Implementing a Global Address
Space Language on the Cray X1

Christian Bell and Wel Chen

Unified Parallel C at LBNL/UCB

.
rerrroromrnw
HBEREELEY L

v Why UPC on the Cray X1 ?
Supercomputers are mounting a comeback

- “It’s all about sustained and peak performance”

Parallel Vector systems claim to pack enough features to
narrow the gap in sustained and peak performance through
vector processing and . . .

- Compiler-assisted Multistreaming (aggregating vector
pipelines)

- Non-uniform shared accesses

- Hardware assisted strided scatter/gather accesses

- Caching local vector accesses for performance

- Not caching remote vector accesses for cache coherence
... hative support for Global Addressing

Unified Parallel C at LBNL/UCB

Ty

erie The Cray X1 Architecture

Rich in features, but also in design and programming
SSP MSP ° Two modes of execution

— : c \ 1. SSP mode: single-streaming
' ' up to 16 SSPs/node

2. MSP mode: multi-streaming
(4 MSPs =16 SSPs/node)

[Vv (V| |/l ’ ' ’ J» Two programming models

- aaxz, 1. Single Cray X1 node:
) ’ Shared-memory over uniform

memory accesses (pthreads,

. 400 Mhz |
:0.8 GFlops :

‘ o - o | OpenMP)

128 GFIops% ;12.8 GFIopsE ;12.8 GFIops§ ;12.8 GFIopsE 2 Multi-node: Distributed
memory between non-
uniform memory accesses
with no remote caching (MPI,
shmem, CoArray, UPC)

Node

I U nified Parallel C at LBNL/UCB

cereee?) ﬂ Overview of the UPC Compiler

Two Goals: Portability and High-Performance

Platform Translator Generated ISO C Code
and network

independent

Language-
independent

Network Hardware

IE———_——— | nified Parallel C at LBNL/UCB I —

A Portable GAS Language
Implementation on X1

-.,
m i
T

EELEY L

rr
HER

*The X1's network is integrated Thread 1 fl ; Thraad 3
seamlessly with each X1 node ° | Gray X1 Symmetric Haa.pl —
-Communication is implicitly triggered ., ..pE'3'
through a memory centrifuge \
: 0X0013...00 e
- Network is abstracted from both ~ .
application and system programmers I PE2 ™
- Our portable compiler (through 0X0012..00 ——— 5
GASNet) typically targets explicit YR Y
communication interfaces Thréad 0 PET | Thread
0x0011...00°
*VVector processing makes performance PEU'“\

tuning rather difficult, 0x0010...00-
-Vectorizing sequential code o
-Vectorizing fine-grained communication

g

Cray X1 Memory Centrifuge

Unified Parallel C at LBNL/UCB

’\] . GASNet Communication System-
S 1| Architecture

GASNet offers expressive put/get primitives

e gets/puts can be blocking or non-blocking
(explicit with handles or implicit
globally/region-based)

« Transfers can be memory-to-memory or
memory-to-register

e Synchronization can poll or block

 Allows expressing complex split-phase
communication (compiler optimizations)

2-Level architecture to ease implementation:
« Core API

- GASNet infrastructure allowed 2-day port
 Extended API

- Initially target shmem

- Current revision is tuned especially for
the X1 with shared memory as the
primary focus (minimal overhead)

Unified Parallel C at LBNL/UCB I ——

.
rerrroromrnw
HBEREELEY L

Ruling out Cray shmem

GASNet Extended API —

 Cray Inc.: shmem is the “right way” to program the X1 for

distributed applications
 Initially targeting Cray shmem presented some problems:

shmem has limited synchronization mechanisms
shmem gets are entirely blocking
shmem calls within loops shut down the vectorizer

shmem prevents integration of global communication in vector
computation loops — still bulk synchronous programming style
shmem pays an address translation cost in every call

« Summary: shmem cannot leverage full capability of the hardware

for X1 and therefore is not a good compilation target for GAS
languages

o Alternative: teach global pointer representation to GASNet and/or

GASNet clients and bypass shmem restrictions altogether

Unified Parallel C at LBNL/UCB

.
rerrroromrnw
HBEREELEY L

Using Cray X1 global pointers

GASNet Extended API —

« Alternative: manipulate global pointers directly

Push the translation into the client where it can be
optimized more efficiently

X1 offers no user-level vector operations: Cray C
schedules vector assembly instructions over these
global pointers based on translated 1ISO C

GASNet put/get interface is now fully inlinable, hence
amenable to Cray vectorization within inner loops

Translate get/put into global load/store instructions to
allow some overlap at the instruction level

* Next challenge: GASNet is now vector-friendly, the

remaining burden lies on the next software layer (UPC
runtime system)

Unified Parallel C at LBNL/UCB

F\] |.;;‘ GASNet and X1 memory operations

* Problems with synchronizing memory operations

- X1 offers a global memory barrier (gsync) while
GASNet has a rich interface for individually
synchronizing operations (semantic mismatch)

- X1 vectorizer disallows memory barrier within loops

- No flexible communication scheduling possible if
GASNet has no control over individual operations
(. .. giving a sledgehammer to an ear surgeon)

E

e Solution: avoid the use of gsync for fine-grained
communication

- No sync except for strict memory accesses

- Encourage clients to use GASNet's implicit non-
blocking operations and push the sync out of the loop

