

Evaluation of High-Performance Networks as Compilation Targets for Global Address Space Languages

Mike Welcome

In conjunction with the joint UCB and NERSC/LBL UPC compiler development project http://upc.nersc.gov

- Access to remote memory is performed by dereferencing a variable
 - Cost of small (single word) messages is important
- Desirable Qualities of Target Architectures
 - Ability to perform one-sided communication
 - Low latency performance for remote accesses
 - Ability to hide network latency by overlapping communication with computation or other communication
 - Support for collective communication and synchronization operations

- Measure the performance characteristics of various UPC/GAS target architectures.
 - We use micro-benchmarks to measure network parameters, including those defined in the LogP model.
- Given the characteristics of the communication subsystem, should we...
 - Overlap communication with computation?
 - Group communication operations together?
 - Aggregate (pack/unpack) small messages?

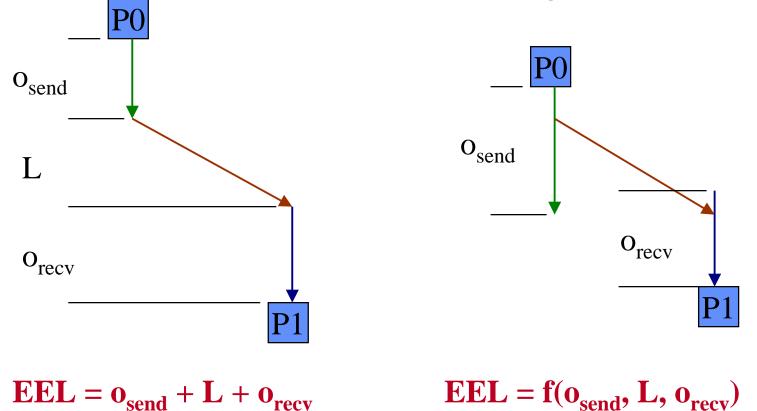
Target Architectures

- Cray T3E
 - 3D Torus Interconnect
 - Directly read/write E-registers
- IBM SP
- Quadrics/Alpha Quadrics/Intel
- Myrinet/Intel
- Dolphin/Intel
 - Torus Interconnect
 - NIC on PCI bus
- Giganet/Intel (old, but could foreshadow InfiniBand)
 - Virtual Interface Architecture
 - NIC on PCI bus

- Hardware: NERSC SP Seaborg
 - 208 16 processor Power 3+ SMP nodes running AIX
- Switch Adapters
 - 2 Colony (switch2) adapters per node connected to a 2GB/sec 6XX memory bus (not PCI).
 - No RDMA, reliable delivery or hardware assist in protocol processing
- Software
 - "user space" protocol for kernel bypass
 - 2 MPI libraries single threaded & thread-safe
 - LAPI
 - Non-blocking one-sided remote memory copy ops
 - Active messages
 - Synchronization via counters and fence (barrier) ops
 - Polling or Interrupt mode

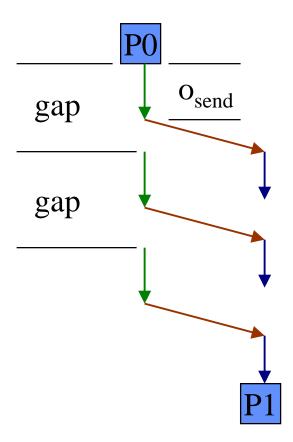
- Hardware: Oak Ridge "Falcon" cluster
 - 64 4-way Alpha 667 MHz SMP nodes running Tru64
- Low latency network
 - Onboard 100 MHz processor with 32 MB memory
 - NIC processor can duplicate up to 4 GB of page tables
 - Uses virtual addresses, can handle page faults
 - RDMA allows async, one-sided communication w/o interrupting remote processor.
 - Runs over 66 MHz, 64 bit PCI bus
 - Single switch can handle 128 nodes: federated switches can go up to 1024 nodes
- Software:
 - Supports MPI, T3E's shmem, and 'elan' messaging APIs
 - Kernel bypass provided by elan layer

- Hardware: UCB Millennium cluster
 - 4-way Intel SMP, 550 MHz with 4GB/node
 - 33 MHz 32 bit PCI bus
 - Myricom NIC: PCI64B
 - 2MB onboard ram
 - 133 MHz LANai 9.0 onboard processor
- Software: MPI & GM
 - GM provides:
 - Low-level API to control NIC sends/recvs/polls
 - User space API with kernel bypass
 - Support for zero-copy DMA directly to/from user address space
 - Uses physical addresses, requires memory pinning


