
Unified Parallel C at LBNL/UCB

Compiler Optimizations
in the Berkeley UPC Translator

Wei Chen
the Berkeley UPC Group

Unified Parallel C at LBNL/UCB

Overview of Berkeley UPC
Compiler

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independent

Two Goals: Portability and High-Performance

Unified Parallel C at LBNL/UCB

UPC Translation Process

Preprocessed File

C front end

Whirl w/ shared types

Backend lowering

Whirl w/ runtime calls

Whirl2c

ISO-compliant C Code

PREOPT

LoopNestOpt

Whirl w/ analysis info

M Whirl

“Whirl” is the intermediate form Open64

Unified Parallel C at LBNL/UCB

Preopt Phase

• Enabling other optimization phases
- Loop Nest Optimization (LNO)
- Whirl Optimizations (WOPT)

• Cleanup the control flows
- Eliminate gotos (convert to loops, ifs)
- Setup CFG, Def-Use chain, SSA
- Intraprocedural alias analysis
- Identifies DO_LOOPS (includes forall loops)
- Perform high level optimizations (next slide)
- Convert CFG back to whirl
- Rerun alias analysis

Unified Parallel C at LBNL/UCB

Optimizations in PREOPT

• In their order of application:
- Dead store elimination
- Induction variable recognition
- Global value numbering
- Copy propagation (multiple pass)
- Simplify boolean expression
- Dead code elimination (multiple pass)

• Lots of effort in teaching optimizer to work with UPC code
- Preserve casts involving shared types
- Patch the high-level types for whirl2c use
- Convert shared pointer arithmetic into array accesses
- Various bug fixes

Unified Parallel C at LBNL/UCB

Loop Nest Optimizer (LNO)

• Operates on H whirl
- Has structured control flow, arrays

• Intraprocedural
• Converts pointer expression into 1D array

accesses
• Optimizes DO_LOOP nodes

- single index variable
- integer comparison end condition
- invariant loop increment
- No function calls/break/continue in loop body

Unified Parallel C at LBNL/UCB

Loop Optimizations

• Separate representation from preopt
- Access vectors
- Array dependence graphs
- Dependence vectors
- Region for array accesses
- Cache model for tiling loops, changing loop

order
• Long list of optimizations

- Unroll, interchange, fission/fusion, tiling,
parallelization, prefetching, etc.

- May need performance model for distributed
environment

Unified Parallel C at LBNL/UCB

Motivation for the Optimizer

• Translator optimizations necessary to improve
UPC performance
- Backend C compiler cannot optimize

communication code
- One step closer to user program

• Goal is to extend the code base to build UPC-
specific optimizations/analysis
- PRE on shared pointer arithmetic/casts
- Communication scheduling
- Forall loop optimizations
- Message Coalescing

Unified Parallel C at LBNL/UCB

Message Coalescing

• Implemented in a number of parallel Fortran compilers (e.g., HPF,
F90)

• Idea: replace individual puts/gets with bulk calls to move remote
data to a private buffer

• Targets memget/memput interface, as well as the new UPC runtime
memory copy library functions

• Goal is to speed up shared memory style code

int lr[U-L];
…
upcr_memget(lr, &r[L], U-L);
for (i = L; i < U; i++)
exp1 = exp2 + lr[i-L];

Optimized Loop

shared [0] int * r;
…
for (i = L; i < U; i++)
exp1 = exp2 + r[i];

Unoptimized loop

Unified Parallel C at LBNL/UCB

Analysis for Coalescing

• Handles multiple loop nests
• For each array referenced in the loop:

- Compute a bounding box (lo, up) of its index value
- Handles multiple accesses to the same array (e.g., ar[i]

and ar[i+1] get same (lo, up) pair)
- Loop bounds must be loop-invariant
- Indices must be affine
- No “bad” memory accesses (pointers)
- Catch for strict access / synchronization ops in loop –

reordering is illegal
• Current limitations:

- Bounds cannot have field accesses
- e.g., a + b ok, but not a.x

- Base address either pointer or array variable
- No array of structs, array fields in structs

Unified Parallel C at LBNL/UCB

Basic Case: 1D Indefinite Array

• Use memget to fetch contiguous elements from
source thread

• Change shared array accesses into private ones
- with index translation if (lo != 0)

