

UPC Applications

Parry Husbands

LAWRENCE BERKELEY NATIONAL LABORATORY

- Benchmark small applications and kernels
 - -SPMV (for iterative linear/eigen solvers)
 - -Multigrid

...

- Develop sense of portable UPC programming style (using T3E and Compaq AlphaServer)
- Motivate and evaluate compiler optimizations
- Move to larger applications
 - -Candidates should be hard with current techniques:

Large N-body problems

- Sparse Direct Methods
- **3-D Mesh Generation**

Sparse Matrix-Vector Multiplication

- Ax=b with A sparse
- Distributed Compressed Row Format Used for A
- Vectors distributed across processors
- Communication of elements of x needed to compute b

Communication Strategies

- Need to send elements of x to processors that need them
 - -Individual sends?
 - -Pack?
 - -Prefetch?
- Try to overlap communication with computation
 - -Initiate communication
 - -Do some local computation
 - -Wait for remote elements
 - -Compute on remote elements

T3E Results

SPMV on T3E in UPC

Compaq Results (1)

SPMV on Compaq in UPC

Compaq Results (2)

SPMV on Compaq in UPC and MPI (4 procs/node)

Discussion

- Small message version required access to low latency messaging for performance
 - Manually done on T3E
 - Under investigation on Compaq
- Pack/Unpack version gives best portable performance
 - Relies on large messages (usually best performing)
 - Requires more source code
 - Investigating inspector/executor techniques
- Proposal
 - Make life easy for the compiler and add a pragma: #pragma prefetch(vector, indices)

Multigrid

- Taken from NAS Parallel Benchmarks
 - -Hierarchy of grids (256³->2³)
 - -Project down to coarsest grid
 - -Solve
 - -Prolongate and smooth back up to finest grid
- Operators all involve nearest neighbour computations in 3-d and ghost region exchanges
- Code based on OpenMP version from RWCP
- Simple domain decomposition scheme used to map 3-d grid to a 3-d processor grid.
- On T3E computation compiled with CC (multidimensional array performance poor with gcc)

Data Structures

- For grid large, static distributed array not feasible
 - Difficult to change sizes at runtime
 - Need to access through local pointers for performance (avoid A[i] for pointer to shared A)
- Pointers to local regions (upc_local_alloc()'d) used instead
 - Can easily access any global element
 - Directory can be cached locally

T3E Results – Class C (512³)

Discussion

- Outperform MPI Fortran version on T3E!
- Single processor performance an issue
- No speedups past 8 processors on Compaq
 - -Spins to signal incoming variables
 - -May need to reorganize communication
- No small message version yet. Probably not worth it on Compaq.