

Extended-MHD Modeling of Tokamak Disruptions and RWMs with M3D-C1

Nate Ferraro, Steve Jardin, David Pfefferlé

Theory and Simulation of Disruptions Workshop Princeton Plasma Physics Laboratory July 20, 2016

Simulations Seek to Model Onset and Consequences of Disruptive Instabilities

- Stability of disruptive modes often involve plasma / wall interaction
 - Locked Modes
 - Resistive Wall Modes (RWMs)
 - Vertical Displacement Events (VDEs)
- Evolution of disruptions involves large displacement of plasma and penetration of flux through wall
- Both linear stability and nonlinear evolution of disruptive instabilities are naturally modeled with resistive-MHD codes

New Capabilities Have Been Developed in M3D-C1 To Model Disruptions

- Resistive wall model
 - Walls of arbitrary thickness
 - Allows current into, out of, and through wall
 - Allows non-axisymmetric resistivity (e.g. ports)
- Capability to switch between 2D Nonlinear / Linear Stability / 3D Nonlinear Calculations
- Improved meshing and modeling of open field-line region

Resistive Wall Model In M3D-C1 Includes Wall Inside Simulation Domain

Resistive Single-Fluid Model is Considered Here

$$\frac{\partial n}{\partial t} + \nabla \cdot (n_i \mathbf{v}) = 0 \qquad \Pi_i = -\mu \Big[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \Big]_Z n_i m_i \Big(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \Big) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_i \qquad \mathbf{q} = -\kappa \nabla T_i - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla T_e \mathbf{J} = \nabla \times \mathbf{B} \int \mathbf{J} = \nabla \times \mathbf{B} \Gamma = 5/3 \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \qquad n_e = Z_i n_i \end{cases}$$

- (R, φ, Z) coordinates \rightarrow no coordinate singularities in plasma
- Three modes of operation:
 - Linear, time-independent (perturbed equilibrium not discussed here)
 - Linear, time-dependent (linear stability)
 - Nonlinear, time-dependent (nonlinear dynamics)

Resistive Wall Modes

- Code validation for arbitrary wall thickness
- Rotational stabilization and comparison to theory

Resistive Model Verified Against Analytic Resistive Wall Mode Result

- Circular cross-section, cylindrical plasma with constant q, current density (J_z) and mass density (ρ_0) (Shafranov equilibrium)
- Analytic thin-wall solution provided by Liu *et al. Phys. Plasmas* 15, 072516 (2008)

M3D-C1 Reproduces Analytic RWM Result in Thin Wall Limit

- Growth rate calculated using linear, time-dependent calculation
- M3D-C1 agrees with analytic growth rate in both resistive-wall (τ_A << τ_W) and no-wall (τ_W << τ_A) limits

M3D-C1 Model Verified For Arbitrary Wall Thickness

• Allowing arbitrary wall thickness leads to straightforward modification of Liu *et al.* (thin wall) dispersion relation

$$\frac{v}{m - nq_0} - \frac{1}{1 - (a/b)^{2\mu}F} = \frac{(\gamma \tau_A)^2}{2} \frac{q_0^2}{(m - nq_0)^2}$$
$$\mu = |m| \qquad \alpha = \sqrt{2\gamma \tau_W b/d}$$
$$v = \text{sgn}(m) \qquad \beta = (1 + d/b)\alpha$$

- In thick wall, skin depth limits eddy current depth
 - Weaker eddy currents than in thin wall approximation, which assumes radially uniform current in wall
- M3D-C1 model in good agreement with analytic results for arbitrary wall thickness
- In ITER, $(\gamma \tau_W)(d/b) \sim 0.2 *$
 - Growth rates ~ 20—50% larger than thin wall solution
 * F. Villone et al. *Nucl. Fusion* 50, 125011 (2010)

Thin wall (
$$d \le b$$
)
 $F \Rightarrow \frac{\gamma \tau_W}{\gamma \tau_W + \mu}$
General solution
 $F = \frac{I_{\mu-1}(\beta)K_{\mu-1}(\alpha) - I_{\mu-1}(\alpha)K_{\mu-1}(\beta)}{I_{\mu-1}(\beta)K_{\mu+1}(\alpha) - I_{\mu+1}(\alpha)K_{\mu-1}(\beta)}$
 $\int_{a}^{b} \frac{1}{(\beta)} \frac{1}{(\beta)}$

Complete Rotational Stabilization of RWM Observed

- Reduced-model (two-field) calculations show stabilization of RWM by toroidal rotation

 - ω = ω₀ (1 - ψ_N)
- Qualitative agreement with Pustovitov model*
 - $\gamma = \gamma_0 [1 (\omega/\omega_c)^2]$ where γ_0 is the growth rate with no rotation and $\omega_c = 2\gamma_0/n$
 - Pustivitov model derived in thick wall limit with uniform rotation
- Work is now ongoing to extend this to full extended-MHD model

*Pustovitov Nucl. Fusion 53 (2013) 033001

Vertical Displacement Events

- Axisymmetric simulations
 - Current spike
 - Halo currents
 - -Axisymmetric wall forces
 - -q-profile evolution
- Non-axisymmetric simulations
 - Linear stability
 - Non-axisymmetric evolution

Disruption Simulations Initialized using Vertically Unstable EFIT Reconstructions

