
The Basis System, part 5

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov

COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543

CONTENTS

1 The Basis System 1
1.1 Environment Variables. 1
1.2 Basis Is Both a Program and a Development System. 1
1.3 About This Manual. 2

2 Basis Development Overview 5

3 Installing Basis 7
3.1 Install Overview . 7
3.2 Build Details . 7

4 Dsys: Automating Building and Testing 9
4.1 Dsys Targets. 9

5 MIO: Make is OK 11
5.1 Mio Overview .11
5.2 MIO output files .12
5.3 MIO syntax. .14
5.4 Global Variables. .17
5.5 System Group .18
5.6 Define Group. .19
5.7 Setenv Group. .19
5.8 Compiler Groups. .19
5.9 CGroup Group. .20
5.10 FGroup Group. .20
5.11 LDGroup Group. .21
5.12 LibGroup Group. .21
5.13 Mac Group. .21
5.14 Directory Group .22
5.15 File Group .24
5.16 Package Group. .25
5.17 Archive Group .25

i

5.18 Library Group .25
5.19 Program Group. .25
5.20 BasisProgram Group. .25
5.21 Fparse Group. .26

6 Getting Started Writing Packages 27
6.1 Outline of the Process. .27

7 A Complete Example 31
7.1 Overview .31
7.2 Variable Description File. .31
7.3 config input File .32
7.4 mio input Files .32
7.5 Compiling and Loading. .33
7.6 Changing to Dynamic Memory. 34

8 Compiling Basis Packages 37
8.1 Single Package Example. .37
8.2 Adding a Second Package. .41

9 Writing Basis Packages 45
9.1 Basis Packages. .45

10 Precision and Portability 47
10.1 Description of the Problem. .47
10.2 Specifying Precision in the Source. 47
10.3 Making Your Source Portable. .48

11 Fcc: Fortran Calls C 51

12 Mac and the Variable Description File 53
12.1 Sample Variable Description File. 53
12.2 Structure of the File. .54
12.3 Parameters. .54
12.4 Group Information. .56
12.5 Variable Descriptions. .58
12.6 Limiting Array Sizes. .59
12.7 Compileas Option. .60
12.8 Functions. .60
12.9 Making Arguments Optional. .61
12.10 Commenting the Variable Description File. 62
12.11 User Defined Types. .63
12.12 Architecture-dependent information. 64
12.13 Interfacing with C and C++; The Fcc Utility. 65
12.14 Writing Your Source. .67

ii

13 Gluepack: Putting Packages Together 71
13.1 config Execute Line. .71
13.2 config Input File Format. .71
13.3 Configuring the Packages with .pack files. 75
13.4 config Errors. .77

14 Programming Support Facilities 79
14.1 Specifying Variables’ Names. .79
14.2 Dynamic Dimensioning. .79
14.3 Output Routines. .84
14.4 Replaceable Routines. .89
14.5 Symbolic Constants. .91
14.6 Symbolic Types .91
14.7 Physics Unit Codes. .92
14.8 Interfacing with C and C++ Programs. 93
14.9 Communication Between Packages. 93
14.10 The Package Library. .94

15 Advanced Package Writing 95
15.1 There Be Dragons Here. .95
15.2 Accessing Variables from Compiled Routines. 95
15.3 Writing Attribute Services. .97
15.4 Basis Supplied Servers. .103
15.5 Writing Built-in Functions. .104
15.6 Foreign Packages. .111

Index 119

iii

iv

CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1

is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System

Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3

4

CHAPTER

TWO

Basis Development Overview

As mentioned before, Basis is both a program and a developement system. Basis the language is
documented in Part II, Basis Language Reference. This part deals with Basis as a development
system.

The build system consists ofdsys andmio . Thedsys script is developer’s interface to build
Basis. Internallydsys usesmio to generatemake files to do the actually compiling and loading.

Once Basis is installed, the utilitybasiskit can be used to create the scaffold necessary to build
a simple Basis program. The next chapter deals with building more sophisticated Basis programs.

Basis has a fairly simple type system. The database keeps track of type (integer, real, logical) and
size (4 or 8 bytes). Theconfigcompiler and typeheaders scripts are used to match the
native compilers types to Basis’ types.

Fcc is used to create wrappers that allow Fortran to call C functions. The generated wrappers deal
with name-mangling and call-by-reference/call-by-value differences between Fortran and C.

At Basis’ core is a runtime database that contains information about variables and functions. The
macprogram reads a Variable Description File and creates the code necessary to intern information
about variables and function into the database. It also creates handlers to allow functions to be
called from an interpreter. In additionmaccreates files that allow Fortran and C compilers to access
the variables directly. The Basis interpreter has access to the runtime database. This allows the
interpreter to access the user’s variables and call compiled and builtin functions. Thegluepack
utility creates code to put packages into a single Basis executable.

5

6

CHAPTER

THREE

Installing Basis

3.1 Install Overview

The Basis source directories are organaized as

basis/rt: the Basis run-time package
...

basis/scripts: cfgman, cpu, mio ...

basis/builder: dsys, the ’’heart’’ of the Basis build
basis/builder/std: generic config files
basis/builder/local: custom config files
basis/builder/features:

basis/test: test files and repository of fiducials

Once a config file has been created, Basis is compiled with the sequence:

dsys config input
dsys build
dsys test

3.2 Build Details

There are four overall stages in making a Basis program:

1. For each variable descriptor file, run themac program to create the connections between the
variable descriptor file, the source, and the runtime database. This will also create connec-
tions to any C or C++ code that may be present.

7

2. Compile the resulting output, precompile and compile each MPPL source file, and compile
each Fortran, C, and C++ file. For each directory, containing one or more packages, a single
object file or library is created.

3. Run thegluepack program to create the connection between Basis and the desired pack-
ages.

4. Link the program with the Basis run-time library and any desired graphics libraries and
user-specified libraries.

8 Chapter 3. Installing Basis

CHAPTER

FOUR

Dsys: Automating Building and Testing

Dsys is a script that provides a coherent interface between code developers and the various code
management utilities. Many large scale code projects deal with a variety of tools including compil-
ers, linkers, make, and source management utilities such ascvs . These tools have many options
and details with which most developers would rather not have to concern themselves.

On the other hand, most developers have a high level idea of what it means to compile and link
their codes, or to commit their changes. Sodsys bridges that gap by defining a set of high level
operations such as config, build, and commit each with a few simple options. The details of these
high level operations are then carried out bydsys . These details are worked out once and define
the procedures by which a code system is to be managed. The script also serves as documentation
of the procedures.