The Network Parameters

- EEL End to end latency or time spent sending a short message between two processes.
- **BW** Large message network bandwidth
- Parameters of the LogP Model
 - L "Latency" or time spent on the network
 - During this time, processor can be doing other work
 - O "Overhead" or processor busy time on the sending or receiving side.
 - During this time, processor cannot be doing other work
 - We distinguish between "send" and "recv" overhead
 - G "gap" the rate at which messages can be pushed onto the network.
 - P the number of processors

- Non-overlapping overhead
- Send and recv overhead can overlap



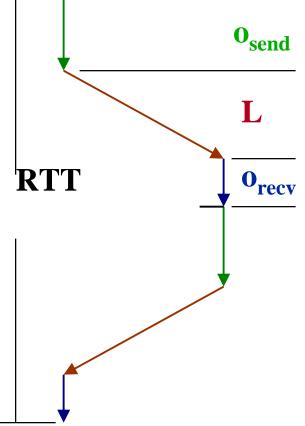
LAWRENCE BERKELEY NATIONAL LABORATORY

LogP Parameters: gap

- The Gap is the delay between sending messages
- Gap could be larger than send ovhd
 - NIC may be busy finishing the processing of last message and cannot accept a new one.
 - Flow control or backpressure on the network may prevent the NIC from accepting the next message to send.
- The gap represents the inverse bandwidth of the network for small message sends.

- If gap > o_{send}
 - Arrange code to overlap computation with communication
- The gap value can change if we queue multiple communication operations back-to-back
 - If the gap decreases with increased queue-depth
 - Arrange the code to overlap communication with communication (back-to-back).
- If EEL is invariant of message size, at least for a range of message sizes
 - Aggregate (pack/unpack) short message if possible

- Designed to measure the network parameters for each target network.
 - Also provide: gap as function of queue depth
- Implemented once in MPI
 - For portability and comparison to target specific layer
- Implemented again in target specific communication layer:
 - LAPI
 - ELAN
 - GM
 - SHMEM
 - VIPL

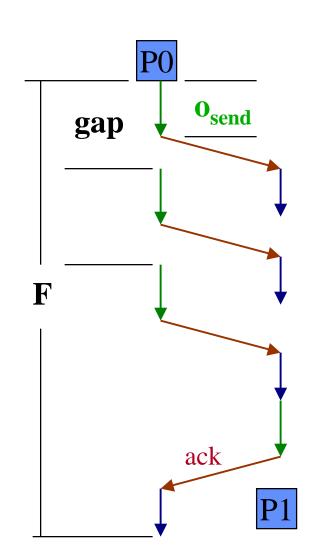

Report the average RTT of a large \bullet number (10000) of message sends.

Measure the round trip time (RTT)

for messages of various size

- EEL = RTT/2 = f(L, o_{send}, o_{recv})
- **Approximate:**

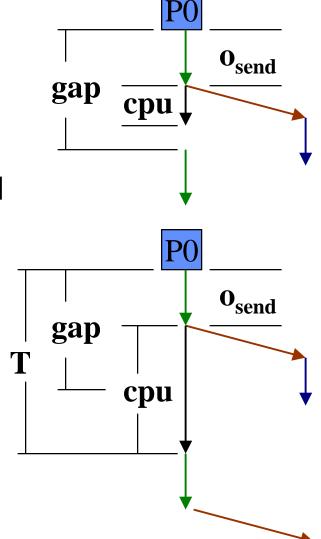
- $f(L, o_{send}, o_{recv}) = L + o_{send} + o_{recv}$
- Also provides large message bandwidth measurement



