
UPC Applications

Parry Husbands

Roadmap

• Benchmark small applications and kernels
—SPMV (for iterative linear/eigen solvers)
—Multigrid

• Develop sense of portable UPC programming
style (using T3E and Compaq AlphaServer)

• Motivate and evaluate compiler optimizations
• Move to larger applications

—Candidates should be hard with current
techniques:
Large N-body problems
Sparse Direct Methods
3-D Mesh Generation
…

Sparse Matrix-Vector Multiplication

• Ax=b with A sparse
• Distributed Compressed Row Format Used for A
• Vectors distributed across processors
• Communication of elements of x needed to compute b

x0 x1 x2 x3

A0

A1

A2

A3

b0

b2

b3

b1

Communication Strategies

• Need to send elements of x to processors that
need them
—Individual sends?
—Pack?
—Prefetch?

• Try to overlap communication with computation
—Initiate communication
—Do some local computation
—Wait for remote elements
—Compute on remote elements

T3E Results

1 2 4 8 16 32
0

25

50

75

100

125

150

175

200

225

SPMV on T3E in UPC

MPI (Aztec)
UPC Small
Manual Prefetch

Processors

M
FL

O
PS

Compaq Results (1)

1 2 4 8 16 32
0

20

40

60

80

100

120

140

160

SPMV on Compaq in UPC

MPI (Aztec)
UPC Small

Processors

M
FL

O
PS

Compaq Results (2)

1 2 4 8 16 32
0

50

100

150

200

250

300

350

400

SPMV on Compaq in UPC and MPI (4 procs/node)

MPI (Aztec)
UPC Bulk

Processors

M
FL

O
PS

Discussion

• Small message version required access to low latency
messaging for performance
— Manually done on T3E
— Under investigation on Compaq

• Pack/Unpack version gives best portable performance
— Relies on large messages (usually best performing)
— Requires more source code
— Investigating inspector/executor techniques

• Proposal
— Make life easy for the compiler and add a pragma:

#pragma prefetch(vector,indices)

Multigrid

• Taken from NAS Parallel Benchmarks
—Hierarchy of grids (2563->23)
—Project down to coarsest grid
—Solve
—Prolongate and smooth back up to finest grid

• Operators all involve nearest neighbour
computations in 3-d and ghost region exchanges

• Code based on OpenMP version from RWCP
• Simple domain decomposition scheme used to

map 3-d grid to a 3-d processor grid.
• On T3E computation compiled with CC

(multidimensional array performance poor with
gcc)

Data Structures

• For grid large, static distributed array not feasible
— Difficult to change sizes at runtime
— Need to access through local pointers for performance

(avoid A[i] for pointer to shared A)
• Pointers to local regions (upc_local_alloc()’d) used instead

— Can easily access any global element
— Directory can be cached locally

p0 p1 p2 p3Directory:

Local Data:

T3E Results – Class B (2563)

MG Class B -- T3E

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

Processors

M
op

s/
s UPC

MPI
linear

T3E Results – Class C (5123)

MG Class C -- T3E

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

Processors

M
op

s/
s UPC

MPI
linear

Discussion

• Outperform MPI Fortran version on T3E!
• Single processor performance an issue
• No speedups past 8 processors on Compaq

—Spins to signal incoming variables
—May need to reorganize communication

• No small message version yet. Probably not
worth it on Compaq.

