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Conventional “Rutherford” Magnetic Island
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Local helical flux: ψ(r, θ,ϕ) = ψ0(r) + Ψ cos(mθ− nϕ).
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Realistic Magnetic Island
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Local helical flux: ψ(r, θ, ϕ) = ψ0(r) + Ψ [1 − δ (r− rs)] cos(mθ− nϕ).
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Realistic Tearing Eigenfunction

ψ(r)

0 rrs
0

ψ(r, θ, ϕ) = ψ0(r) + ψ(r) e i (mθ−nϕ)

Distortion of magnetic island emanates from strong average negative

gradient of eigenfunction at rational surface.
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Effect of Radial Asymmetry on Island Stability

• White, Gates, and Brennan a find that asymmetry gives rise to

destabilizing term in Rutherford island width evolution equation

whose magnitude is proportional to island width. Term plays

pivotal role in new theory of density limit disruptions.

• Hastie, Militello, and Porcelli b find similar destabilizing term in

thin-island limit (when island too thin to flatten temperature

profile), but find no such term in opposite thick-island limit.

• Arguments of White, Gates, and Brennan seem more applicable to

thick-island than thin-island limit??

• Aim of talk is to resolve disagreement by extending standard

Rutherford theory to take radial asymmetry into account.

aPhys. Plasmas 22, 022514 (2015).
bPhys. Rev. Lett. 95, 065001 (2005).
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Fundamental Model

• Nonlinear resistive-MHD analysis of magnetic island evolution.

Incorporates non-inductive bootstrap current, plus asymmetric

heat transport parallel and perpendicular to magnetic field-lines.

• Assumes radially thin island. Assumes uniform parallel inductive

electric field in island region, small uniform temperature gradient

in absence of island chain, and η ∝ T−3/2.

• Assumes that perturbed current density in island region small

compared to background density, and neglects plasma inertia in

vorticity equation. Follows that current density is magnetic

flux-surface function.
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Fundamental Definitions

• Normalized coordinates: X = (r− rs)/w, ζ = mθ− nϕ. Here,

W = 4w is full island width.

• Normalized helical flux: ψ. Normalized perturbed temperature:

δT . Normalized perturbed current density: δJ = δJ(ψ).

• Equilibrium magnetic shear: ss. Equilibrium magnetic

shear-length: Ls. Equilibrium temperature gradient scale-length:

LT . Critical island width (above which δT flattened): wc.

• Resistive evolution time-scale: τR. Bootstrap parameter:

αb = fs βp. Tearing stability index: ∆ ′.

• Poisson bracket: [A,B] ≡ ∂XA∂ζB− ∂XB∂ζA.

• Flux-surface average operator: 〈[A,ψ]〉 ≡ 0, for general A.
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Fundamental Equations

∂ 2
Xψ = 1,

0 =

(
w

wc

)4

[[δT,ψ], ψ] + ∂ 2
XδT,

δT(X, ζ)|lim |X|→∞
= X,

δJ(ψ) = −
τR

〈1〉
∂

∂t

[
〈
(
w

rs

) 2

ψ〉
]
+ αb

Ls

LT

(
〈∂XδT〉
〈1〉 − 1

)

−
3

2

w

LT

(
2

ss
− 1

)
〈δT〉
〈1〉 ,

∆ ′w = −2

∫
∞

−∞

∮
δJ cos ζ dX

dζ

2π
.
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Model Magnetic Flux Surfaces

ψ(X, ζ) = Ω(X, ζ),

Ω(X, ζ) ≡ 1

2
X 2 + cos(ζ− δ 2 sin ζ) −

√
2 δX cos ζ+ δ 2 cos2 ζ.

• Solution of ∂ 2
Xψ = 1.

• δ, where 0 < δ < 1, controls radial asymmetry.

• Magnetic separatrix at Ω = 1, and full island width 4w,

irrespective of value of δ.
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Ω-Contours in X-ζ Space: δ = 0
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Ω-Contours in X-ζ Space: δ = 0.5
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Ω-Contours in X-ζ Space: δ = 1.0
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Coordinate Transformation

Y = X−
√
2 δ cos ζ,

ξ = ζ− δ 2 sin ζ.

