
UPC Runtime Layer

Jason Duell



The Big Picture

The Runtime layer handles everything that 
is both:

1) Platform/Environment specific
—So compiler can output one version of code for all 
platforms.

2) But also specific to UPC
—So GASNet can remain language-independent.



Runtime Layer Laundry List

1) Shared pointer representation and 
manipulation

2) Pthread creation and management

3) Memory Management

4) Synchronization

5) Initialization code



Supported Runtime Environments
2 Main Axes:

1) Threads vs. Processes
2) Network vs. Shared Memory vs. both

— Also; network vs. local synchronization mechanisms

We will support:
— Threads on a single SMP (all shared memory)
— Processes on a single SMP (all shared memory)
— Processes w/network (all network)
— Threads w/network (use both)

We won’t support (at least for now)
— Processes on SMP & network (using both)

— Will only use network communications



Implementation goals

Speed: compile time resolution instead of 
run-time checks wherever possible.

Parsable by compiler (for compilers that 
generate straight to assembly)

—Inline functions instead of macros where 
possible.

Clean, maintainable implementation
—But have it done yesterday



Shared Pointer Representation
struct naïve_shared_ptr {

void * addr;

uint thread;

uint phase;

};

• Provide phaseless shared pointer type (for both 
phaseless and default cyclic).

—Can omit phase field.
—If pure shared memory, this can just be a pointer

• 64 bit platforms: may be able to stuff some fields 
into unused top bits of pointer.
• Using offset instead of address may save space

—But might make casts to local slower…

• Solution: provide abstract type and operations.



Thread-specific data
All unshared global & static declarations must be 
have a copy per pthread.

Solution #1: Put all variables in a big struct, and 
make 1 copy of it per thread.

—Need to effectively eliminate separate compilation (slow).
—Data no longer initialized by linker
—Object files not readable by nm, etc.

Solution #2: Put all variables in single link 
section—make 1 copy of section per thread, and 
use pointer & offset into section to reference 
variables.

—Solves initialization, separate compilation, object format.
—But involves nonstandard compiler and linker directives.



Heap Management

GASNet provides a single, fixed 
network-accessible shared memory 
region to the Runtime.

The Runtime must divide it among 
threads, and manage separate local 
and global heap for each thread.

Also must prevent regular C heap from 
expanding into shared region:  hook 
malloc/free to our own, bounded heap.



Shared Memory Allocation



Synchronization
Pure Shared Memory environments:

—Runtime provides synchronization via 
pthreads or System V IPC mechanisms.

Networked environments:
—GASNet provides synchronization 
across processes via the network
—Runtime provides it between threads in 
the same process.



Allocating/Initializing Shared Data

Initialization of shared data can be tricky:

extern shared int array[THREADS];

shared int *p = &array[8];

Thread-specific data: can no longer trust linker to 
initialize addresses for unshared global/static pointers:

int foo;

int *pfoo = &foo;

Solution: per file initialization functions to handle 
complex cases

—Must be able to run in arbitrary order
—Runtime may provide helper functions for compiler.



Implementation Plan
1) Processes with shared memory:

—In progress: should be done by mid-June.
—Allow compiler correctness testing and optimization 
work to proceed.

2) Processes with network
—Less than a month additional effort.
—Allow GASNet testing, and ports to multiple networks.

3) Threads support
—Trickiest implementation issues.

4) Ports to other platforms trivial given a
GASNet implementation for the network.

—Mainly compiler/linker-specific hooks for TSD.