4.1 Dsys Targets

The following list ofdsys targets gives some of the high level operations to illustrate the extensive
capabilitydsys makes available to the Basis developer. These are a few of the once common to
many code systems. For a complete listing, see thedsys man page.

build The code system is compiled, usually governed by make, and any executables are linked.

commit Changes to the code are committed into a source repository.

configA code system is configured to be built on a particular platform with various options/

dist A distribution such as a tar file of the sources is made for transport to other systems

help (or -h) Give information about dsys options.

info Information about the sources or any aspect of the code system is found and printed out.

install The code system is installed for public use as opposed to private development

link Link the Basis executable.

9

removeBinaries files such as objects, archives, and executables are removed.

syncThe sources being developed are brought up to date with the sources in a repository

testTests for the code system are run to verif the code.

New targets are added todsys constantly.Dsys has a help option that will list its targets and
most of these targets also have a help option which describes options specific to that particular
target. In practice the builder directory is added to the source tree to containdsys and any scripts,
configuration files, or other information needed to manage the code system. In this way all this
information is together and separated from source files that may be compiled or operated on by
tools controlled bydsys .

10 Chapter 4. Dsys: Automating Building and Testing

CHAPTER

FIVE

MIO: Make is OK

In modern software systems, the process of compiling and linking correctly on a wide variety of
platforms can be a difficult problem. When working on multiple platforms simultaneously, it is
highly desirable to use just one copy of the source yet produce output for many different machines.
A general solution of this problem is difficult, but we have provided a Basis-specific solution which
should fit the needs of most authors of Basis programs. This utility is calledmio .

Mio consists of two logical parts. First it reads a series of input files and builds up an internal
database. Second it write out files necessary to build the code based on the database.

Mio will automatically construct platform-specificpre-Make files that will be used as input to
the Unix utility make to build your code on multiple platforms. Typicallymio executes in just a
few seconds.

A manual page formio is available inBASIS ROOT/man/man1.

Since version 12.0 of Basis, a utility,mio , is usually used to automate most of the compile-
load cycle. In addition toman pages formio which come with the Basis distribution (mio and
mio-intro), this manual explains the use ofmio too. Versions of Basis prior to version 12.0
used a utilitymmm, but this utility is no longer supported, and its use is strongly discouraged. The
Basis team has tried hard to provide documentation to help make conversion to the new methodl-
ogy as simple as possible.

5.1 Mio Overview

Using information from a configuration description file (config file) and/or a BasisPackage file,
mio generates other files which are used in conjunction with various system utilities to manage
the compilation and linking of a Basis code. The goal is to be able to build Basis codes, including
Basis itself, on multiple, different computer systems simultaneously.

Mio will read a configuration file which describes the details of the specific compilation of the
Basis code you desire.mio will set up directories to hold: executable files (bin); library archive
files (lib); files used by compilers and interpreters (include); documentation (man); and log
files from compilations and other operations typical of a code system (log). It will produce files
which help govern the compilation and installation of a code as well as a file calledconfigured

11

which is a record of how the code system was last configured for a particular platform.

5.2 MIO output files

mio is capable of writing many output files. The name of the file is controlled by a variable. If the
name is blank, the file is not created.

5.2.1 configured

A summary of the final configuration. Has all C¡Use¿ statemtents expaned.

5.2.2 configured.pl

A perl readable version of the config database.

5.2.3 code-m-def.d

Used by mppl source. creation controlled byWrite mdefs . Defines controlled byVMDef.

5.2.4 code-f-def.d

Used by fortran source. Creation controlled byWrite f defs .

5.2.5 code-c-def.d

Used by C source. Creation controlled byWrite c defs . Defines controlled byVCDef.

5.2.6 make-config

Used bypck to build the final makefile. Creation controlled byWrite make config . Defines
controlled byVMake.

5.2.7 Makefile

Global Makefile used to compile code in parallel. Creation controlled byWrite makefile .

12 Chapter 5. MIO: Make is OK

5.2.8 mio.csh

Used by csh. Creation controlled byWrite mio csh . Setenv controlled byVEnv.

5.2.9 mio.make

Used by make. Creation controlled byWrite mio make. Setenv controlled byVEnv.

5.2.10 mio.pl

Used by perl. Creation controlled byWrite mio pl . Setenv controlled byVEnv.

5.2.11 mio.sh

Used by bourn shell. Creation controlled byWrite mio sh . Setenv controlled byVEnv.

5.2.12 packages

List of package names. Creation controlled byWrite packages .

5.2.13 Packages

Package groups for use by other codes. Creation controlled byWrite Packages .

5.2.14 pre-Make

In a package-level directory mio creates directory$cpuif it doesn’t alread exist and$cpu/pre-Make.
The generic targets defined in the pre-Make file are: remove, build, mac.

The build target compiles files, build archives, and depending on the package level configuration
links any executables specified. Themac target runs themac utility over any .v files specified.
This is called out as a separate step to control dependencies and enable parallel make operations to
succeed.

5.2.15 pck

Thepck file is a trivial script that determines which platform it is being run on and then goes to the
appropriate$cpudirectory to do the requested operation. To do a clean build of the package with
an mio configured code you might do:

5.2. MIO output files 13

pck remove
pck build

regardless of the platform you are on.

5.3 MIO syntax

Variables and groups are the two data structures ofmio . Variables are simply a name and a value.
Groups are collections of Variables. Groups also have a class associated with them.

Any line where the first non blank character is a octothorpe (#) is treated as a comment.

5.3.1 Variables

The syntax for defining and assigning variables in config files is fairly simple. There are three
forms:

var = value
var += value
var -= value

If valuecontains the pattern$@the current value ofvar is substituted at that point.

Leading blanks are removed.var = value results invar being assigned “value ”, not
“ value ”. Leading blanks can be assigned using the{} syntax below.

When appending, a blank andvalue are added to the current value ofvar .

Flags =-g
Flags +=-o

results inFlags being assigned-g -o .

If the first character ofvalue is a open curly brace ({), then all text up to the balanced closing
curly brace, excluding newlines and comments, are assigned tovar .

var = {
value1 # comment about value1
other values
value2 value3

}

results invar being assigned “value1 value2 value3 ”.

14 Chapter 5. MIO: Make is OK

var << END

Here document form. All text upto a line starting with the stringEND, including newlines and
comments, are assigned tovar. ENDmay be any user defined string.

mio generates some variables names that begin with an underscore.

5.3.2 Groups

Groups collect variables into a new namespace. A Group is created byname : class .

class : name {
Flags = -flag

}

Group names are any sequence of letter, numbers or special symbols.code , 1, file.c are all
valid group names.