- Nonlinear calculations use fairly realistic plasma parameters
 - Spitzer resistivity: $S_0 \approx 6.8 \times 10^7$
 - Anisotropic thermal conductivity:

$$\chi_{\parallel}/\chi_{\perp}=10^6$$

• RW region approximates first wall, not vacuum vessel here

- <u>Cold-VDE</u> calculations have anomalous χ to cause TQ before vertical instability
- <u>Hot-VDE</u> calculations have lower χ and remain hot until after plasma touches wall

"Cold-VDE" Features Thermal Quench Before Vertical Instability

- Thermal Quench (TQ) is modeled by including anomalous thermal conductivity $100 < \chi_{\perp} < 800 \text{ m}^2/\text{s}$
- Thermal quench happens on ${\sim}100~\mu s$ timescale
- TQ phase not meant to be physically realistic. We are interested in current quench (CQ) phase

Strong Currents Form in Halo Region; Response Currents form in Wall and SOL

 Both co-I_P and counter-I_P currents are seen in the open fieldline region

Timescale of VDE Is Determined by Wall Resistivity (η_W)

Current Spike Observed Just Before Current Quench; Related to Vertical Motion of Plasma

- Current spike occurs soon after plasma makes contact with the wall
- There is no spike associated with the thermal quench
- Spike is smaller when $\eta_W < \eta_{SOL}$

Current Spike Results from Loss of Induced Counter- I_P Currents When Plasma Contacts Wall

 Counter-I_p response currents are induced by motion of leading edge of plasma

- When plasma contacts wall, these currents quickly dissipate
- Eventually (after spike), toroidal current in wall flips sign to oppose I_P decay

Axisymmetric Forces Reach Maximum Just After Current Spike

- Axisymmetric forces peak at ~100 kN /m²
- Force distribution does not evolve significantly
- Currents in plasma are strong, but mostly force-free

Maximum Axisymmetric Halo Currents and Wall Force Depend Weakly on η_W

- Halo currents can exceed 100 kA/m²; observed both on divertor floor and center post
 - Distribution likely depends on temperature (resistivity) of open field-line region
- Maximum Halo currents and force density in the wall is only weakly dependent
 on wall resistivity
- Impulse to vessel increases with τ_W because force is applied for longer time

3D Evolution Depends on Thermal History of Plasma

- Two competing effects determine q_{edge} once plasma is limited:

 q_{edge} drops as plasma shrinks and is scraped off by limiter
 q_{edge} rises because of resistive decay of I_P
- In <u>cold-VDE</u> (TQ happens before VDE), resistive decay is fast and q_{edge} rises
 - Plasma remains stable to n > 0 MHD
- In <u>hot-VDE</u> (no TQ before VDE), resistive decay is slow and $q_{\rm edge}$ drops
 - Plasma eventually becomes unstable to n > 0 MHD
 - -n > 0 instability potentially causes strong Halo currents, wall forces, and TO
- 3D simulations are expedited by testing linear stability of 2D simulations; then turning on 3D model when instability is found

3D Nonlinear Hot-VDE Calculation Shows Development and Saturation of 3D Modes

Linear Stability Analysis Finds Agreement With Nonlinear Calculation

In Hot-VDE Simulations, $q_{edge} < 1$ Before Non-Axisymmetry Becomes Significant

- Non-axisymmetric modes start growing when $q_{\rm edge}\!\!=\!\!2$, but are still at small amplitude when $q_{\rm edge}\!\!=\!\!1$
- q_0 is still > 1, so shear is reversed when $q_{edge}=1$
- Plasma seems unexpectedly stable
 - No strong instability when $q_{edge} = 2$
 - 1/1 instability onsets after q_{edge} = 1
- Linear calculations confirm that high SOL temperature is responsible for stability

Higher Resolution Meshing will Improve Treatment of SOL

- Practical limit on SOL temperature is set by Te gradient between wall and plasma
- Higher resolution will better resolve this gradient and allow lower temperature in open fieldline region
- Artificially increasing the resistivity in the open field-line region has similar effect, but is less selfconsistent

Summary

- M3D-C1 provides powerful capability to model disruptive instabilities
 - Linear & nonlinear plasma evolution with resistive walls of arbitrary thickness
- Complete stabilization of RWM is found above critical rotation frequency
 Reduced model was used here; study with full model is underway
- Current spike always seen in VDE simulations; associated with plasma hitting wall and not with thermal quench
- Axisymmetric forces and halo currents quantified
 - Calculations make no assumptions about Halo region width
 - Axisymmetric forces depend weakly on wall resistivity
- Non-axisymmetric stability of VDE depends on temperature: "cold-VDEs" remain kink stable, while "hot-VDEs" develop kink instability
 - Kink instability sensitive to SOL temperature (resistivity)
- Extensive validation with halo current measurements is planned!

Linear Growth Rates are Sensitive to SOL Temperature

- The resistivity η_{SOL} in the open field-line region was varied artificially to be consistent with a range of T_{SOL}
- Growth rates are higher at lower $\mathit{T_{SOL}}$ (i.e. higher η_{SOL})

T _{SOL} (eV)	$\gamma_{n=1}\tau_{\rm A}$	$\gamma_{n=2}\tau_{\rm A}$	$\gamma_{n=3}\tau_{\rm A}$	$\gamma_{n=4}\tau_{\rm A}$	$\gamma_{n=5}\tau_{\rm A}$
25	.00307	.00321	0.00571	0.00419	0
20	.00352	.00396	0.00689	0.00476	0
15	.00404	.00539	0.00899	0.00593	0
10	.00488	.00787	0.01222	0.00772	0
5	.00650	.01295	0.0181	0.0108	0

