SPM Tip-Sample Interactions: Approach, Feedback and Scanning

- Determines what can be done with SPM
 - Spatial resolution
 - Physical properties of sample investigated
- Defines instrument performance
 - Conditions for tip crash/damage
 - Sensitivity to noise
 - Type and speed of approach
 - Speed and stability of feedback
 - Scanning/imaging performance

SPM based on local interactions

Range of interaction determines resolution, also approach and imaging strategy

Interaction must be ~ monotonic for stable feedback in most cases

STM Case

STM approach

sample detection range ~ 0.8 nm feedback response ~ 5 ms (2-3 time constants) approach velocity v_{approach} ~ 0.8 nm/5 ms = 160 nm/s for 1 mm, ~ 1.7 hours

for 10 um, ~ 1 minute

"Feedback detect"

- move tip toward surface at constant rate
- wait for feedback loop to respond
- approach stops at desired interaction strength
- default approach mode for Asylum AFM and ND-MDT AFM
- rate controlled by hand-wheel

motion <u>must</u> be smooth at interaction range level (angstroms) or STM will <u>always</u> crash

"Tip retract"

- retract tip full piezo range
- move tip toward surface by ~ $\frac{1}{4}$ to $\frac{1}{2}$ Z range with coarse motor
 - » stepper, piezo, stick-slip, etc
- (let tip/preamp stabilize, DFM PLL for example)
- let feedback loop look for surface
- repeat until feedback stops at desired interaction strength

only safe means to completely avoid tip crash

usually required for STM, Atomic resolution DFM, delicate MFM or KFM...

- "Tip retract-modified/open loop"
 - retract tip full piezo range
 - move tip toward surface by ~ $\frac{1}{4}$ to $\frac{1}{2}$ Z range with coarse motor
 - » stepper, piezo, stick-slip, etc
 - (let tip/preamp stabilize, DFM PLL for example)
 - ramp toward surface while measuring interaction
 - repeat until interaction detected
 - yank tip back as fast as possible if interaction detected, then let feedback loop approach
 - can be much faster if detection time (~ 100 us) << than loop response time (~ 5 ms) and control system is deterministic (fast reflexes)
 - could be > 10x faster, 10 min instead of 2 hours...
 - can also use for non-tip-retract approach

Contact/Tapping AFM Case

Interaction range 10-100x > STM Approach much faster

Incidental "crash" during approach may not matter, tip hits surface anyway...

Feedback or interactiondetect approach is fine

Complications

Tip Aper - Sample Cantilever, tip body - Sample

mixed interactions

dynamical systems oscillating tips + non-linear tip-sample interactions Tapping mode, DFM-FFM/PLL, "Shear force"

Scanner finite bandwidth & resonances

(transfer function) thermal drift, hysteresis, creep...

SPM Control Problem

"Simple" Feedback

PID One size (kinda) fits all

Good for well-behaved "plant"

SPM is usually not... scanner resonance non-linear signal

...

STM feedback issues

exponential response

pathological

exponential response

insulating films

...

Scanning Issues

Scanning Issues

