Disruption mitigation studies at ASDEX Upgrade in support of ITER

G. Pautasso¹, M. Bernert¹, M. Dibon¹, B. Duval², R. Dux¹, E. Fable¹, C. Fuchs¹, G.D. Conway¹, L. Giannone¹, A. Gude¹, A. Herrmann¹, M. Hoelzl¹, P.J. McCarthy³, A. Mlynek¹, M. Maraschek¹, E. Nardon⁴, G. Papp¹, S. Potzel¹, C. Rapson¹, B. Sieglin¹, W. Suttrop¹, W. Treutterer¹, the ASDEX Upgrade¹ and the EUROfusion MST1⁵ teams

> Max-Plank-Institute fuer Plasma Physik, D-85748, Garching, Germany ² Swiss Plasma Centre, EPFL, CH-1016 Lausanne, Switzerland ³ Department of Physics, University College Cork, Ireland ⁴ CEA, IRFM, F-13108 Saint Paul lez Durance, France ⁵ http://www.euro-fusionscipub.org/mst1

Content

- Experimental scenarios and rational behind
- interpretation of pre-thermal quench
- force mitigation in MGI^(*) induced plasma termination;
 focus on small gas quantities
- thermal load mitigation
- runaway electron generation and losses;
 focus on MGI suppression

(*) MGI = massive gas injection

Background

- 2008-2013: MGI exp.s in AUG aimed at reaching n_e ~ n_c ~ O (10²²) / m³ during or just after TQ for RE suppression
- poor impurity assimilation at large $N_{inj} \rightarrow$ attempts to reach n_c abandoned
- ITER DMS consists now of several injectors for TQ & force mitigation + RE suppression
- TQ: Minimum impurity amount for force & thermal load mitigation?
- CQ: Is control and/or suppression of REs possible?

AUG: Mitigation valves, relevant diagnostics and coils

Thermal quench (TQ) and force mitigation: Experimental conditions

2014 – 2015:

- N_{inj} = 10²⁰-10²² atoms neon with one or two in-vessel valves
- mitigated shut-down evolution?
- I_p ~ 1 MA (E_{mag} ~ 1.4 MJ)
- E_{th} = 30 750 kJ
- q₉₅ ~ 4.2

results discussed in terms of pre-TQ and CQ times

Simulation of pre-TQ

- ASTRA-STRAHL 1-D transport (current, energy, densities, radiation) code + SPIDER 2-D equilibrium E. Fable et al, NF (2016)
- P_{rad} radially localized; impurity layer radiates
 → saturation of pre-TQ time as N_{ini} increases
- reproduces cold front penetration velocity (not shown)

Pre-TQ phase: experiment versus simulation

- TQ onset in ASTRA: T_e at q=2 surface < 5 eV</p>
- comparison experimental times with ASTRA simulations (neon)
- correct N_{ini} and E_{th} dependence

Current quench duration, Δt_{CQ}

- ▲t_{CQ} is a design parameter for ITER ($\Delta t_{CQ} = 50 150 \text{ ms}$) → magnitude of eddy currents, vertical force, E₀ generating REs
- $P_{rad} \sim dE_{mag} / dt \rightarrow \Delta t_{CQ} / S \sim resistivity$ (S = plasma cross section)
- AUG Δt_{CQ} /S within prescribed ITER Δt_{CQ} /S range

Halo current (I_{halo}) mitigation

- Loss of plasma position control after TQ \rightarrow vertical force on vessel
- I_{halo} x B_t = large component of vertical force
- stepwise behavior $\leftrightarrow I_p$ after $\Delta z = 25$ cm (competition $\Delta z \Delta I_p$)
- simulations needed for extrapolation to ITER (ITPA MHD activity)

TQ mitigation: radiated energy

- Repartition radiated/deposited energy as N_{ini} decreased?
- $E_{rad} \sim (E_{th} + E_{in} + 5 \% E_{mag})$ in pre-TQ + TQ is N_{inj} independent
- no clear dependence of E_{rad} / (E_{th} + E_{in}) during pre-TQ
- E_{rad} / E_{th} decreases during TQ

TQ mitigation: power onto divertor

 power on outer divertor strike point module (~ 20 x 1 cm²) from infra-red camera (trade-off spatial-temporal resolution; TQ power deposition is poloidally broader)

- E_{div} / E_{th}: two branches @ low N_{inj}
 - single spike & larger E_{div} / E_{th}
 - energy losses in sequence of spikes (one spike in E_{div})

Toroidally asymmetric radiation distribution

- *P*_{rad} is poloidally & toroidally asymmetric in pre-TQ & TQ
- multiple injectors and mode/plasma rotation reduce asymmetry
- relative n=1 X-point valve position influences radiation asymmetry (V. Izzo POP, 2013)
- AUG: DL induced tearing modes locked by n=1 resonant MP coils @ several toroidal location; MGI after LM
- Prad asymmetry during pre-TQ & TQ clearly influenced by LM position

Toroidally asymmetric radiation distribution

- Max $E_{rad}(\phi=0)/E_{rad}(\phi=\pi) \sim 4$ (pre-TQ) and ~ 2 (TQ)
- consistent w max when injecting into n=1 X point
- w/o rotation effects → data-set for benchmark of 3-D models (e.g. JOREK)

RE beam generation

- First exp.s in 2014; follow-up in 2015
- circular plasma, I_p = 0.8 MA, B_t ~ 2.5 T, n_e ~ 2.5 $10^{19}\,/m^3$, P_{ECRH} > 2 MW, $N_{inj} \leq 2 \times 10^{21}$ argon atoms
- RE beam (I_{RE} < 400 kA for < 400 ms) reproducible but sensitive to I_p rampup
- plasma is vertically stable; no major MHD instabilities
- RE current after 1st Ar injection can follow reference I_p – often faster → E₀ from OH system

Equilibrium, density profile

Series of equilibria; beam position confirmed by SXR Density profiles in RE beam

RE suppression with argon

Line integrated density after 1st and 2nd argon injection (70 ms apart)

RE beam lifetime versus argon Ninj

Friction force (eE_c) on REs from free and bound electrons

Several known mechanisms of RE losses

Only inelastic collisions RE–electrons considered (energy losses) Formally:

E_c depends on plasma composition (atomic species and ionization state)

Several spectrometers configured to measure Ar-I, Ar-II, C-II and C-III line emission; allow to determine T_e , n_{Ar} and n_C (n_e is known)

line radiance: $L = \frac{1}{4\pi} \int n_e n_z f_f X_{eff} dl$

 X_{eff} : photon emissivity coefficients calculated with a collisional radiative model and ADAS208-code (R. Dux)

fz: fractional abundance

comparison of line radiance of C-II and C-III with ($f_z X_{eff}$) suggests $T_e < 2 \text{ eV}$ and $n_{Ar} / n_e \sim 100 \%$

 $\rightarrow E_c > E_{\phi}$

(uncertainties in atomic data for argon)

- N_{inj} range has been extended: force and thermal load mitigation deteriorates below 10²¹ neon atoms
- modelling needed to extrapolate min N_{ini} to ITER
- ASTRA modelling of pre-TQ benchmarked on AUG → can be used for MGI in ITER
- dedicated exp.s on radiation asymmetry w/o velocity effects to benchmark 3-D codes
- argon injection causes RE current decay largely accounted for by e-RE friction