Additional references tonamewill add to the group.

class : name {
Flags = -flag

}
class : name {

Flags += -flag2
}

Nameis optional.

class {
Flags = -flag

}

Currently the group is assigned the name--anon-- .

5.3.3 Functions

Mio also has functions to allow operations on variables, groups, and the environment. Functions
are a name followed by a set of parentheses enclosing any arguments. The parentheses are required
even if no arguments are specified.

clear Delete all variables in the current namespace. Does not work in the global namespace.

5.3. MIO syntax 15

delete(name)Delete variablenamefrom the current namespace.

error(msg) Write msgto the screen and exit. Arguments are expanded before printingmsg.

expand(string, variable) String is string interpolated and the resulting value is put invariable. A
$ is used to indicate variable expansion.

input = Hello
expand($input world, out)

Results inout being assigned “Hello world ”.

export(variables) Take the list ofvariablesand set them in the current enviroment. This is one
way of passing current database values to programs executed by therun function. Environ-
ment variables have the formM variable.

variablesis expanded before exporting. If it is a blank delimited list, then each name will be
exported.

If variable has a colon, then it is assumed to be a group name and all variables
from the the group are exported. Environment variables from groups have the form
M classname variable.

class: will export all groups of classclass .

The nameGlobal: will export all variables from the global namespace.

getenv(env [, variable]) The value of environment variableenvis assigned tovariable. If variable
is not given, the value is assigned to database variableenv.

include(file [,file2, ...]) Read and process each file.

log(msg) Write msgto the log.

run(cmd, ...) Cmdis executed and the output is processed as more config commands. Arguments
are expanded before callingcmd.

setenv(env[, value])Set an environment value in mio that can be queried by a program executed
by therun command.envis the name of the environmental variable to set.valueis expaned
before assiging toenv. Only two arguments are allowed. Any additional commas invalue
are treated as part of the value.

If valueis not given, then the value of the database varibleenvis assigned to the enviromental
variable.

tty(msg) Write msgto the screen. Arguments are expanded before printingmsg.

use(name [,...])Assign variables in groupnameto the current name space. Ifnamestarts with a
+, then the variables in groupnameare appened to the current name space.

Variables that begin with an underscore are not assigned.

16 Chapter 5. MIO: Make is OK

5.4 Global Variables

Date

Directories A list of directories that contains Package files to be read. This is also used as the
default list of packages to load for a Basis code. If the directory name is followed by a* ,
then it will not be include in the load list. A semicolon is used as a barrier in parallel builds
in the generated Makefile.

Directories = scripts* first ; second third

User

AR Defaults toar .

AUXLibs Auxilliary libraries which may be system dependent. These libraries will be put in the
load line after the package libraries but before other libraries whichmio knows are required
such as the PACT libraries or the NCAR libraries. These libraries may also be changed for
thread safe versions ifmio knows that it should do so.

default FGroup

default CGroup

default LDGroup

default LibGroup

default Mac Set the default Group to use whenTargets is not defined.

Directories

Glue Defaults toconfig .

INSTALL MACRO Command to install a file if it does not already exist or the contents have
changed. Defaults to/usr/bin/install -C .

InstRoot The root directory where the code will be installed.

LD Defaults told .

NCAR The version of NCAR to use. Options are N4.1 and N4.0 with the default being ”N4.0”.

PackFiles A list of *.packfiles needed for the main executable. The default is no files.

PACTRoot The root directory where PACT is installed. This may also be specified by an environ-
ment variable called PACT. The default value will be taken from the environment variable.

5.4. Global Variables 17

Path A blank delimited list of directories which will be added to the beginning of the PATH en-
vironment variable when using do-sys to build the application. This allows you to put the
location of compilers (or other needed tools) in your config file where you specify which
compilers you want to use. This can save you problems with setting up your own environ-
ment variables.

POD2MAN Full path of pod2man. A default file is set by searching the current path.

ProgName The name of the principle executable program of the system.

SYSIncPath Include path for headers and other similar kinds of files. This adds additional-I path
to compilations (mppl and cc).

SYSLibs System libraries (usually vendor supplied or installed by the system administrator) used
in linking the main executable. These libraries are inserted in the load line last of all and
they are taken literally. Compare this with the AUXLibs above. The default is nothing.

SYSLDPath Load path for libraries. This adds additional -C¡-Lpath¿ flags to the load line. You
may specify more than one path here. The default is nothing.

5.5 System Group

Mio manages codes as a System. Variables in this group control the location of output files.Root
is the path to the bin, include, and lib directories.

MakeBin Contains name of variable holding the bin directory path.

MakeInc Contains name of variable holding the include directory path.

MakeLib Contains name of variable holding the lib directory path.

MakeMan

MakeRoot Contains name of variable holding the root directory path.

MakeSrc

VEnv

VMake

VMDef

VCDef

Write c defs

Write f defs

18 Chapter 5. MIO: Make is OK

Write m defs

Write configured

Write configured pl

Write make config

Write makefile

Write mio csh

Write mio make

Write mio pl

Write mio sh

Write packages

Write Packages

5.6 Define Group

Variables in this group are written out as macros.

5.7 Setenv Group

Variables in this group are written out as environmental variables.

VEnv Order to write out variables.

5.8 Compiler Groups

Compiler The compiler executable to use for files in this group.

Debug The compiler options having to do with debugging. This are applied if-g options is given
to mio .

Flags The compiler options that are always passed to the compiler.

Optimize The compiler options having to do with optimization. This are applied if-o options is
given tomio .

Include path Option to add include search paths.%swill be expanded. Typical-I%name .

5.6. Define Group 19

List

List suffix

Profile

Targets List of files and directories to compile with this group.

Version Option to generate version information

VersionInfo Output from Compiler ’s Version command. Mio runs the compilers for
default CGroup anddefault FGroup to generates this value.

5.9 CGroup Group

Variables for .c files. The global variabledefault CGroup can be used to set the default CGroup
to use to compile.

5.10 FGroup Group

Variabls for .f, .f90 and .m files. The global variabledefault FGroup can be used to set the
default CGroup to use to compile.

MPPLFlags Global MPPL command options.

Glue The name of the program to produce glue file from the.pack files. Defaults toconfig .

Module suffix

Module path

Module out

FixedForm Flags to compile fixed form.

FreeForm Flags to compile free form.

Suffix suffix A list of features that will be added to the compile flags for files ending withsuffix.

20 Chapter 5. MIO: Make is OK

5.11 LDGroup Group

Loader options.

Flags Command line options for the linker/loader.

LoadMap

LDpathOpt

LDsearchOpt

MapName If specified, a load map will be created using the value and the command in the
LoadMap variable.

