
Communication Optimizations in 
Titanium Programs

Jimmy Su



Study Communication Optimization

• Benchmarks
—Gups
—Sparse Matvec
—Jacobi
—Particle in Cell

• Machines used in experiments
—Seaborg (IBM SP)
—Millennium



Hand Optimizations

• Prefetching (moving reads up)
• Moving syncs down
• C code generated by the Titanium compiler is 

modified manually to do the above optimizations



Characteristics of the Benchmarks

• Source code was not optimized
• There are more remote reads than remote writes
• Source code uses small messages instead of 

pack/unpack



Observations

• Pros
—Hand optimization does pay off

• Gups 14% speed up
• Jacobi 5% speed up
• Sparse Matvec 45% speed up

• Cons
—The optimizations can only be done 

automatically on regular problems
• Alias analysis too conservative

—Alternative solution for regular problems uses 
array copy

• Titanium has highly optimized array copy routines



Inspector Executor

• Developed by Joel Saltz and others at University 
of Maryland in the early 90’s

• Goal is to hide latency for problems with irregular 
accesses

• A loop is compiled into two phases, an inspector 
and an executor
—The inspector examines the data access 

pattern in the loop body and creates a 
schedule for fetching the remote values

—The executor retrieves remote values 
according to the schedule and executes the 
loop

• A schedule may be reused if the access pattern is 
the same for multiple iterations



Inspector Executor Example

a

b

c

myStartIndex myEndIndex



Inspector Executor Pseudo Code

for iteration = 1 to n
for i = myStartIndex to myEndIndex

a[i] = b[i] + c[ia[i]]
end
c.copy(a)

end

//inspector phase
for i = myStartIndex to myEndIndex

a[i] = b[i] + c.inspect(ia[i])
end

//create the communication schedule
c.schedule()

for iteration = 1 to n
//fetch the remote values according to the     
//communication schedule
c.fetch()
for i = myStartIndex to myEndIndex

a[i] = b[i] + c.execute(ia[i])
end
c.copy(a)     

end



Roadmap

• Introduced distributed array type
• First implemented by hand
• Currently working on a prototype in the compiler



Conjugate Gradient

• 4096x4096 matrices
• 0.07% of matrix entries are non-zeros
• Varies the percent of non-local accesses from 0% 

to 64%
• 8 processors on 2 nodes with 4 processors on 

each node
• Only the sparse matvec part is modified to use 

inspector executor
• The running time of 500 iterations was measured
• Seaborg (IBM SP)



Synthetic Matrices For Benchmark



Description of the Benchmark

• Compiler generated
—Block copy broadcast
—Compiler inspector 

executor
—One at a time blocking

• Hand edited
—Hand written inspector 

executor
—One at a time non-

blocking



Sparse Matvec

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0% 16% 32% 48% 64%

Percent Nonlocal Accesses 

M
at

ve
c 

R
un

ni
ng

 T
im

e 
(m

s)

Block Copy Broadcast Hand Written Inspector Executor
Compiler Inspector Executor One at a Time Blocking
One at a Time Non-blocking

lower is better

Problem size:

4096x4096 
matrix

0.07% fill rate



Full Conjugate Gradient

0

5000

10000

15000

20000

25000

30000

0% 16% 32% 48% 64%

Percent Nonlocal Accesses

C
G

 R
u

n
n

in
g

 T
im

e 
(m

s)

Block Copy Broadcast Compiler Inspector Executor Hand Written Inspector Executor
One at a Time Blocking One at a Time Non-blocking

lower is better

Problem size:

4096x4096 
matrix

0.07% fill rate



Future Work

• Analysis on when the inspector executor 
transformation is legal

• Investigate the uniprocessor performance of 
sparse matvec

• Apply inspector executor in UPC
• Run benchmark on matrices with different 

structures
• Automatically finding a location to place the 

communication code
• More benchmarks that utilize inspector executor
• Alternative scheduling strategies


