
NERSC/LBNL UPC Compiler
Status Report

Costin Iancu
and

the UCB/LBL UPC group

UPC Compiler – Status Report

! Current Status:

" UPC-to-C translator implemented in open64.
Compliant with rev 1.0 of the UPC spec.

" “Translates” the GWU test suite and test
programs from Intrepid.

UPC Compiler – Future Work

Front-ends

Very High WHIRL

High WHIRL

Mid WHIRL

Low Whirl

Very Low Whirl

CG MIR

VHO
inline

IPA
PREOPT

LNO

l
s
l
s
l

WOPT
RVI1

UPC Compiler – Future Work

Front-ends

Very High WHIRL

High WHIRL

Mid WHIRL

Low Whirl

Very Low Whirl

CG MIR

VHO
inline

IPA
PREOPT

LNO

l
s
l
s
l

" Integrate with GasNet and the
UPC runtime

" Test runtime and translator
(32/64 bit)

" Investigate interaction
between translator and
optimization packages (legal C
code)

"UPC specific optimizations

"Open64 code generator

WOPT
RVI1

UPC Optimizations - Problems

! Shared pointer - logical tuple (addr, thread, phase)
{void *addr; int thread; int phase;}

! Expensive pointer arithmetic and address generation
p+i -> p.phase=(p.phase+i)%B

p.thread=(p.thread+(p.phase+i)/B)%T

! Parallelism expressed by forall and affinity test

! Overhead of fine grained communication can become
prohibitive

k = 7;
while(k <= 233)
{
Mreturn_temp_0 = upcr_add_shared(a.u0, 4, k, 1);
__comma1 = upcr_threadof_shared(Mreturn_temp_0);
if(MYTHREAD == __comma1)
{
i = 0;
while(i <= 999)
{
Mreturn_temp_2 = upcr_add_shared(a.u0, 4, k, 1);
Mreturn_temp_1 = upcr_add_shared(b.u0, 4, k + 1, 1);
__comma = upcr_get_nb_shared_float(Mreturn_temp_1, 0);
__comma0 = upcr_wait_syncnb_valget_float(__comma);
upcr_put_nb_shared_float(Mreturn_temp_2, 0, __comma0);
_3 :;
i = i + 1;

}
}
_2 :;
k = k + 1;

}
……..

#include <upc.h>
shared float *a, *b;

int main() {
int i, k ;

upc_forall(k=7; k <234; k++; &a[k]) {
upc_forall(i = 0; i < 1000; i++; 333) {

a[k] = b[k+1];
}

}
}

Translated UPC Code

UPC Optimizations

! “Generic” scalar and loop optimizations (unrolling, pipelining…)

! Address generation optimizations
" Eliminate run-time tests

" Table lookup / Basis vectors
" Simplify pointer/address arithmetic

" Address components reuse
" Localization

! Communication optimizations
" Vectorization
" Message combination
" Message pipelining
" Prefetching for irregular data accesses

Run-Time Test Elimination

! Problem – find sequence of local memory locations
that processor P accesses during the computation

! Well explored in the context of HPF

! Several techniques proposed for for block-cyclic
distributions:
" table lookup (Chatterjee,Kennedy)
" basis vectors (Ramanujam, Thirumalai)

! UPC layouts: cyclic, pure block, indefinite block size
- particular case of block cyclic

i=l;

while(i<u) {
t_0 = upcr_add_shared(a, 4, i, 1);
__comma1 = upcr_threadof_shared(t_0);
if(MYTHREAD == __comma1) {
t_2 = upcr_add_shared(a.u0, 4, i, 1);
upcr_put_shared_float(t_2, 0, EXP());

}

_1:

i+= s;

}

UPC to C translation

Table Array Address Lookup
upc_forall(i=l; i<u; i+=s; &a[i])

a[i] = EXP();

compute T, next, start

base = startmem;

i = startoffset;

while (base < endmem) {

*base = EXP();

base += T[i];

i = next[i];

}

Table based lookup
(Kennedy)

Array Address Lookup

! Encouraging results – speedups between 50:200 versus
run-time resolution

! Lookup – time vs space tradeoff . Kennedy introduces a
demand-driven technique

! UPC arrays – simpler than HPF arrays

! UPC language restrictions – no aliasing between
pointers with different block sizes

! Existing HPF techniques also applicable to UPC pointer
based programs

Address Arithmetic Simplification

! Address Components Reuse
" Idea – view shared pointers as three separate components

(A, T, P) : (addr, thread, phase)
" Exploit the implicit reuse of the thread and phase fields

! Pointer Localization
" Determine which accesses can be performed using local

pointers
" Optimize for indefinite block size

! Requires heap analysis/LQI and a similar dependency analysis
to the lookup techniques

Communication Optimizations

! Message Vectorization – hoist and prefetch an array
slice.

! Message Combination – combine messages with the
same target processor into a larger message

! Communication Pipelining – separate the initiation of
a communication operation by its completion and
overlap communication and computation

Communication Optimizations

! Some optimizations are complementary

! Choi&Snyder (Paragon/T3D -PVM/shmem), Krishnamurthy
(CM5), Chakrabarti (SP2/Now)

! Speedups in the range 10%-40%

! Optimizations more effective for high latency
transport layers (PVM/Now) ~ 25% speedup vs 10%
speedup (shmem/SP2)

Prefetching of Irregular Data Accesses

! For serial programs – hide cache latency

! “Simpler” for parallel programs – hide communication
latency

! Irregular data accesses
" Array based programs : a[b[i]]
" Irregular data structures (pointer based)

Prefetching of Irregular Data Accesses

! Array based programs
" Well explored topic (“inspector-executor” – Saltz)

! Irregular data structures
" Not very well explored in the context of SPMD

programs.
" Serial techniques: jump pointers, linearization

(Mowry)
" Is there a good case for it?

Conclusions

! We start with a clean slate

! Infrastructure for pointer analysis, array dependency
analysis already in open64

! Communication optimizations and address calculation
optimizations share common analyses

! Address calculation optimizations are likely to offer
better performance improvements at this stage

The End

Address Arithmetic Simplification

! Address Components Reuse
" Idea – view shared pointers as three separate

components (A, T, P) : (addr, thread, phase)
" Exploit the implicit reuse of the thread and

phase fields

shared [B] float a[N],b[N]
upc_forall(i=l;i<u;i+=s;&a[i])

a[i] = b[i+k];

Address Component Reuse

P0 P1

B1 B2 B3 B6B4 B5

B-k

Ta = Tb
Pb=Pa+k

a[i] = b[i+k];
a -> (Aa,Ta,Pa)
b -> (Ab,Tb,Pb)

Bi

bi ei

Address Component Reuse

Ta = 0;

for (i=first_block; i<last_block; i=next_block) {

for(j=bi,Pa=0; j < ei-k; j++,Pa++)

put(Aa,Ta,Pa, get(Ab,Ta,Pa+k));

………

for(; j<ei; j++)

put(Aa,Ta,Pa, get(Ab,Ta+1,Pa-j));

………

}