Profile

5.12 LibGroup Group

For building archives.

ARFlags

LibFlags

5.13 Mac Group

Variables used to control runningmac.

DocFile Name of generated documentation file. Used with -d option

Flags Global MAC command options.

For expanded values the available values are:

base = base of input file (foo if foo.v). For example$base vdf.f90 , with filename foo.v
will be expande to foovdf.f90

MFile Name of generated macro file. Used with -m option.

WFile Name of generated C file. Used with -w option.

WriteModule The name of the output file for modules. The name is expanded.

YFile Name of generated MPPL file. Used withmac’s -y option.

5.11. LDGroup Group 21

5.14 Directory Group

A Directory Group is created and populated with the contents of thePackagefile for each directory
listed in the global variableDirectories .

System System group associated with this package.

PKG = name wherename is the name of the package. If not given, the name of the directory is
used.

ROOT = PKG exe need-root-inst\texttt{PKG} package name as in lib<pkg>.a
\texttt{exe} executable program name (built in this package)
\texttt{need-root-inst} yes | no

pkg overrides the package name specified inPKG. This is historical because prior to mio,
some packages (e.g. rt) had aPKGname that was inconsistent with the name of the pkg
object or archive and mmm had hard wired code to fix it!need-root-instspecifies whether
or not the RootInst objects from the global config files are to be copied into the private
bin/lib/include directories by this package. The default is nothing.

NeedPACK = use — install — both specify whether *.pack are needed for linking, needed to be
installed, or both. Default is nothing.

POINTER = std — cray Specify what kind of Fortran pointers this package uses. The default is
std .

LIBRARY indicates the default target for this directory is anar library rather than a.o file.
No effect when making for another machine. Indicates how the library archive is to be
built for this package. Without this specification all object files (.o) are preloaded into a
single .o file which is placed in the archive. This forces the entire package to be loaded if
a single function or variable of the package is referenced elsewhere. With this specification
the individual object files are placed in the archive file. This means that only those objects
are loaded which resolve a reference generated elsewhere. This choice can have a profound
impact on your code system. Be very CAREFUL when deciding which way to go with this
variable!!!

MPPL Flags Flags, included file names, that are added to all uses of mppl in the directory.

MPPL lang to f77 Convert the code to f77.

to f90 Convert the code to f90.

is f77 Will not process langauge statement but will assume it is already f77.

is f90 Will not process langauge statement but will assume it is already f90.

ARCHIVE indicates the name of the target library. Defaults to the package name.

VDF = filelist is a list of Basis variable descriptor files.

22 Chapter 5. MIO: Make is OK

NVDF = filelist is a list of variable descriptor files which reside in other packages but are needed
to compile this one.

SM = filelist Mppl sources which need all VDF and NVDF files.

SU = filelist Mppl sources which need no variable descriptor files.

SF = filelist straight Fortran sources (also supported is the obsolete formFM). Files with the suffix
.F are acceptable but a particular compiler may require settingFF (below) to contain a
special flag to enable running/lib/cpp on the.F file before compiling.

SC = filelist C or C++ sources. Names of header files on which the sources depend should be
placed in the list in front of the files on which they depend.

CLEAR Used to “forget” any previous dependencies. For example, supposefoo.c depends on
foo.h , andbar.c depends onbar.h but not foo.h . This would be denoted as follows
in thePackage file:

SC=foo.h foo.c
CLEAR
SC=bar.h bar.c

Without the reserved wordCLEAR, mio would think thatbar.c also depended onfoo.h , and
build makefiles accordingly; the result would be that an unnecessary compilation ofbar.c
would occur every timefoo.h was changed.

LANGUAGE = langlist langlist can consist of one or more ofC, C++, or FORTRAN,
FORTRANbeing the default. This statement must precede the declaration of any list of
VDF’s or NVDF’s which containlanguage "C" or language "C++" statements, so
thatmio will be able to build appropriate makefiles. If there is a later list of VDF’s and/or
NVDF’s not containing C or C++, thenLANGUAGE=FORTRANwill keepmio from making
unnecessary C or C++-specific makefiles.

SENDFILES = filelist files to be sent viaftp if make is done for a remote machine

FF = line The generated makefile will define the Fortran compiler flagFF to be the rest of this
line. The default is a possibly acceptable set for a given CPU. See further discussion in the
section COMPILER FLAGS in the manual page.

CF = line The generated makefile will define the C compiler flagCFto be the rest of this line. The
default is a pretty good set for a given CPU. See further discussion in the section COMPILER
FLAGS in the manual page. Note thatCFshould generally not be used for optimization flags;
see the section OPTIMIZATION.

Real4 Sets the default meaning of a Fortran real to be 4-byte

Real8 Sets the default meaning of a Fortran real to be 8-byte

5.14. Directory Group 23

RULE/ENDRULE Text between RULE and ENDRULE is copied literally into the pre-Make file.
This allows you to manage targets and control dependencies explicitly if the automatically
supplied rules do not suffice.

A line containingSYSTEMfollowed by one or more of the architecture names will cause subse-
quent lines to be ignored unless the name of the target CPU is one of the set. ThisSYSTEMdirective
works the same as it does inmac andgluepack , which were described in earlier chapters. For
example:

PKG=foo
VDF=foo.v
SM=always.m
metoo.m youtoo.m
SYSTEM SUN4 HP700
SM=workstation.m
SYSTEM YMP
SM=unicos.m

The fileworkstation.m will be used as a source ifCPU=SUN4or HP700. The filesfoo.v ,
always.m , metoo.m andyoutoo.m are used on all platforms.

You can also do differential compilation within an MPPL-language file using constructs of this
type:

ifelse(SYSTEM,HP700,[
...code for HP700 only

])
ifelse(SYSTEM,YMP|XMP,[

...for XMP or YMP
])
ifelse(WORDSIZE,32,[

...code for 32 bit machines
])

You executemio by executingBASIS ROOT/bin/mio . To build a debuggable code, add the-g
option. If you wish to link ith a profiler, use the-pro option. After this, the commandmake
should cause your packages to be compiled.mio will create a subdirectoryARCHwhereARCH
is uniquely identified of the system you are running on, such asosf-5.1 , lnx-2.2-i32 , or
sol-5.2 . All the output from themake will be in this ARCHsubdirectory.NOTE: theseARCH
names are generated by the Basis txtttcpu that uses the UNIXuname commandto generate unique
platform and system-dependent names. Once this is successful, proceed to the next section.

5.15 File Group

DependenciesBuild dependencies of file.

24 Chapter 5. MIO: Make is OK

Module Modules generated by file.

