Effect of Locked-Modes on Impurity Spreading in MHD Simulations of Massive Gas Injection

V.A Izzo

Theory and Simulations of Disruptions Workshop Princeton, NJ 20 July 2016

Motivation

- Disruption mitigation is ITER will be applied as a last resort when a disruption is imminent and cannot be avoided by passive or active control
- NTMs leading to locked-modes were found to be the most common root cause of disruptions in JET^{*} (with other root causes also sometimes leading to mode-locking)
- → We can assume that disruption mitigation will very frequently be employed when large/locked islands are already present in the plasma
- Disruption mitigation studies with pre-existing islands/lockedmodes, using both massive gas injection (MGI) and shattered pellet injection, are part of a 2016 experimental Joint Research Target

NIMROD extended MHD code is combined with KPRAD atomic physics code to model massive gas injection (MGI)

Ionized Ne density

NATIONAL FUSION FACILITY SAN DIEGO

Outline

Part 1: The physics of impurity plume expansion during massive gas injection (MGI)

Part 2: Results of MGI simulations with pre-existing islands

- -Comparison of 2/1 islands with different phases and amplitudes
- -The role of the n=2 mode
- -Simulation with pre-imposed 4/2 island

Part 3: Consequences for radiated energy fraction and toroidal peaking factor

PART 1: The physics of impurity plume expansion during massive gas injection (MGI)

Impurities spread along field lines fastest at the q=2 surface AND toward the high-field side

→ $Ivrvxuidfhri#rql}hgt@htghqv1w|#$ irorzbj#qnhfwlrqt#w#8⁰ vkrzv#khdfdd#vsuhdglbj#qt#ø glhfwlrq#wrzdug#KIV,

 \rightarrow Dzd | #up #kh#phfwirg#rfdwirg/#kh# Qh#phqviw| #u#wurqjd #shdnhg#jw#:@5

V.A. Izzo, P.B. Parks et al, Nuclear Fusion 55 (2015) 073032

Expansion is also toroidally asymmetric due to magnetic field gradient

Nozzle equation explains preferential HFS spreading:

Continuity $\rho AU = \text{constant}$

 $BA = \text{constant} \Rightarrow \frac{d\rho}{\rho} + \frac{dU}{U} - \frac{dB}{B} = 0$

Momentum
$$ho U dU = -dp = -(dp / d\rho)d\rho = -C_s^2 d\rho$$

$$\Rightarrow \frac{dU}{U} = \frac{1}{(1 - M^2)} \frac{dB}{B}$$

Flow starts at M<1, is thwarted where dB/B<0, accelerates where dB/B>0

V.A. Izzo, P.B. Parks et al, Nuclear Fusion 55 (2015) 073032

Parallel spreading is driven by parallel heat transport

H{foxglqj#khdw/wdqvsruv/#kh#suhvvxuh#dw/kh# arfdd}hg#p sxulw/#care#zrxog#eh#rzhu#kdq#kh# vxurxoglqj#solvp d Sdudon#khip dahtxbeudwirq#surgxfhv#d# suhvvxuh#judghqw#sursruvirqda#r#kh#ghqv1v|# judghqw#zklfk#guijthv#h{sdqv1rq#xvzdug

Thermal equilibration happens faster at a low order rational surface

DwlthrzOrughi#dwirqd#xuidfh/#kh#frqqhfwirq# drgjwk#kruvhu#qq#t#vbjdn#lhog#bh#thgv# wr#htxbeudwh Rq#dq#ludwirqdd#xuidfh/#kh#hqwlh#ix{#xuidfh# dfw#dv#d#hvhyrl/#dqg#h{huw#prh#edfn# suhvvxuh#q#kh#psxuiv/#eare1#

UC San Diego

PART 2: Results of MGI simulations with preexisting islands

Three simulations are initialized with 2/1 magnetic islands

TQ onset time, duration related to initial island width, phase respectively

- Frqwrxutrith yvitt
 wip httog to daruttog kvtt
 trxwn to gsolqh,tt
- Iolwhqbj#pxh#r#
 bjWdd#524#kvolog#
 dssduhqw#p#olujh#
 kvolog#Edvhv
- Gurs#g#fhqwdd#h ehj bqv#xv#ehiruh#15# 2 p v z 2#dujh#volog/# odwh.#z lwk#p do#volog 1
- Gxudwirq#r#NT#rqjhu# iru#;30skdvh#kdq# hlwkhu#dvh#zlwk#0 skdvh

- Z klin#lohv#lih#g@4#
 +vrdg,#log#g@5#
 -gdvkhg,#lp solxeghv#
 -lof#kqlw#ri#E2E,
 - Ig#hlykhu#30skdvh# fdvh/#ykh#g@5# dp solwxgh#h{fhhgv# wkh#g@4#dp solwxgh#ru# d#eulhi#gwhuydd# durxogs#ykh#wduv#ri# wkh#MT
- Iq#4;30skdvh#Edvh/# wkh#p@4#prgh#b/# dczd |v#grpbpdqw

Peak in radiated power is later for 180-phase with same size island

At 0-phase, large initial flash in radiated power appears that is almost completely absent for 180-phase island

Two radiation flashes in each case; difference in relative amplitude

- Frqwrxu###\$_{udg}yv# wlph#lqg#rurlgdd# dqjdn#lqnhfwlrq#lv#lw# 48°,
- Sxuson#lphv#luh#
 pd{lpxp#lnqwold#
 W243#v1#lph#lph#lph?l#
 Gurs#lp#lnqwold#
 prw#forvhd#
 fruhvsrogv#r#
 h{shulphqwold#
 phdvxuh#VT#lph,1
- Hyhu #dvh#kdv#zr#
 udgblwhg#srzhu#
 shdnvÙrqh#xvw#
 ehiruh#kh#gurs#g#h_/#
 dqg#qh#gxubj

