Global Address Space Applications

Kathy Yelick

NERSC/LBNL and U.C. Berkeley

Algorithm Space

Regularity

Scaling Applications

- Machine Parameters
- Floating point performance
- Application dependent, not theoretical peak
- Amount of memory per processor
- Use $1 / 10^{\text {th }}$ for algorithm data
- Communication Overhead
- Time processor is busy sending a message
- Cannot be overlapped
- Communication Latency
- Time across the network (can be overlapped)
- Communication Bandwidth
- Single node and bisection
- Back-of-the envelope calculations!

Running Sparse MVM on a Pflop

- 1 GHz * 8 pipes * 8 ALUs/Pipe $=64$ GFLOPS/node peak
- 8 Address generators limit performance to 16 Gflops
- 500ns latency, 1 cycle put/get overhead, 100 cycle MP overhead
- Programmability differences too: packing vs. global address space

Effect of Memory Size

- Low overhead is important for
- Small memory nodes or smaller problem sizes
- Programmability

Parallel Applications in Titanium

- Genome Application
- Heart simulation
- AMR elliptic and hyperbolic solvers
- Scalable Poisson for infinite domains
- Genome application
- Several smaller benchmarks: EM3D, MatMul, LU, FFT, Join

MOOSE Application

- Problem: Microarray construction
- Used for genome experiments
- Possible medical applications long-tent.

- Microarray Optimal Oligo Selection Engine (MOOSE)
- A parallel engine for selecting the best oligonucleotide sequences for genetic microarray testing
- Uses dynamic load balancing within Titanium

Heart Simulation

- Problem: compute blood flow in the heart
- Model as elastic structure in incompressible fluid.
- "Immersed Boundary Method" [Peskin and McQueen]
- Particle/Mesh method stress communication performance
- 20 years of development in model
- Many other applications: blood clotting, inner ear, insect flight, embryo growth,...
- Can be used for design of prosthetics
- Artificial heart valves
- Cochlear implants

Scalable Poisson Solver

- MLC for Finite-Differences by Balls and Colella
- Poisson equation with infinite boundaries
- arise in astrophysics, some biological systems, etc.
- Method is scalable
- Low communication
- Performance on
- SP2 (shown) and t3e
- scaled speedups
- nearly ideal (flat)
- Currently 2D and non-adaptive
- Point charge example shown
- Rings \& star charges
- Relative error shown

AMR Gas Dynamics

- Developed by McCorquodale and Colella
- 2D Example (3D supported)
- Mach-10 shock on solid surface at oblique angle

- Future: Self-gravitating gas dynamics package

UPC Application Investigations

- Pyramid
- 3D Mesh generation [Shewchuk]
- 2D version (triangle) critical in Quake project
- Written in C, challenge to parallelize
- SuperLU
- Sparse direct solver [Li,Demmel]
- Written in C+MPI or threads
- UPC may enable new algorithmic techniques
- N-Body simulation
- "Simulating the Universe"

Summary

- UPC Killer App should
- Leverage programmability: hard in MPI
- Use fine-grained, irregular, asynchronous communication
- Libraries
- Must allow for interface to libraries
- MPI libraries, multithreaded libraries, serial libraries
- Compilation needs
- High performance on at least one machine
- Portability across many machines