Phase Name of phase to compile filemac or build . Defaults tobuild .

MPPL Flags Flags to pass to MPPL. If not defined then the generated pre-Make file will use
$MPPLflags .

5.16 Package Group

System System group associated with this package.

5.17 Archive Group

5.18 Library Group

5.19 Program Group

BinDir Directory for final executable. SettingBinDir to blank will leave executable in the
Arch directory below the package directory. IfBinDir is not set, executable will be in
$(SysBin) .

LDFlags Additional loader flags

LibPaths Library search paths to use.

Libs Library to use.

MapName Works with the LDGroup’sLoadMapoptions.

Source List of source/object files used to build program.

5.20 BasisProgram Group

DocFile

GlueFlags

5.16. Package Group 25

Name Name of executable. Defaults to the group name.

LDFlags Additional loader flags

LibPaths Library search paths to use.

Libs Library to use.

Main 1 = load with Basis’ main program. defaults to 1.

PackagesList of Package and Library groups to use. Defaults to the$Directories . ’par ’ is
always appended to the end.

PackFiles

PackBaseName of generated pack file without any suffix. Defaults to ’pack ’ appended to the
executable name.

Phase

5.21 Fparse Group

Flags

GenerateInterface Options areno, mppl

MPPLInterface Generate macros to use the mppl interface blocks from other packages. Writes
file mio dir.d .

Valid values are B¡mppl¿, B¡module¿, B¡include¿, B¡no¿.

Modules List of modules to parse before source. Added as a--module name option to fparse.

RunIface If set to ’no’, turns of running fparse.

26 Chapter 5. MIO: Make is OK

CHAPTER

SIX

Getting Started Writing Packages

If your goal is to quickly make a program for the purpose of executing one or two functions interac-
tively, you can do that without reading this manual in full. There is a program calledbasiskit.
Make sure you have your environment and path set up as described in Section 1.1 Environment
Variables in Chapter 1. Create an empty directory and in it type:

basiskit cbk

This will create a source file cbk.m which you replace with your own. Edit cbk.v to describe your
own common blocks and variables instead of the sample ones. If you have a common block labeled
/xyz/ that you wish to link to the interpreter, declare a group (like the one Variables in the sample),
and after the group name put /xyz/ before the colon. Then describe the common block variables in
exactly the order in which they occur in your source.

If your source does not already exist you can editcbk.m instead. Follow the instructions
basiskit printed out.

The following sections describe the components you will be working with.

6.1 Outline of the Process

Producing a program under the Basis system is very easy. In addition to your sources, you need to
create a small number of input files to the various Basis utilities, then run the utilitymio (“makeis
ok”) which creates makefiles that, when processed by the unixmake utility, control the execution
of the other Basis utilities and build your code automatically. Basis goes one step further and
provides a modeldsys for managing building and testing your code across multiple platforms or
operating systems.Dsys is decribed in chapter 4. We describe here the key elements of building
a Basis code application.

The basic outline of the directory structure will serve to clarify the following discussion of the
dsys utility.

27

mycode/
source code for mycode
mycode.v
mycode.pack
Package
builder/

dsys
local/

config-file-platform1
config-file-platform2 ...

std/
packages ...

At the top-level source directory tree formycode , you will see:

• In the file ”mycode.v ”, you declare your variables in a separate file called a variable de-
scription file or VDF. You divide these variables into named groups similar to named com-
mon blocks. You also declare those subroutines and functions you wish to be able to call
interactively at run-time. The VDF can be likened to a C or C++ header file, in that you can
replicate all or portions of its data declarations in your code. The VDF is processed by the
Basis utilitymac.

• In the “mycode.pack ” file, you declare overall configuration and “packaging” information
about your application (mycode).

• In the ”Package ” file you define the VDF files to be included, the names of the source files
to be compiled and the language the source files are written in.

• A builder subdirectory.

The builder subdirectory contains thedsys utility, related utilities (for more advanced func-
tions, such as automated testing, that we won’t go into here), plus it’s own subdirectories of
platform-dependent configurationconfig files. The files most critical to the build process are:

• The dsys utility. This utility orchestrates the procedure which creates the makefiles and
turns your sources into compilable modules per-platform.Dsys runsmio and other Basis
utilities to crreate your compilable source, and puts them into uniquely named platform
subdirectories of your source directorymycode .

• In the local subdirectory, you provide per-platform customization information such as
compiler options or language feature options in a per-platform file.

• In the std subdirectory, you may specify the lowest-level feature-independent elements
common to a particular platform. For instance, in ”package ” you would specify which
standard Basis packages you wish to include.

28 Chapter 6. Getting Started Writing Packages

These files are all that you need to create (other than your sources) if you wish to have your
application built automatically.

Your source files can be in Fortran, C, C++, or MPPL. MPPL is an upward compatible extension
of Fortran 77 that comes with the Basis System. The preprocessormppl takes MPPL language
input and produces standard Fortran output. Existing routines can be used with Basis with little or
no change. However, most Basis authors usemppl and many of the optional services described
later. Usingmppl , for example, you need only maintain the list of common variables in the
variable description file. In yourmppl source, you put the statement:

Use(Groupname)

in each subroutine that needs the variables in the group namedGroupname . “Use” is an mppl
macro which expands into the correct common block declarations for the group in question.

A program calledgluepack writes a small set of routines that connect your source package to the
routines supplied with Basis. These latter routines include a main program and the Basis Language
interpreter.

In the compilation process, a program namedmac processes the variable description file into a
macro file and a file of special subroutines; these files, together with your sources and the output
of gluepack , are then preprocessed by the programmppl into standard Fortran source files that
you compile withf77 , f90 , Cor C++.

Finally, load your program with a binary library calledlibbasis.a that contains the Basis
system run-time routines.

In practice, the utilitymio is used to generate input files for the Unix utilitymakeand you don’t
actually run config, mac, mppl, or the compiler/loader yourself.

A Basis program consists of one or more Basis packages, so the first thing to know is how to make
a Basis package. Then the construction of the whole program will be covered.

6.1. Outline of the Process 29

30

CHAPTER

SEVEN

A Complete Example

7.1 Overview

The following is an example of using Basis to do algorithm development. In FORTRAN, we write
the algorithm we are working on so that we can execute it by calling the following function, which
we put in a filewve.m :

subroutine xyz(alpha,beta)
Use(Vars)

.... algorithm goes here
return

c come here if something goes wrong
900 call remark("xyz: algorithm failed.")

call kaboom(0)
end

The idea is that groupVars will contain all the data structures needed to set up the problem. Our
Basis Language input file will contain statements to set up the initial values, a call toxyz , and
then statements to print or plot the results.