• Unit-stride writes are coalesced the same as
reads, except that memput() is called at loop exit

dst (private)

src (shared)
lo up

up – lo + 1

Unified Parallel C at LBNL/UCB

Coalescing Block Cyclic Arrays

• May need communication with multiple threads
• Call memgets on individual threads to get contiguous data

- Copy in units of blocks to simplify the math
- No. blks per thread = ceil(total_blk / THREADS)

- Temporary buffer: dst_tmp[threads][blk_per_thread]
- Overlapped memgets to fill dst_tmp from each thread
- Pack content of dst_tmp into the dst array, following

shared pointer arithmetic rule:
- first block of T0, second block of T1, and so on

P0 P1 P2

dst (private)

src (shared)

Unified Parallel C at LBNL/UCB

Coalescing 2D Indefinite Arrays

• Fetch the entire rectangular box at once
• Use upc_memget_fstrided(), which takes address, stride,

length of source and destination
• Alternative scheme:

- Optimize the inner loop by fetching one row at a time
- Pipeline the outer loop to overlap the memgets on each

row

l1
l2

u1

u2
(U1–L1+1)(U2–L2+1)

for (i = L1; I <=U1; i++)
for (j = L2; j <= U2; j++)

exp = ar[i][j];

ar

Unified Parallel C at LBNL/UCB

Handling Strided Accesses

• Want to avoid fetching unused elements
• Indefinite array:

- A special case for upc_memget_fstrided
• Block cyclic array:

- Use the upc_memget_ilist interface
- Send a list of fix-sized (in this case 1 element) regions to

the remote threads
- Alternatively, use strided memcpy function on each

thread
- messy pointer arithmetic, but maybe faster

dst (private)

src (shared)
lo up

Unified Parallel C at LBNL/UCB

Preliminary Results -- Performance

• Use a simple parallel matrix-vector multiply
• Row distributed cyclically
• Two configurations for the vector

- Indefinite array (on thread 0)
- Cyclic layout

• Compare performance of the three setup
- Naïve fine-grained accesses
- Message coalesced output
- Bulk style code

- indefinite: call upc_memget before outer loop
- cyclic: like message coalesced code, except read

from the 2D tmp array directly (avoids the flattening
of the 2D array)

Unified Parallel C at LBNL/UCB

Message Coalescing vs. Fine-
grained

speedup over fine-grained code

0

50

100

150

200

250

0 2 4 6 8

Threads

sp
ee

du
p

elan comp-indefinite
elan comp-cyclic

• One thread per node
• Vector is 100K elements, number of rows is 100*threads
• Message coalesced code more than 100X faster
• Fine-grained code also does not scale well

- Network contention

Unified Parallel C at LBNL/UCB

Message Coalescing vs. Bulk

matvec multiply (elan)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2 4 6 8

Threads

Ti
m

e
(s

ec
on

ds
)

comp-indefinite
man-indefnite
comp-cyclic
man-cyclic

matvec multiply -- lapi

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8

Threads

tim
e

(s
ec

on
ds

)

comp-indefinite
man-indefnite
comp-cyclic
man-cyclic

• Message coalescing and bulk style code have comparable
performance
- For indefinite array the generated code is identical
- For cyclic array, coalescing is faster than manual bulk

code on elan
- memgets to each thread are overlapped

Unified Parallel C at LBNL/UCB

Preliminary Results --
Programmability

• Evaluation Methodology
- Count number of loops that can be coalesced
- Count number of memgets that can be coalesced if

converted to fine-grained loops
- Use the NAS UPC benchmarks

• MG (Berkeley):
- 4/4 memget can be converted to loops that can be

coalesced
• CG (UMD):

- 2 fine-grained loops copying the contents of cyclic
arrays locally can be coalesced

• FT (GWU):
- One loop broadcasting elements of a cyclic array can be

coalesced
• IS (GWU):

- 3/3 memgets can be coalesced if converted to loop

Unified Parallel C at LBNL/UCB

Conclusion

• Message coalescing can be a big win in programmability
- Can offer comparable performance to bulk style code
- Great for shared memory style code

• Many choices of code generation
- Bounding box vs. strided vs. variable-size
- Performance is platform dependent

• Lots of research/future work can be done in this area
- Construct a performance model
- Handling more complicated access patterns
- Add support for arrays in structs
- Optimize for special cases (e.g. constant bound/strides)

