
Unified Parallel C at LBNL/UCB

Implementing a Global Address
Space Language on the Cray X1

Christian Bell and Wei Chen

Unified Parallel C at LBNL/UCB

Why UPC on the Cray X1 ?

• Supercomputers are mounting a comeback
- “It’s all about sustained and peak performance”

• Parallel Vector systems claim to pack enough features to
narrow the gap in sustained and peak performance through
vector processing and . . .
- Compiler-assisted Multistreaming (aggregating vector

pipelines)
- Non-uniform shared accesses
- Hardware assisted strided scatter/gather accesses
- Caching local vector accesses for performance
- Not caching remote vector accesses for cache coherence
- . . . native support for Global Addressing

Unified Parallel C at LBNL/UCB

The Cray X1 Architecture

• Two modes of execution
1. SSP mode: single-streaming

up to 16 SSPs/node
2. MSP mode: multi-streaming

(4 MSPs =16 SSPs/node)
• Two programming models

1. Single Cray X1 node:
Shared-memory over uniform
memory accesses (pthreads,
OpenMP)

2. Multi-node: Distributed
memory between non-
uniform memory accesses
with no remote caching (MPI,
shmem, CoArray, UPC)

Node

MSPSSP
Rich in features, but also in design and programming complexity. . .

Unified Parallel C at LBNL/UCB

Overview of the UPC Compiler

TranslatorUPC Code

Translator Generated ISO C Code

GASNet Communication System

Network Hardware

Platform
and network
independent

Language-
independent

Two Goals: Portability and High-Performance

UPC Runtime System

Unified Parallel C at LBNL/UCB

A Portable GAS Language
Implementation on X1

•The X1’s network is integrated
seamlessly with each X1 node
-Communication is implicitly triggered
through a memory centrifuge

-Network is abstracted from both
application and system programmers

-Our portable compiler (through
GASNet) typically targets explicit
communication interfaces

•Vector processing makes performance
tuning rather difficult,
-Vectorizing sequential code
-Vectorizing fine-grained communication

Cray X1 Memory Centrifuge

Unified Parallel C at LBNL/UCB

GASNet Communication System-
Architecture

GASNet offers expressive put/get primitives
• gets/puts can be blocking or non-blocking

(explicit with handles or implicit
globally/region-based)

• Transfers can be memory-to-memory or
memory-to-register

• Synchronization can poll or block
• Allows expressing complex split-phase

communication (compiler optimizations)

2-Level architecture to ease implementation:
• Core API

- GASNet infrastructure allowed 2-day port
• Extended API

- Initially target shmem
- Current revision is tuned especially for

the X1 with shared memory as the
primary focus (minimal overhead)

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware

Unified Parallel C at LBNL/UCB

GASNet Extended API –
Ruling out Cray shmem

• Cray Inc.: shmem is the “right way” to program the X1 for
distributed applications

• Initially targeting Cray shmem presented some problems:
- shmem has limited synchronization mechanisms
- shmem gets are entirely blocking
- shmem calls within loops shut down the vectorizer
- shmem prevents integration of global communication in vector

computation loops – still bulk synchronous programming style
shmem pays an address translation cost in every call

• Summary: shmem cannot leverage full capability of the hardware
for X1 and therefore is not a good compilation target for GAS
languages

• Alternative: teach global pointer representation to GASNet and/or
GASNet clients and bypass shmem restrictions altogether

Unified Parallel C at LBNL/UCB

GASNet Extended API –
Using Cray X1 global pointers

• Alternative: manipulate global pointers directly
- Push the translation into the client where it can be

optimized more efficiently
- X1 offers no user-level vector operations: Cray C

schedules vector assembly instructions over these
global pointers based on translated ISO C

- GASNet put/get interface is now fully inlinable, hence
amenable to Cray vectorization within inner loops

- Translate get/put into global load/store instructions to
allow some overlap at the instruction level

• Next challenge: GASNet is now vector-friendly, the
remaining burden lies on the next software layer (UPC
runtime system)

Unified Parallel C at LBNL/UCB

GASNet and X1 memory operations

• Problems with synchronizing memory operations
- X1 offers a global memory barrier (gsync) while

GASNet has a rich interface for individually
synchronizing operations (semantic mismatch)

- X1 vectorizer disallows memory barrier within loops
- No flexible communication scheduling possible if

GASNet has no control over individual operations
(. . . giving a sledgehammer to an ear surgeon)

• Solution: avoid the use of gsync for fine-grained
communication
- No sync except for strict memory accesses
- Encourage clients to use GASNet’s implicit non-

blocking operations and push the sync out of the loop

Unified Parallel C at LBNL/UCB

GASNet/X1 Performance

• GASNet/X1 improves small message performance over shmem and MPI
(smaller is better!)