7.2 Variable Description File

This file wve.v declares the parametersnz and nt to set the size of a mesh, and then some
derived sizesneq , nb , nbf . It contains one group namedVars which contains 8 variablesphi ,
phib , dz , dt , v , tau , cin , andcout , and two scratch arraysa andb. To test the algorithm we
will set values ofphib , dz , dt , v , andtau , and then callxyz with test argumentsalpha and
beta . The results will be inphi , cin , andcout . Default values fordz , dt , v , andtau are
data-loaded.

wve
{

31

nz=100 # number of zones
nt=100 # number of timesteps
neq=nz*nt
nb=nz+1
nbf=2*nb+1
}
******* Vars:
phi(nz,nt) [Number/cm] # number density
phib(nz,nt) [Number/cm] # boundary condition
dz /1./ [cm]
dt /1./ [sec]
v /3.14159/ [cm/sec]
tau /1./ [sec]
cin [Number] # number in
cout [Number] # number out
a(neq,nbf) real #work space needed by algorithm
b(neq+nbf) real #work space needed by algorithm
xyz(alpha, beta) subroutine

#This declaration lets Basis know how to call xyz

7.3 config input File

This file, Configure , besides declaring the wve package, causes Basis to initialize wve imme-
diately on startup and personalizes the code name and prompt.

package wve = "Test my algorithm"
firstpkg = wve
codename = "Wave"
cprompt = "Wave> "

7.4 mio input Files

At this point we have prepared three files:wve.v , wve.m , and Configure . To make the
program usingmio , we first need to runmio after preparing its input files.

Themmminput files are pretty simple.

WHAT GOES HERE

That tellsmio that we wish to make a program, not just a package, in this directory. Second, we
prepare thePackage file:

PKG wve
SM=wve.m

32 Chapter 7. A Complete Example

VDF=wve.v
Real4 #let reals be 32 bit on workstations

Typically we would use the-g option while debugging:

BASIS_ROOT/bin/mio -g

Recall thatBASIS ROOThere stands for the directory holding the Basis distribution. We might
also have used the-nog option tommmto load the program without graphics, or-V to produce
verbose makefiles.

7.5 Compiling and Loading

Let us assume the system is HP700.

make all code

mmmwill have created anHP700 subdirectory into which all the output of the compile/load
process is placed. mppl errors in precompilingwve.m , for example, can be found in
HP700/wve.f.err . Compiler errors in compilingwve.f will be found in wve.err . The
program itself is inHP700/code , any load errors inHP700/code.err , and a load map is in
HP700/code.map .

When the program is run the input can be interactive, or, in this example, in a file.

HP700/code read myprob / 5 6

wheremyprob is a file containing the Basis commands:

integer i,nz=100,nt=100
boundary conditions

do i=1,nz
phib(i,1)=exp(-4.*(i-1.)**2/(nz-1.)**2)

enddo
do i=1,nt

phib(1,i)=exp(-4.*(i-1.)**2/(nt-1.)**2)
enddo

try calling xyz
call xyz(1., 2.)

make EZN contour plot of phi
plot phi, iota(nz), iota(nt)
end

Without theENDstatement, control would return to the terminal after the statements inmyprob
had been processed.

7.5. Compiling and Loading 33

7.6 Changing to Dynamic Memory

We used parametersnz andnt to set the size of the mesh. It is nicer to use dynamic memory so
that these sizes can be changed at will. The main changes are to the variable descriptor file:

wve
******* Vars:
nz /100/ #number of zones
nt /100/ #number of timesteps
neq #set in generate
nb #set in generate
nbf #set in generate
phi(nz,nt) _real [Number/cm] # number density
phib(nz,nt) _real [Number/cm] # boundary condition
dz /1./ [cm]
dt /1./ [sec]
v /3.14159/ [cm/sec]
tau /1./ [sec]
cin [Number] # number in
cout [Number] # number out
a(neq,nbf) _real
b(neq+nbf) _real
xyz(alpha, beta) subroutine

#This declaration lets Basis know how to call xyz
makeroom subroutine

This routine allocates space for everything.

This file declares dynamic arraysphi , phib , a, and b. The algorithm to be tested requires
boundary values in the arrayphib . The idea is to read the input, which gives values fornz and
nt , calls makeroom to allocate space for the dynamic arrays, computes values forphib , and
then takes one step to calculate the answer.

To do this, we have madenz , nt , neq , nb , andnbf into variables, and put underscores in front
of the types ofphi , phib , a, andb. We add to ourmppl source filewve.m a new subroutine
makeroom to allocate the memory using the Basis facilitygallot , and add a description of
makeroom to the variable descriptor file as shown above.

integer function makeroom
Use(Vars)

integer gallot
external gallot
neq=nz*nt
nb=nz+1
nbf=2*nb+1
if(gallot("wve.Vars",0) = ERR) return(ERR)

34 Chapter 7. A Complete Example

return(OK)
end

We change our input file to set values fornz andnt , call makeroom to allocate storage, then set
the values ofphib , call xyz , and finally plot the result as before.

integer i
set desired nz and nt, then allocate space

nz = 50
nt = 60
makeroom

boundary conditions
do i=1,nz

phib(i,1)=exp(-4.*(i-1.)**2/(nz-1.)**2)
enddo
do i=1,nt

phib(1,i)=exp(-4.*(i-1.)**2/(nt-1.)**2)
enddo

run problem
call xyz(1., 2.)

make contour map of phi
plot phi,iota(nz),iota(nt)
end

7.6. Changing to Dynamic Memory 35

36

CHAPTER

EIGHT

Compiling Basis Packages

Once you have constructed a variable description file and a source file, you are almost ready to
compile and load with the Basis run-time system.

You need to know where your Basis distribution is. Frequently, it is in

/usr/local/apps/basis (on LC systems)

In what follows, we will refer to this directory asBASIS ROOT.

Other files of importance include:

BASIS ROOT/bin contains Basis executables, and may be added to your path.

BASIS ROOT/man contains Basis manual pages, and may be added to yourMANPATH.

BASIS ROOT/lib contains Basis’s binary libraries

8.1 Single Package Example

For starting purposes suppose you have a non-Basis code which consists of three files, a.f, b.c, and
c.h in a directory /foo. So if you

cd ˜/foo
ls

you will see:

a.f b.c c.h

When you compile and link your code you get an executable called foo.