Benchmark: Ping-Pong

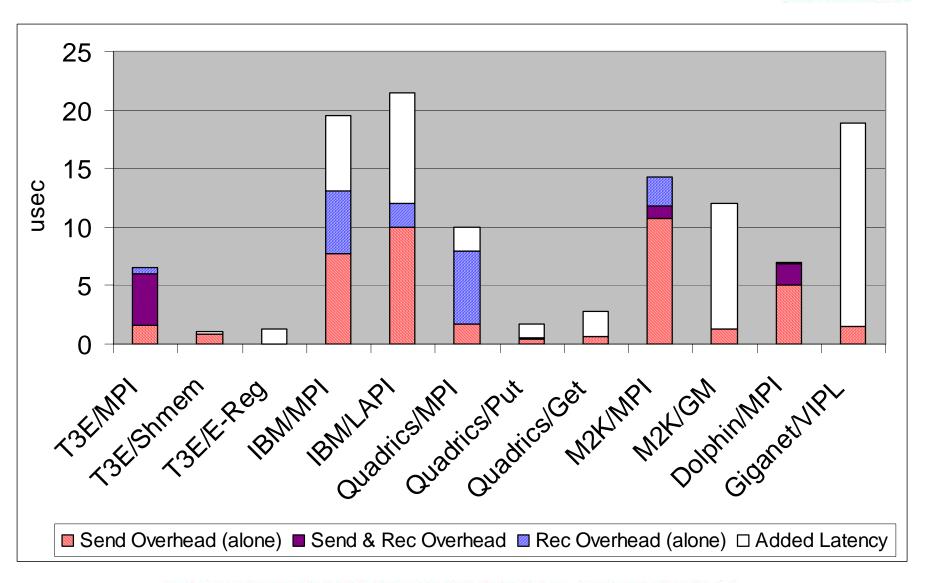
Benchmark: Flood Test

- Calculate the rate at which messages can be injected into the network.
- Issue N=10000 non-blocking send messages and wait for final ack from receiver.
 - Next send is issued as soon as previous send is complete at sender.
- F = 2o + L + N*max(o_{send},g)
- $F_{avg} = F/N \sim max(o_{send},g)$
 - For large N
- Can run: Q_Depth >= 1



Benchmark: Overlap Test

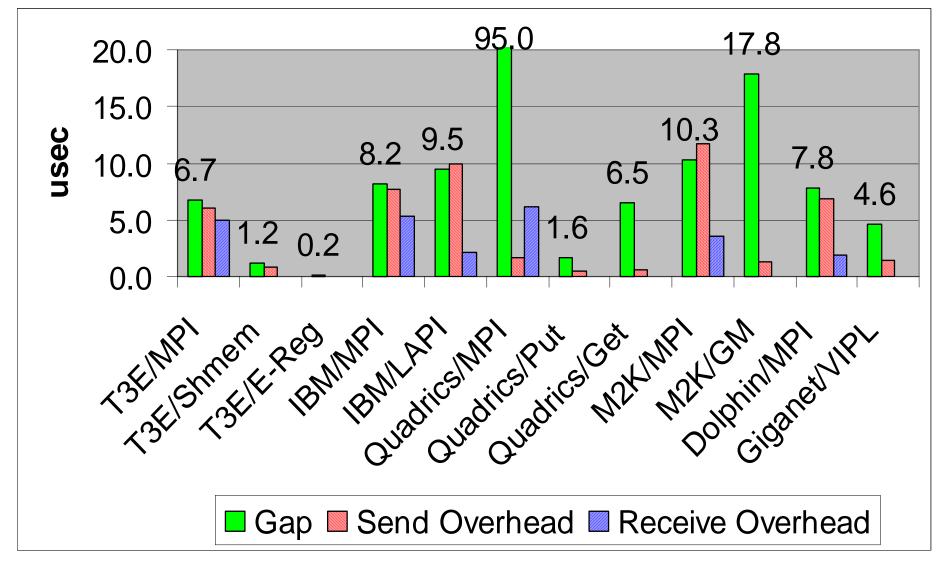
- In the overlap test, we interleave send and receive communication calls with a cpu loop of known duration
- Allows measurement of send and receive overhead.
- Similar to the Flood Test, we can measure the average value of T.
- We vary the "cpu" time until T begins to increase, at T*
 - $o_{send} = T^* cpu$
- By moving the cpu loop to recv side we measure o_{recy}



Putting it all together...