• GASNet/X1 communication can be integrated seamlessly into long
computation loops and is vectorizable

• GASNet/X1 can operate directly on global pointers (no translation)

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

Sh m e m
GASNe t
MPI

Me s s a ge Size (byte s)

Pu
t

pe
r

m
es

sa
ge

 g
ap

 (
m

ic
ro

se
co

nd
s)

RMW Sc a la r Vec t or b cop y()
1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8

0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

Sh m e m
GASNe t

Me s sa g e Size (byte s)

G
et

 L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

RMW Sc a la r Vec t or b c op y()

Unified Parallel C at LBNL/UCB

Fine-grained Irregular Accesses –
UPC GUPS

Gups Performance

0
20
40
60

80
100
120

1 2 4

Threads

M
ill

io
n

up
da

te
s/

se
co

nd

Cray UPC

Berkeley UPC

Berkeley UPC
scatter/gather

• Hard to control vectorization of fine-grained accesses
• temporary variables, casts, etc.

• Communication libraries may help

Unified Parallel C at LBNL/UCB

Serial Performance

• It’s all about vectorization
• C is a poor compilation target for vectorization
• Cray C highly sensitive to changes in inner loop

• Problem easier for C/Fortran based GAS languages
• Just keep code syntactically close to original source
• Assuming the user has done the application work to
vectorize

• Code generation strategy
• keep IR at a high level (e.g., keep array nodes, field
accesses)
• preserve source level pragmas
• preserve restrict qualifiers

Unified Parallel C at LBNL/UCB

Evaluating Source-to-Source
Translation in UPC

• Translator generated C code can be as efficient as
original C code
• Source-to-source translation a good strategy for
portable GAS language implementations

L iv e r m o r e L o o p s

0 .8 5

0 .9

0 .9 5

1

1 .0 5

1 .1

1 .1 5

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

K e rn e l

C
 ti

m
e/

 U
PC

 ti
m

e

Unified Parallel C at LBNL/UCB

Evaluating Communication
Optimizations on Cray X1

• Message Aggregation
• LogGP model: fewer messages means less overhead
• Techniques: message coalescing, bulk prefetching
• Still true for Cray X1?

• Remote access latency comparable to local
accesses
• Vectorization should hide most overhead of small
messages
• Remote data not cacheable – may still help to
perform software caching

• Essentially, a question of fine-grained vs. coarse-
grained programming model

Unified Parallel C at LBNL/UCB

NAS CG: OpenMP style vs. MPI
style

• GAS language outperforms MPI+Fortran (flat is good!)
• Fine-grained (OpenMP style) version still slower

• shared memory programming style leads to more
overhead (redundant boundary computation)

• GAS languages can support both programming styles

NAS CG Performance

0

20

40

60

80

100

120

2 4 8 12

Threads (SSP mode, two nodes)

M
FL

OP
S

pe
r t

hr
ea

d/

se
co

nd

UPC (OpenMP style)

UPC (MPI Style)

MPI Fortran

Unified Parallel C at LBNL/UCB

Multigrid

• Performance similar to MPI
• Cray C does not automatically vectorize/multistream (addition of pragmas)
• 4 SSP slightly better than 1 MSP, 2 MSP much better than 8 SSP

• cache conflict caused by layout of private data
• serious design flaw in our opinion

NAS Multigrid

0

2

4

6

8

10

12

1 2 4 8 16 32
Number of SSPs (1 MSP == 4 SSP)

G
FL

O
PS

/s
ec

on
d

UPC MSP

MPI Fortran MSP

UPC SSP

MPI Fortran SSP

Unified Parallel C at LBNL/UCB

Integer Sort

NAS IS Performance

0
5

10
15
20
25
30
35

1 2 4 8

Threads

MF
LO

PS
/se

co
nd

Berkeley UPC
MPI C

• Benchmark written in bulk synchronous style
• Performance is similar to MPI
• Code does not vectorize – even the best performer is much

slower than cache-based superscalar architecture

Unified Parallel C at LBNL/UCB

Conclusion: We have a GASNet
conduit on Cray X1!

+ Provides integrated application software
+ Good performance for individual memory operations
+ Transparent communication through global pointers
- Poor user-level support for remote sync operations (no

prefetching or per-operation completion mechanisms)
- Heavy reliance on vectorization for performance – great

when it happens, awful otherwise
- Sensitive to translated code (slow scalar processor)
- Software architecture is not extensible for third-party

library or system software programmers
± Semantic mismatch between GASNet and platform – we’re

hoping the X2 can address our concerns