• Flux surfaces map to

Ω(Y, ξ) =
1

2
Y 2 + cosξ,

irrespective of value of δ.
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Ω-Contours in Y-ξ Space: Arbitrary δ
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Flux-Surface Average Operator

〈A〉 =
∫2π−ξ0

ξ0

σ(ξ)A+(Ω,ξ)√
2 (Ω− cosξ)

dξ

2π
for −1 ≤ Ω ≤ 1,

〈A〉 =
∫2π
0

σ(ξ)A(Ω,ξ)√
2 (Ω− cosξ)

dξ

2π
for Ω > 1,

where ξ0 = cos−1(Ω), and

σ = 1+ 2
∑

n=1,∞

Jn(nδ
2) cos(nξ),

and

A±(Y, ζ) = (1/2) [A(Y, ζ)±A(−Y, ζ)] .
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Rutherford Equation

G1 τR
d

dt

(
W

rs

)
= ∆ ′ rs +G2 αb

Ls

LT

rs

W
+G3

rs

LT

(
2

ss
− 1

)
,

where

G1 = 2

∫
∞

−1

(〈cosξ〉 + δ 2 〈sinξ sin ζ〉) 〈cos ζ〉
〈1〉 dΩ,

G2 = 16

∫
∞

−1

〈∂YδT−〉 〈cos ζ〉
〈1〉 dΩ,

G3 = −6

∫
∞

−1

〈δT+〉 〈cos ζ〉
〈1〉 dΩ.
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Narrow-Island Limit: w� wc

δT+(Y, ζ) = 0,

δT−(Y, ζ) = Y +
∑

n=1,∞

√
2n

4

w

wc

[
(−1)n−1 Jn−1(δ

2) + Jn+1(δ
2)
]

× f
(√

2n
w

wc
Y

)
cos(nζ),

where f(p) is the solution of

d2f/dp 2 − p 2 f/4 = −p

that satisfies f(0) = 0, and f→ 0 as |p| → ∞.
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Contours of δT in X-ζ Space: δ = 0.8
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Narrow-Island Limit: Effect of Radial Asymmetry

• Because δT+ = 0, follows that B3 = 0 identically. No

destabilization term due to island asymmetry in narrow-island

limit.

• Destabilization term found by Hastie, Militello, and Porcelli a

spurious, because authors incorrectly assumed η = η(X) in

narrow-island limit.

aPhys. Rev. Lett. 95, 065001 (2005).
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Wide-Island Limit: w� wc

δT+(Ω) = 0,

δT−(Ω) =



0 −1 ≤ Ω ≤ 1∫Ω
1

dΩ ′
〈Y 2〉(Ω ′) Ω > 1

.
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Contours of δT in X-ζ Space: δ = 0.8
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Wide-Island Limit: Effect of Radial Asymmetry

• Because δT+ = 0, follows that B3 = 0 identically. No

destabilization term due to island asymmetry in wide-island limit.

• Destabilization term found by White, Gates, and Brennan a

probably spurious, because calculation only heuristic in nature.

aPhys. Plasmas 22, 022514 (2015).
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Generalized Rutherford Equation

G1 τR
d

dt

(
W

rs

)
= ∆ ′ rs + αb

Ls

LT

G2G
′
2W rs

G ′
2W

2 +G2W 2
c

,

where G1 = G1(δ), etc., and Wc = 4wc.
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Constants in GRE
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Solid, short-dashed, and long-dashed curves show G1, G
′
2/4, and

G2/6. Thick curves calculated with 15 harmonics. Thin curves

calculated with 10 harmonics.
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Summary

• Radial asymmetry has surprisingly little effect on evolution of

Rutherford island.

• In particular, there is no evidence that asymmetry leads to new

destabilizing term in Rutherford equation that scales as W.

• Physical Interpretation: An asymmetric island is a symmetric

island plus a uniform (twisting parity) kink of same helicity. No

reason to suppose that addition of such a kink would radically

modify island stability. (Anymore than addition of a perturbation

of different helicity would be expected to radically modify island

stability.)
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