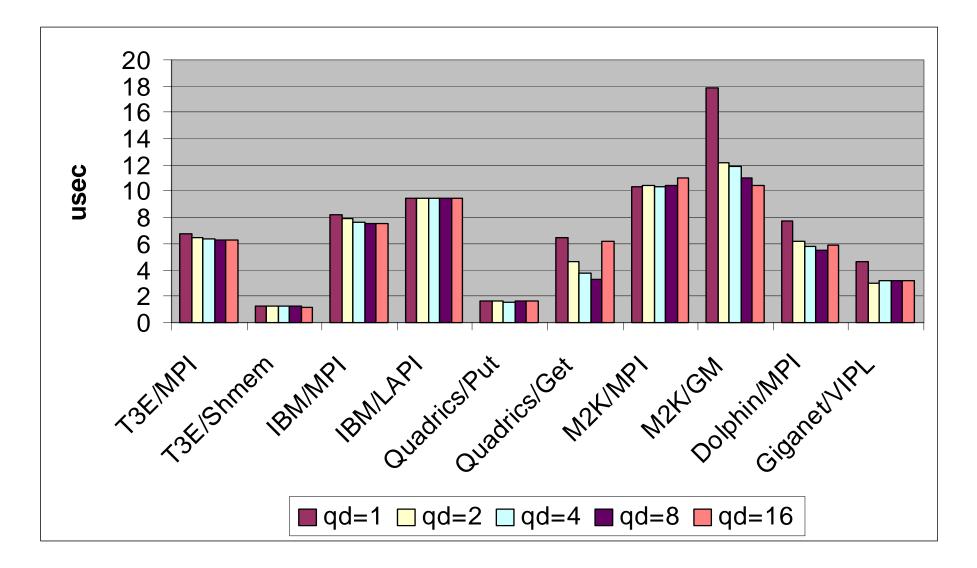
- From Overlap Test, we get:
 - O_{send}
 - O_{recv}
- From Ping-Pong Test:
 - EEL
 - **BW**
 - If no overlap of send and receive processing:
 - $L = EEL O_{send} O_{recv}$
- From Flood Test:
 - $F_{avg} = max(o_{send}, g)$
 - If $(F_{avg} > O_{send})$ then
 - $g = F_{avg}$
 - Otherwise
 - cannot measure gap, but its not important