The steps to turn this in a Basis code are:

37

1. Write a VDF

2. Setup the configuration management

(a) Setup the builder directory

(b) Write a config file

(c) Write the Package file

(d) Write the Configure file

(e) Run mio

3. Build the code

4. Making changes

Write a VDF Following the outline in the chapter “Writing Basis Packages”, write the variable
definition file which will be a part of the interface of your code to Basis. For the rest of this
example it will be assumed to be called foo.v.

Convert .f files to .m files Following the outline in the chapter “Writing Basis Packages”, convert
your Fortran files, .f to their .m counterpart. Many times, this is a simple matter of replacing
your common blocks with analogous statements in a VDF file, and renaming the remaining
Fortran file. This makes connections between your routines and the Basis interpreter and
other Basis facilities. In our example then there will be a.m instead of a.f.

Setup the configuration managementA Basis code is structured in such a way that it can take
advantage of the various services which Basis offers. It is also structured to be portable and
to easily support building on many, different hardware platforms simultaneously.

Setup the builder directory Make a directory calledbuilder and go to it. In the builder directory
you will keep your config files and any scripts you want to use to control compilations,
testing, installations, and so on.

Write a config file Following the section of the mio man page about global config files write one
or more config files for your code. You will probably want to have at least one config file
per hardware/os platform you build on. You may want tohave different config files to build
versions of your code with profiling or alternative feature sets.

Here is an example which might be apropriate for your codewhen built on a Linux box. Let’s call
this config file “lnx”.

#
LINUX - basic LINUX Basis configuration
#

ProgName = foo

38 Chapter 8. Compiling Basis Packages

Packages = .

Packages = .
PackFiles = ${BasInc}/ezn.pack
RootInst =

AUXLibs = -lezn
SYSLibs =

FGroup : 1 {
use(pgi_f90)
Flags = -Mrecursive
Optimize = -O2

}

CGroup : 1 {
use(gnu_cc)
Flags = -Wall
Optimize = -O3

}

In this config file the code will be named foo and it will be using the Basis EZN graphics package.

8.1.1 Write the Package file

In your packag’e directory

˜/foo

you will write aPackage config file for you code.

Here is aPackage file which might be a start for the files described at the beginning:

PKG = foo
SC = b.c
SM = a.m
VDF = foo.v

Notice the references to the files, a.m and foo.v mentioned earlier.

8.1.2 Write the Configure file

Next you will want to write a file calledConfigure which will give Basis some details of how
you want your code to be linked and how it will look at run time.

8.1. Single Package Example 39

Here is a simple file for our foo code, which sets the banner for the code start up and the code
prompt:

codename = Foo
cprompt = "FOO> "

8.1.3 Run mio

At this point you can actuall runmio to ”configure” your code system. You are not yet ready to
actually compile anything, but you can have mio do its jobs and be ready to compile.

cd builder

Runmio in the builder subdirectory to get the entire system configured to build.

mio -a lnx

Here we told mio to use the lnx config file described earlier. When mio completes there should be
a set of directories

˜/foo/dev/linux/lib
˜/foo/dev/linux/bin
˜/foo/dev/linux/include
˜/foo/dev/linux/log
˜/foo/dev/linux/man/man1

These contain files that you will build/install in the next step.

8.1.4 Build the code

Now we are ready to compile and link the code. Whenmio finished it left a script in each directory
mentioned inthe config file (in this case in lnx). So now do the following:

cd ..
pck build

When this is done you should find an executabl e file called foo (which is what was specified) in
the bin directory. That is

˜/foo/dev/linux/bin/foo

should be the executable. You should also see an archive file

˜/foo/dev/linux/lib/libfoo.a

which contains a.o, b.o, and foo.y.o.

40 Chapter 8. Compiling Basis Packages

8.1.5 Making changes

As you develop your code you will make changes. To recompile and relink just do:

pck build

If you want to do a clean, from scratch, build do the following:

pck remove
pck build

This should get you started Consult the other Basis documentation for more details on the individ-
ual pieces mentioned here.

8.2 Adding a Second Package

Suppose your code now grows and you want to reorganize it into two or more packages. Suppose
packages a and b are made. Package a contains foo.v, a.m, b.m, c.m and package b contains x.c
and y.c.

8.2.1 Reorganize the directory structure

Before foo contained

foo/Configure
foo/Package
foo/a.m, foo.v, b.c, c.h
foo/builder/
foo/dev/

Now make directories for both packages and move files around so that foo looks like:

foo/a a
foo/b
foo/builder
foo/dev

where

ls ˜/foo/a

8.2. Adding a Second Package 41

gives

Configure Package a.m b.m c.m

and

ls ˜/foo/b

gives

Package c.h x.c y.c

8.2.2 (Re)Write the Package files

You will write Package files appropriately for each package. TheConfigure file goes with
package a and the main executable foo will be built there.

8.2.3 Modify the config files

Now you have to change the config files you have. For example the lnx config file becomes:

#
LINUX - basic LINUX Basis configuration
#

ProgName = foo
Packages = b a
PackFiles = ${BasInc}/ezn.pack
RootInst =

AUXLibs = -lezn
SYSLibs =

FGroup : 1 {
use(pgi_f90)
Flags = -Mrecursive
Optimize = -O2

}

CGroup : 1 {
use(gnu_cc)
Flags = -Wall
Optimize = -O3

}

42 Chapter 8. Compiling Basis Packages

Notice the change in the Packages specification. Also notice the order.Package is the one in
which the link step will be done so it must come last.

8.2.4 Reconfigure

Runmio to reconfigure all the packages as well as the main code.

cd ˜/foo/builder
mio -a lnx

8.2.5 Rebuild

Now to build the code do the following:

cd ../b
pck build
cd ../a
pck build

8.2. Adding a Second Package 43

44

CHAPTER

NINE

Writing Basis Packages

9.1 Basis Packages

A Basis package is a set of modules that perform some calculation. A program consists of one
or more packages together with the Basis run-time routines. This chapter explains how to write a
Basis package. You will learn how to write a variable descriptor file, in which you describe your
variables and functions so that Basis can access them, and how to write your source.

The Basis Package Library includes a packagectl implementing a simple generate-step-finish
model, which you may use or not as you wish. If you do not includectl as a package in your pro-
gram, you will need to list the functions you wish to be able to execute in your variable description
file.

To begin a new package, select a two- or three-letter lower case package name. We usepkg in the
examples in this manual. The length of a package name is limited to three characters. (This limit
is a consequence of the historical limits on the lengths of Fortran external names.) As many as 75
packages can be loaded together into a single code.