- SuhWT#S_{udg} iotvk#u#
 pxfk#pruh#urfdd}hg#
 lq#Wph/#urlgdod
 qhdu#kh#pnhfwirq#
 arfdwirq1
- S_{udg} iolvk#gxubj#kh#
 WI#olvw#rgjhu#log#l/#
 orfdd}hg#lzd|#urp #
 wkh#lphafwlrg#rfdwlrq1
- Uhatwijh#ip solwigh#ri#
 wkh#zr#atvkhv#
 ghshqgv#q#valqg#
 dp solwigh#log#skdvh1

After 1 ms, parallel spreading differs between the two phases

180-phase, large island

0-phase, large island

With 0-phase, impurity plume breaks up into multiple branches, begins to spread more rapidly

UC San Diego

Change in impurity spreading coincident with appearance of 4/2 harmonic of 2/1

1.5

2.0

- Vsuhdgloj#W#@5#jryhuqhg#e|#sdudahd# frqqhfwlrq#bnqjwk#zklfk#ghwhup lqhv# wkhup dd#htxlbeudwlrq#dwh,#
- Odujh#524#1xolqg#1qfuhdvhv#ErqqhfwIrq#
 dnqjvk#1holwJh#vr#kqshuxuehg#dwIrqdd#ox{#
 vxuidfhv
- Euhonxs#r#524#volog#bwr#vp.dobr#volog# fkolbyr#e |#25#bgxfhv#Erophfwirog#bngjwk1#

1 0

Time (ms)

1.0

3.0 4.0

5.0

6.0

7.0 8.0 9.0

10.0

0.5

¥ 10⁻³

UC San Diego

0.0

0.01

0.001

dB/B

Changes in cooling near the 2/1 island are also evident when n=2 mode appears

180-phase, large island

0-phase, large island

Contours of - ΔT

Contours of $-\Delta T$

Changes in cooling near the 2/1 island are also evident when n=2 mode appears

Direct imposition of 4/2 island can force 180phase to behave like 0-phase case

SAN DIEGO

- Vlp xolwirg#z lwk#glwidd# 725#p rgh#*grwholg# :#* 524#p rgh#qr#524# frp srqhqw,1#Vdp h# skdvh#olg#op solwigh# dw# ; 30skdvh#olujh# lvolog
- Divhu#g@4#jurzv#vr# frp soludeoh# dp solwsgh#vr#g@5/# hyroxwirq#v#zwh# vip loiu#vr#30skolvh# folvh
- Idw#suh0WF#dglbwlrq# iodvk#hvhp ediv#0 skdvh#dvh#zlwk# vsrqvdqhrxv#25# p rgh1

PART 3: Consequences for radiated energy fraction and toroidal peaking factor

Conducted energy fraction defined by total energy lost minus radiated energy

- Qhdud #Ja#nghuj |#
 arw#v#khup da#
 hqhuj |#ks#vr#kh#
 udglowng#srzhu#
 shdn
- Divhi#kh#shdn/#
 olujh#udfwhq#ri#
 orv#hqhuj |#v#
 p djqhwlf#433 (#
 divhu#VF#v#vhu,
- Divhi#kh#NT/#
 S_{udg}@OgZ 2gwdv#
 Rkp If khdwlogj/#
 udgldwlrq#edodqfh#

- Z_{udg}2Z_{wk}ghshqgv#
 vhqvlwlyhd#q#krz#
 hqg#ri#T#v#krvhq
- Ip sruvdqwttxdqwlw|#
 lvthqhuj |tfrqgxfwhg#
 wrthkhtglyhuwru
- Ghilqh#frqgxfwlng# hqhuj |#udfwlrq=

 i_{f} + $Z_{wrw} Z_{wbg}$, $2Z_{wk}$

0-phase case has more uniform radiated power during most of the TQ

9.5

8.5

7.5

6.5

180-phase, large island

0-phase, large island

Emissivity contours

1

Û

2

Emissivity contours

0.5

-0.5 -1

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1

UC San Diego

0-phase case has more uniform radiated power during most of the TQ

Better mitigation when 4/2 mode is present

- Frogsting#pinj |# idfwirg#log#dgbwirg#l wrurlgdd#hdnlgj# idfwru#ru#rxu# vlp xolwirgvU wruhh# zlwt#24#wologv#log# rgh#zlwt#25#wologv
- Ervik#xdqwivihv#lih# sorwing#jhuxxv#kh# pd{ipxp#dwir#ri#kh# q@5#r#q@4#ipsdwgh# gxulgj#kh#NT#skdvh

- Erwk#exdqwWnv# 1p suryh#uhgxfh,#1v# wkh#hodwYn#1p solwsgh# ri#kh#q@5#ehfrp hv# odujhu
- Vsrqwdqhrxvd# jurzbj#u#rufled# lpsrvhg#q@5#prgh#v# ehqhilfbd#vr# pWijdwirg#phwilfv

Conclusions

- Address Add
- The presence of large islands affects the heat conduction and spreading of impurities at the rational surface
- The break-up of the islands into smaller island chains enhances impurity spreading, and reduces average toroidal peaking and the conducted energy fraction
- → Evolution of magnetic topology is determined by combination of gas jet(s), pre-existing MHD, (and applied fields)
- For a single gas jet, the appearance of the n=2 harmonic occurs only for some island phases.
- A deliberately imposed 4/2 island produces a similar radiation pattern to the case with a spontaneously growing 4/2 mode

Future work: How do these results compare with DIII-D experiments? What about multiple jets? Higher-n harmonics?