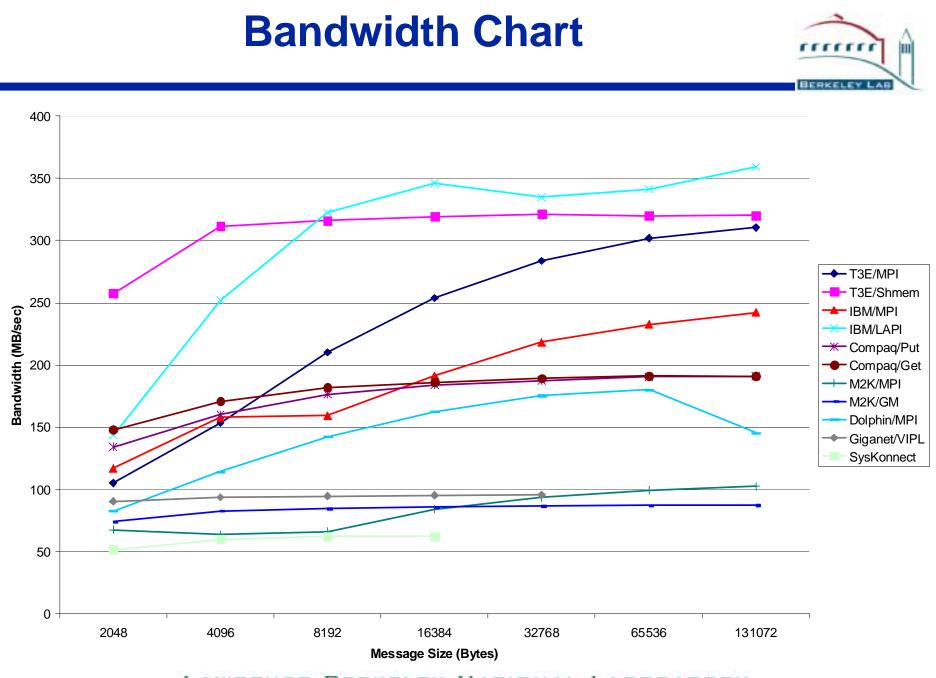
Results: EEL and Overhead



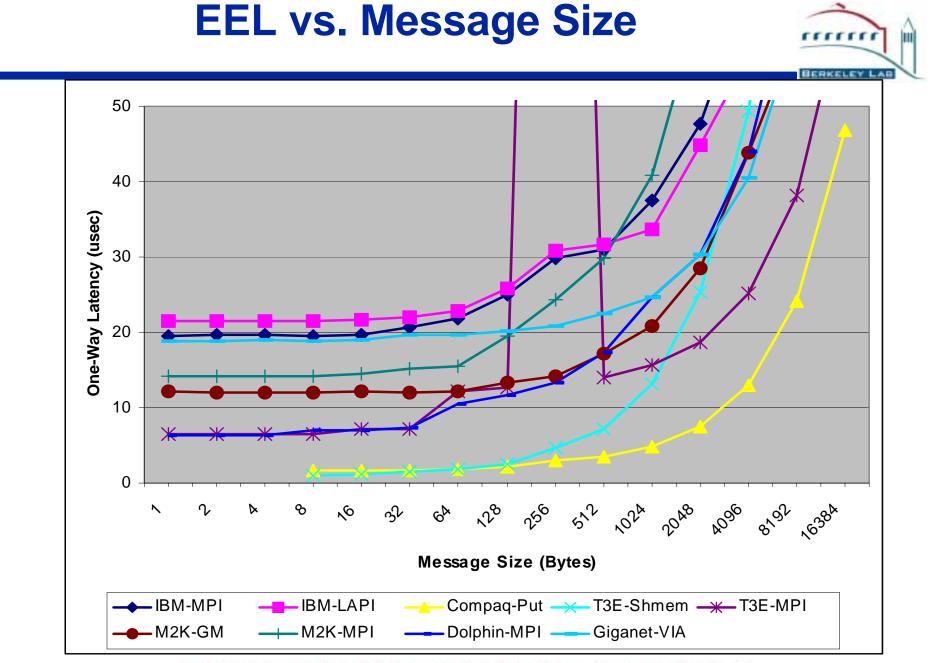
LAWRENCE BERKELEY NATIONAL LABORATORY

Results: Gap and Overhead




LAWRENCE BERKELEY NATIONAL LABORATORY

Flood Test: Overlapping Communication


rrrrr

LAWRENCE BERKELEY NATIONAL LABORATORY

LAWRENCE BERKELEY NATIONAL LABORATOR'

LAWRENCE BERKELEY NATIONAL LABORATORY

Benchmark Results: IBM

IBM	O _{send}	Gap	O _{recv}	EEL	L	BW
Performance	usec	usec	usec	usec	usec	MB/s
IBM Published	N/A	N/A	N/A	17.9	2.5*	500*
MPI	7.8	7.6	5.4	19.5	6.3	242
LAPI	9.9	9.5	2.4	21.5	9.4	360

* Theoretical Peak

- High Latency, High Software Overhead
- Gap ~ O_{send}
 - No overlap of computation with communication
- Gap does not vary with number of queued ops
 - No overlap of communication with communication
- LAPI Cost to send 1 byte ~ cost to send 1KB
 - Short message packing is best option

Benchmark Results: Myrinet 2000

Myrinet	O _{send}	Gap	O _{recv}	EEL	L	BW
Performance	usec	usec	usec	usec	usec	MB/s
Myricom Published	0.3	N/A	N/A	N/A	9	100-130
GM (measured)	1.3	17.8	~0	12.0	10.7	88

- Small o_{send} and large gap: g o_{send} = 16.5 usec
 - Overlap of computation with communication a big win
- Big reduction in Gap with queue depth > 1 (5-7 usec)
 - Overlap of communication with communication is useful
- RDMA capability allows for minimal o_{recv}
- Bandwidth limited by 33MHz 32bit PCI bus. Should improve with better bus.