Unified Parallel C at LBNL/UCB

y
l'r:'_;>r'| i
e

HEREELEY |_

GASNet/X1 Performance

14

T/’)\ 13| Shmem 14

° \ GASNet - 13

8 124"« MPI w12

® 11 S

O 10 S 10

L 9 8 9

(S o

- 8 S 8
(&)

D— 7 - — 7

© S

(@)] 6 ~ 6
>

> 5 3 s

@ c

n 4 o 4

@ ©

o 3 3 3

E 2777 . — 46 2

-

o 4 N\ / O 1

o \ J 0

"5’ 0 T T T T T T T T T T]

o 1 2 4 8 16 32 64 128 256 512 1024 2048

RMW . Scalar Vector bcopy()

I L
Message Size (bytes)

Shmem
1\, GASNet
\ e
AN P
S~

RMW

T T T T T 1
64 128 256 512 1024 2048
bcopy()

T
32
Vector

T T T T
1 2 4 8 16
Scalar

1 11
I L
Message Size (bytes)

 GASNet/X1 improves small message performance over shmem and MPI

(smaller is better!)

 GASNet/X1 communication can be integrated seamlessly into long

computation loops and is vectorizable

 GASNet/X1 can operate directly on global pointers (no translation)

Unified Parallel C at LBNL/UCB I ——

Fine-grained Irregular Accesses —

Frreerr ||.i
UPC GUPS
120 Gups Performance
@ Cray UPC
100 | i
- § 80 - @ BerkeleyUPC
= 2 g0 -
- 0
s 9 O Berkeley UPC
_g 40 - scatter/gather
o o L
0 |
1 2 4
Threads

« Hard to control vectorization of fine-grained accesses
e temporary variables, casts, etc.
« Communication libraries may help

Unified Parallel C at LBNL/UCB

e Serial Performance

o It's all about vectorization
« C Is a poor compilation target for vectorization
 Cray C highly sensitive to changes in inner loop

* Problem easier for C/Fortran based GAS languages
 Just keep code syntactically close to original source
e Assuming the user has done the application work to
vectorize

« Code generation strategy
« keep IR at a high level (e.g., keep array nodes, field
accesses)
e preserve source level pragmas
e preserve restrict qualifiers

I U Nnified Parallel C at LBNL/UCB N ——

S Evaluating Source-to-Source

%

cereees] Translation in UPC

l."ll-'lr'n-:El.

Livermore Loops

1.15

1.1
1.05

0.95

C time/ UPC time
=

0.9

0.85

Kernel

 Translator generated C code can be as efficient as
original C code

e Source-to-source translation a good strategy for
portable GAS language implementations

Unified Parallel C at LBNL/UCB

a Evaluating Communication
cereend Optimizations on Cray X1

||||‘
REELEY L

 Message Aggregation
* LogGP model: fewer messages means less overhead
e Techniques: message coalescing, bulk prefetching
o Still true for Cray X17?
 Remote access latency comparable to local
accesses
 Vectorization should hide most overhead of small
messages
 Remote data not cacheable — may still help to
perform software caching
e Essentially, a question of fine-grained vs. coarse-
grained programming model

Unified Parallel C at LBNL/UCB I ——

- . NAS CG: OpenMP style vs. MPI

style

120

NAS CG Performance

100 -
80
60 -
40
20

MFLOPS per thread/
second

|
O UPC (OpenMP style)

B UPC (MPI Style)

1 MPI Fortran

2 4 8 12
Threads (SSP mode, two nodes)

* GAS language outperforms MPI+Fortran (flat is good!)
* Fine-grained (OpenMP style) version still slower
e shared memory programming style leads to more
overhead (redundant boundary computation)
* GAS languages can support both programming styles

Unified Parallel C at LBNL/UCB

e : Multigrid
15 . NAS Multigrid
0 | —a—UPC MSP -
g —=— MPI Fortran MSP //'

—e— UPC SSP

—e— MPI Fortran SSP /
4
2 /

O I I

1 2 4 8 16 32
Number of SSPs (1 MSP ==4 SSP)

GFLOPS/second
(@)

* Performance similar to MPI
» Cray C does not automatically vectorize/multistream (addition of pragmas)
o 4 SSP slightly better than 1 MSP, 2 MSP much better than 8 SSP

» cache conflict caused by layout of private data

* serious design flaw in our opinion

I U Nnified Parallel C at LBNL/UCB N ——

|.;;| Integer Sort

NAS IS Performance

35
30
25
20 O Berkeley UPC

15 E MPIC

10

1 2 4 8
Threads

MFLOPS/second

o)

@)

« Benchmark written in bulk synchronous style
« Performance is similar to MPI

 Code does not vectorize — even the best performer is much
slower than cache-based superscalar architecture

Unified Parallel C at LBNL/UCB I ——

Conclusion: We have a GASNet
conduit on Cray X1!

+ Provides integrated application software
+ Good performance for individual memory operations
+ Transparent communication through global pointers

- Poor user-level support for remote sync operations (no
prefetching or per-operation completion mechanisms)

- Heavy reliance on vectorization for performance — great
when it happens, awful otherwise

- Sensitive to translated code (slow scalar processor)

- Software architecture is not extensible for third-party
library or system software programmers

+ Semantic mismatch between GASNet and platform — we’re
hoping the X2 can address our concerns

Unified Parallel C at LBNL/UCB

