_restart

Default: none

330

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_surf command

Syntax:

write_surf file

file = name of file to write surface element info to•

Examples:

write_surf data.surf

Description:

Write a surface file in text format describing the currently defined surface elements. See the read_surf command
for a definition of surface elements and how they are defined and used be SPARTA. The surface file can be used
for later input to a new simulation or for post-processing and visualization.

Note that if surface objects were clipped when read in by the read_surf command then some surface elements may
have been deleted and new ones created. Likewise for the points that define the end points or corner points of
surface element lines (2d) or triangles (3d). Similarly, if surface elements have been removed by the remove_surf
command, then points may have also been deleted. In either case, surface points and elements are renumbered by
these operations to create compressed, contiguous lists. These lists are what is output by this command.

The file is written as a text file in the same format as the read_surf command reads in.

Restrictions: none

Related commands:

read_surf

Default: none

331...1

http://sparta.sandia.gov

	Table of Contents
	
	SPARTA Documentation
	8 Sep 2016 version
	Version info:

	1. Introduction
	1.1 What is SPARTA
	1.2 SPARTA features
	General features
	Models
	Geometry
	Gas-phase collisions and chemistry
	Surface collisions and chemistry
	Performance
	Diagnostics
	Output
	Pre- and post-processing
	1.3 Grids and surfaces in SPARTA
	1.4 Open source distribution
	1.5 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the SPARTA distribution
	2.2 Making SPARTA
	2.3 Making SPARTA with optional packages
	2.4 Building SPARTA as a library
	2.5 Running SPARTA
	2.6 Command-line options
	2.7 SPARTA screen output

	3. Commands
	3.1 SPARTA input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands
	Fix styles
	Compute styles
	Collide styles
	Surface collide styles

	4. How-to discussions
	6.1 2d simulations
	4.2 Axisymmetric simulations
	4.3 Running multiple simulations from one input script
	4.4 Output from SPARTA (stats, dumps, computes, fixes, variables)
	4.5 Visualizing SPARTA snapshots
	4.6 Library interface to SPARTA
	4.7 Coupling SPARTA to other codes
	4.8 Details of grid geometry in SPARTA
	4.9 Details of surfaces in SPARTA
	4.10 Restarting a simulation
	4.11 Using the ambipolar approximation

	5. Example problems
	5. Performance & scalability
	7. Additional tools
	dump2cfg tool
	dump2xyz tool
	grid_refine tool
	log2txt tool
	logplot tool
	paraview tools
	stl2surf tool
	surf_create tool
	surf_transform tool

	8. Modifying & extending SPARTA
	8.1 Compute styles
	8.2 Fix styles
	8.3 Region styles
	8.4 Collision styles
	8.5 Surface collision styles
	8.6 Chemistry styles
	8.7 Dump styles
	8.8 Input script commands

	9. Python interface to SPARTA
	9.1 Building SPARTA as a shared library
	9.2 Installing the Python wrapper into Python
	9.3 Extending Python with MPI to run in parallel
	9.4 Testing the Python-SPARTA interface
	9.5 Using SPARTA from Python
	9.6 Example Python scripts that use SPARTA

	10. Errors
	10.1 Common problems
	10.2 Reporting bugs
	10.3 Error & warning messages
	Errors:
	Warnings:

	11. Future and history
	11.1 Coming attractions
	11.2 Past versions

	adapt_grid command
	balance_grid command
	bound_modify command
	boundary command
	clear command
	collide command
	collide_modify command
	compute command
	compute boundary command
	compute count command
	compute distsurf/grid command
	compute eflux/grid command
	compute grid command
	compute ke/particle command
	compute lambda/grid command
	compute pflux/grid command
	compute property/grid command
	compute reduce command
	compute sonine/grid command
	compute surf command
	compute temp command
	compute thermal/grid command
	compute tvib/grid command
	create_box command
	create_grid command
	create_particles command
	dimension command
	dump command
	dump image command
	dump image command
	dump movie command
	Rendering of particles
	Rendering of grid cells
	Rendering of surface elements

	dump_modify command
	echo command
	fix command
	fix adapt command
	fix ambipolar command
	fix ave/grid command
	fix ave/histo command
	fix ave/histo/weight command
	fix ave/surf command
	fix ave/time command
	fix balance command
	fix emit/face command
	fix emit/face/file command
	fix emit/surf command
	fix grid/check command
	fix move/surf command
	fix print command
	global command
	group command
	if command
	include command
	jump command
	label command
	log command
	mixture command
	move_surf command
	next command
	partition command
	print command
	quit command
	react command
	react_modify command
	read_grid command
	read_particles command
	read_restart command
	read_surf command
	region command
	remove_surf command
	reset_timestep command
	restart command
	run command
	scale_particles command
	seed command
	shell command
	species command
	stats command
	stats_modify command
	stats_style command
	surf_collide command
	surf_modify command
	surf_react command
	timestep command
	uncompute command
	undump command
	unfix command
	units command
	variable command
	Math Operators
	Math Functions
	Special Functions
	Particle Vectors
	Compute References
	Fix References
	Surface Collision and Surface Reaction Model References
	Variable References

	write_grid command
	write_restart command
	write_surf command