Benchmark Results: Quadrics

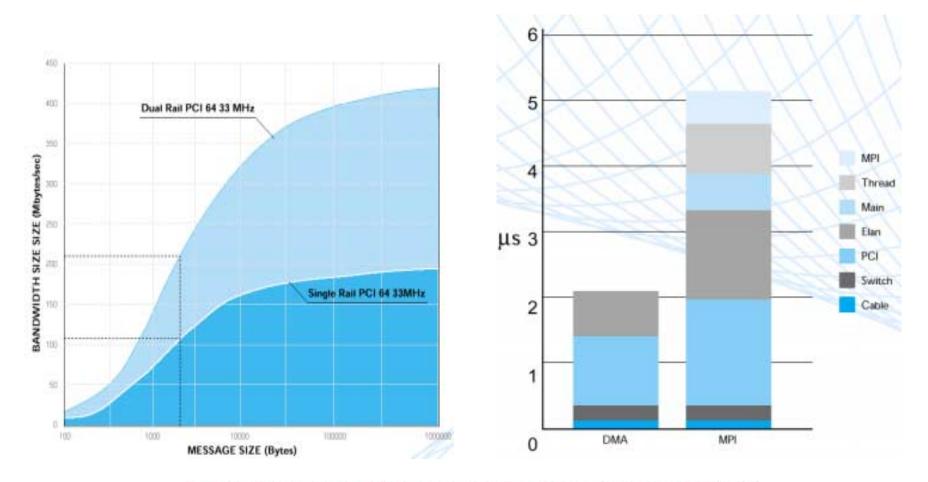
Quadrics	O _{send}	Gap	O _{recv}	EEL	L	BW
Performance	usec	usec	usec	usec	usec	MB/s
Quadrics Published	N/A	N/A	N/A	2	N/A	N/A
MPI (measured)	1.7	95.0*	6.2	9.9	2.0	470 *
Quadrics Put	0.5	1.6	~0	1.7	1.2	180

* MPI Bugs?

- Observed one-way msg time slightly better than advertised!
- Using shmem/elan is big savings over MPI for latency and CPU overhead.
- No CPU overhead on remote processor w/shmem
- Some computation overlap is possible
- MPI implementation a bit flaky...

General Conclusions

- Overlap of Computation with Communication
 - A win on systems with HW support for protocol processing
 - Myrinet, Quadrics, Giganet
 - MPI o_{send} ~ gap on most systems: no overlap.
- Overlap of Communication with Communication
 - Win on Myrinet, Quadrics, Giganet
 - Most MPI implementation exhibit this to a minor extent
- Aggregation of small messages (pack/unpack)
 - A win on all systems


Old/Extra Slides

LAWRENCE BERKELEY NATIONAL LABORATORY

Quadrics

Advertised Bandwidth/latency, with PCI bottleneck shown

LAWRENCE BERKELEY NATIONAL LABORATORY

IBM SP – Hardware Used

- NERSC SP Seaborg
 - 208 16 processor Power 3+ SMP nodes
 - 16 64 GB memory per node
- Switch Adapters
 - 2 Colony (switch2) adapters per node connected to a 2GB/sec 6XX memory bus (not PCI).
 - Csss "bonding" driver will multiplex through both adapters
 - On-board 740 PowerPC processor
 - On-board firmware and RamBus memory for segmentation and re-assembly of user packets to and from 1KB switch packets.
 - No RDMA, reliable delivery or hardware assist in protocol processing

- AIX "user space" protocol for kernel bypass access to switch adapter
- 2 MPI libraries single threaded and thread-safe
 - Thread-safe version increases RTT latency by 10-15 usec
- LAPI Lowest level comm API exported to user
 - Non-blocking one-sided remote memory copy ops
 - Active messages
 - Synchronization via counters and fence (barrier) ops
 - Thread-safe (locking overhead)
 - Mulit-threaded implementation:
 - Notification thread (progress engine)
 - Completion handler thread for active messages
 - Polling or Interrupt mode
 - Software based flow-control and reliable delivery (overhead)

- Low latency network, w/100 MHz processor on NIC
 - RDMA allows async, one-sided communication w/o interrupting remote processor.
 - Supports MPI, T3E's shmem, and 'elan' messaging APIs.
 - Advertised one way latency as low as 2 us (5 us for MPI).
 - Single switch can handle 128 nodes: federated switches can go up to 1024 nodes (Pittsburgh running 750 nodes).
 - NIC processor can duplicate up to 4 GB of page tables—good for global address space languages.
 - Runs over PCI bus—limits both latency & bandwidth

4 node cluster at Oak Ridge Nat'l Lab—"Falcon"

4 4-way Alpha 667 MHz SMP nodes running Tru64

6 MHz, 64 bit PCI bus

LAWRENCE BERKELEY NATIONAL LABORATORY

- Hardware: UCB Millennium cluster
 - 4-way Intel SMP, 550 MHz with 4GB/node
 - 33 MHz 32 bit PCI bus
 - Myricom NIC: PCI64B
 - 2MB onboard ram
 - 133 MHz LANai 9.0 onboard processor
- Software: GM
 - Low-level API to control NIC sends/recvs/polls
 - User space API with kernel bypass
 - Support for zero-copy DMA directly to/from user address space