
Global Address Space Applications

Kathy Yelick

NERSC/LBNL and U.C. Berkeley

Algorithm Space

Regularity

Re
us

e

Two-sided
dense linear
algebra

One-sided
dense linear
algebra

FFTs

Sparse
iterative
solvers

Sparse
direct
solvers

Asynchronous
discrete even
simulation

Grobner Basis
(“Symbolic LU”)

Search

Sorting

Scaling Applications

• Machine Parameters
- Floating point performance

- Application dependent, not theoretical peak
- Amount of memory per processor

- Use 1/10th for algorithm data
- Communication Overhead

- Time processor is busy sending a message
- Cannot be overlapped

- Communication Latency
- Time across the network (can be overlapped)

- Communication Bandwidth
- Single node and bisection

• Back-of-the envelope calculations !

Running Sparse MVM on a Pflop

- 1 GHz * 8 pipes * 8 ALUs/Pipe = 64 GFLOPS/node peak
- 8 Address generators limit performance to 16 Gflops
- 500ns latency, 1 cycle put/get overhead, 100 cycle MP overhead
- Programmability differences too: packing vs. global address space

1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E+15
1.E+16

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

O
ps

/s
ec

Put/Get
Blocking read/w rite
Synchronous MP
A synch MP
Peak

Effect of Memory Size

• Low overhead is important for
- Small memory nodes or smaller problem sizes
- Programmability

1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E+15
1.E+16

0.3 0.5 1.0 2.1 4.1 8.2 16
.4

32
.9

65
.8

13
1.6

26
3.1

52
6.3

10
52

.5
21

05
.0

42
10

.0

MB/node of data

O
ps

/s
ec Put/Get

Blocking read/w rite
Synchronous MP
Asynch MP
Peak

Parallel Applications in Titanium

• Genome Application
• Heart simulation
• AMR elliptic and hyperbolic solvers
• Scalable Poisson for infinite domains
• Genome application
• Several smaller benchmarks: EM3D, MatMul, LU,

FFT, Join

MOOSE Application

• Problem: Microarray construction
- Used for genome experiments
- Possible medical applications long-term

• Microarray Optimal Oligo Selection Engine
(MOOSE)
- A parallel engine for selecting the best

oligonucleotide sequences for genetic
microarray testing

- Uses dynamic load balancing within Titanium

Heart Simulation

• Problem: compute blood flow in the heart
- Model as elastic structure in incompressible fluid.

- “Immersed Boundary Method” [Peskin and McQueen]
- Particle/Mesh method stress communication performance
- 20 years of development in model

- Many other applications: blood clotting, inner ear,
insect flight, embryo growth,…

• Can be used for design
of prosthetics
- Artificial heart valves
- Cochlear implants

Scalable Poisson Solver

• MLC for Finite-Differences by Balls and Colella
• Poisson equation with infinite boundaries

- arise in astrophysics, some biological systems, etc.
• Method is scalable

- Low communication
• Performance on

- SP2 (shown) and t3e
- scaled speedups
- nearly ideal (flat)

• Currently 2D and
non-adaptive

• Point charge example shown
- Rings & star charges
- Relative error shown

-6
.4

7x
10

-9
0

1.
31

x1
0-9

AMR Gas Dynamics

• Developed by McCorquodale and Colella
• 2D Example (3D supported)

- Mach-10 shock on solid surface
at oblique angle

• Future: Self-gravitating gas dynamics package

UPC Application Investigations

• Pyramid
- 3D Mesh generation [Shewchuk]
- 2D version (triangle) critical in Quake project
- Written in C, challenge to parallelize

• SuperLU
- Sparse direct solver [Li,Demmel]
- Written in C+MPI or threads
- UPC may enable new algorithmic techniques

• N-Body simulation
- “Simulating the Universe”

Summary

• UPC Killer App should
- Leverage programmability: hard in MPI
- Use fine-grained, irregular, asynchronous

communication
• Libraries

- Must allow for interface to libraries
- MPI libraries, multithreaded libraries, serial

libraries
• Compilation needs

- High performance on at least one machine
- Portability across many machines

