
Unified Parallel C at LBNL/UCB

Berkeley UPC Runtime Report

Jason Duell
LBNL

May 17, 2004

Unified Parallel C at LBNL/UCB

Topics

• Pthreaded runtime

• Support for GCCUPC (Intrepid)

• C++/MPI Interoperability

• Usability/stability improvements:

• Future work

Unified Parallel C at LBNL/UCB

Pthreaded UPC

• Pthreaded version of the runtime
- Our current strategy for SMPs and clusters of SMPs

• Implementation challenge: thread-local data.
- Different solution for binary vs. source-to-source

• Has exposed issues in UPC specification:
- Global variables in C vs. UPC
- Misc. standard library issues: rand() behavior

Unified Parallel C at LBNL/UCB

Pthreaded UPC

• Future work: implement System V shared
memory, and compare to pthreads
- Benefit: many scientific libraries are not pthread-safe.
- But: lots of bootstrapping issues, limits on size of shared

regions
- Currently targeting end-of-FY04 for SysV completion

• Pthreads share a single network connection:
- Fewer network points for fixed number of UPC threads
- Any pthread can service pending requests for all: better

network attentiveness
- But SysV shared memory may avoid lock contention for

network.

Unified Parallel C at LBNL/UCB

Topics

• Pthreaded runtime

• Support for GCCUPC (Intrepid)

• C++/MPI Interoperability

• Usability/stability improvements:

• Future work

Unified Parallel C at LBNL/UCB

GCCUPC (Intrepid) support

• GCCUPC can now use Berkeley UPC runtime
- Generates binary objects that link with our library.

• GCCUPC previously only for shared memory:
now able to use any GASNet network
- Myrinet, Quadrics, Infiniband, MPI, Ethernet

• Benefits:
- A network-portable binary UPC compiler now exists for

x86, MIPS, future architectures supported by GCCUPC
- Demonstrates that our runtime can be targeted by a

binary compiler (vendors more likely to adopt)

Unified Parallel C at LBNL/UCB

GCCUPC: implementation

• Primary obstacle: inline functions and macros
- Needed in src-to-src for speed, abstraction layer.
- But can’t link against them from binary compiler

• Current solution:
- GCCUPC generates performance-critical logic (ptr

manipulation, MYTHREAD, etc.) as binary
- Convert other inline functions into regular functions

Unified Parallel C at LBNL/UCB

GCCUPC: Future Work

• Support pthreaded executables:
- Funded, and underway at Intrepid
- Requires significant changes to GCCUPC’s link and

initialization strategy (multiple shared regions, thread-
local data support)

• System V Shared Memory support:
- Should “work out of the box” once runtime supports it

• Add extra inlining pass to GCCUPC:
- Read our inline function definitions & generate binary

code for them
- Would allow GCCUPC to automatically get our platform-

specific shared pointer representations
- Not funded, but worth funding :)

Unified Parallel C at LBNL/UCB

Topics

• Pthreaded runtime

• Support for GCCUPC (Intrepid)

• C++/MPI Interoperability

• Usability/stability improvements:

• Future work

Unified Parallel C at LBNL/UCB

C++/MPI Interoperability

• Experiment came out of GCCUPC work
- Needed to publish an explicit initialization API
- Made sure C++/MPI could use it, so we wouldn’t have to

change interface later.
• Motivation: “2nd Front” for UPC acceptance

- Allow UPC to benefit existing C++/MPI codes
- Optimize critical sections of code
- Communication, CPU overlap
- Easier to implement certain algorithms
- Easier to use than GASNet
- Provide transparently in existing libraries (SuperLU)

Unified Parallel C at LBNL/UCB

C++/MPI Interoperability

• Note: “This is not UPC++”
- We’re not supporting C++ constructs within UPC
- C++/MPI can call UPC functions like regular C functions
- UPC code can call C functions in C++/MPI code
- UPC functions can return regular C pointers to local

shared data, then convert them back to shared pointers
to do communication

• Status:
- Working in both directions: {C++/MPI} --> UPC, and vice

versa
- Tested with IBM xlC, Intel ecc, HP cxx, GNU g++, and

their MPI versions.

Unified Parallel C at LBNL/UCB

C++/MPI: Future Work

• Major limitation: can’t share arbitrary data
- Can’t share arbitrary global/stack/heap memory: must

allocate shared data from UPC calls
- May require changes to client C++/MPI code, or else use

of shared buffers
- This problem would exist for UPC++, too.

• Research: allow non-UPC data to be shared
- Regular dynamic/heap memory: easy (hijack malloc)
- Stack/global data: harder (but firehose allows)
- Would be non-standard UPC extensions

- May be worth adding to language.

Unified Parallel C at LBNL/UCB

Topics

• Pthreaded runtime

• Support for GCCUPC (Intrepid)

• C++/MPI Interoperability

• Usability/stability improvements:

• Future work

Unified Parallel C at LBNL/UCB

Usability/Stability improvements

• “Brainless” installation for new users
- Added remote translation over HTTP: low-latency
- Only need to download/install 5 MB runtime
- Almost all networks are now autodetected

- configure; make; make install
- Can install Berkeley UPC in ~5 minutes
- Over 130 downloads of our 1.1 release
- Increasing traffic on mailing list and Bugzilla server

Unified Parallel C at LBNL/UCB

Usability/Stability improvements

• Nightly build of runtime on many configurations:

MPIAlphaT3E
pthread/MPIIA64SGI Altix
IB/MPIPower 5OS X
LAPI/MPIPower 3AIX
Elan/MPIAlphaTru64
GM/MPIx86/IA64Linux

•Test suite now contains 250+ test cases
• works with IBM, Quadrics, PBS batch systems
• nightly run of test suite on various platforms
coming soon

Unified Parallel C at LBNL/UCB

Topics

• Pthreaded runtime

• Support for GCCUPC (Intrepid)

• C++/MPI Interoperability

• Usability/stability improvements:

• Future work

Unified Parallel C at LBNL/UCB

Future work

• System V shared memory support
• GCCUPC pthreads, inline pass support
• Caching remote shared accesses

- Toy implementation done as experiment. Saw 100x
speedup vs. network for 8 byte gets, but still 50x slower
than regular pointer access.

- Need full implementation and tuning.
- Architecture/compiler-specific tuning
- Lookup cost vs. hit rate tradeoff may vary across

applications
- “Smart” runtime cache prediction/prefetching

• Allow regular static/heap data to be shared