To avoid conflicts with the standard packages available with Basis, do not use these names for your
package:

par, rt, bgr, bdp, pgs, edt, ezn, ezd, rng,
bes, ctl, fft, fit, hst, pfb, svd, tim

45

46

CHAPTER

TEN

Precision and Portability

10.1 Description of the Problem

Precision problems arise for a number of reasons. For one thing, FORTRAN’s implicit typing
(variables beginning with i-n are integers, all others are reals) has created a couple of generations
of programmers who have not acquired the laudable habit of declaring all variables. This perhaps
might not be such a big problem were it not for the fact that a real, for instance, is sometimes 32
bits long and sometimes 64 bits long. Thus even those individuals who declare all variables will
have inconsistent results from one platform to another. For portability and consistency of results
among different platforms, it would be nice if reals were always the same length.

Another problem can be caused by using intrinsic function names that are specific to certain types
of arguments and results, rather than generic, e. g.,MIN0 (integer), AMIN1 (real), and
DMIN1 (double precision). Even if you could force all reals to be 64 bits long (say), a
code still might contain calls toAMIN1 rather than the genericMIN, which would cause loss of
significance or an argument type mismatch on 32 bit machines.

Fortunately the Basis team has provided solutions for these headaches.

10.2 Specifying Precision in the Source

mppl accepts an option-r8 which causes it to produce standard Fortran output in which the
default meaning of the typereal will be eitherreal or doubleprecision (depending on ar-
chitecture), so that the result is guaranteed to be a 64-bit quantity. The Fortran 90-like kind-selector
syntaxreal(Size4) can then be used to force a 32-bit quantity where desired, assuming that
32-bit reals are available on the target architecture. Likewise,mppl makes the default type of
literal real constants 64-bit, and the syntax1.0 Size4 can be used to override this. Full details
are available in themppl man pages.

By default,mio uses the-r8 option onmppl input files. To determine themppl option yourself,
add a line with the wordReal4 or Real8 to thePackage file.

For random numbers use theranf() function, which produces an identical random number
stream on all platforms.

47

Variables which are not declared are implicitly typedreal by the Fortran compiler if they have
names beginning with the lettersa-h , o-z . mppl will not declare such variablesdouble
precision where appropriate, leading to a loss of precision in expressions or to function pa-
rameter/argument mismatches. You must either declare all variables, or insert the statements:

implicit integer(i-n)
implicit real(a-h,o-z)

into each routine with undeclaredreal variables. A compiler flag is often available to detect unde-
clared variables. In lieu of inserting such statements, you may wish to use themppl Prologue
macro which you can define to be the statements above.

10.3 Making Your Source Portable

Given a source filefoo ,

BASIS_ROOT/bin/generify foo >bar

produces filebar in which each Fortran intrinsic function reference has been replaced by its
generic form, such as changingamin1 to min . Without such changes, a loss of precision will
result when using the-r8 facility.

The default interpretation of an argument to a function as described in a variable description file is
that an untyped name is typedinteger or real by the Fortran naming convention. In a program
in which the function is being compiled on a 32-bit machine under the influence of the-r8 option
to mppl , a function argument implicitly typedreal will be 32 bits long. on the other hand,
when the variable descriptor file is processed, an error would occur in the default case, because a
variable either implicitly or explicitly declared real becomesdouble precision . So, be sure
to explicitly type such function arguments (and results)real , both in the VDF and in FORTRAN,
as in:

foo(x:real, y:complex, z:integer) real function # in the VDF

and in the FORTRAN

real function foo (x, y, z)
real x
complex y
integer z

48 Chapter 10. Precision and Portability

mppl will take care of ensuring that both instances ofx will be the same length, which would not
have been the case ifx had not been explicitly declared.f , too, had to be explicitly declared in
this example.

It is worth repeating that if what you want is really a 32-bit real (and your architecture supports it)
then you need to declare itreal(Size4) . If you want all of your reals to be 32 bits, the easiest
thing is to put theReal4 statement in yourPackage file, run mio (it will producemppl rules
with the-r4 option), then do amake clean followed by amake all code .

10.3. Making Your Source Portable 49

50

CHAPTER

ELEVEN

Fcc: Fortran Calls C

51

52

CHAPTER

TWELVE

Mac and the Variable Description File

A variable description file describes common block variables and Fortran subroutines and func-
tions. The Basis System routinemac converts this file into routines which describe the variables
and functions to the Basis Language interpreter. These routines are called when your program
initializes, and enter the variables and functions in the Basis database, together with important
information such as type, dimensions, etc. So, after describing a variable namedx in a variable de-
scription file, when the resulting program executes,x can be used interactively in Basis Language
statements. You can also describe variables which are used in MPPL source files but not known
to the Basis Language (so-called hidden variables). Furthermore, the comments in the variable
description file may be retrieved at run-time.

12.1 Sample Variable Description File

The following sample file may be enough to allow you to write your variable description file
without reading the rest of this section in detail. You write a separate variable description file for
each package you create.

pkg
this is a comment about the pkg package
more comments go here (such as revision history);
next comes the parameters enclosed in a set of optional braces,
then the first group which we name Geometry
the second group called Switches, and the third, Routines.
{
My_parameter = 2200
N = 10
NP1 = N + 1
}

***** Geometry:
#Variables which describe the geometry of the machine

53

x(N) real [cm] /N*0./ # x holds lengths of boards

xlength [m] /42.0/
#length of machine, defaults to 42 meters

ws(My_parameter) #workspace

bigws(1) _real # dynamic work space
gets allocated in generator

******* Switches:
option switches
nails integer /NO/ # YES means use nails, not string
gamma integer /YES/ # YES means include gamma rays
****** Routines:
Fortran routines we can call
alpha(a:integer, b:real) subroutine # sets model parameters
integ(f:external, a:real, b:real) real function

#integrate f from a to b

12.2 Structure of the File

The variable description file consists of a header followed by the description of one or more groups.
The header contains, in the following order, optional comments, the name of the package, optional
comments, and an optional section that defines symbolic parameters. The parameter section may
be enclosed in braces as above, but this is not required as it was in older versions. Each group
consists of a group information line, comments about the group, and then a series of one or more
variable declarations.

12.3 Parameters

If desired, you can define symbolic constants to be used in your package after the package name.
These parameters are typically constants or sizes of things. Parameters are global to all modules in
the package defined by the variable descriptor file, more analogous to C macros defined in header
files, rather than FORTRAN parameters. (Again we emphasize that the braces are optional, but we
shall include them in all of our examples.) The syntax is:

{
parameterlist
}

whereparameterlist consists of a series of comma- or blank-separated parameter definitions,
of the form

54 Chapter 12. Mac and the Variable Description File

Parameter_name1 = value1, Parameter_name2 = value2

or

define Parameter_name value

Parameter names must begin with a letter and can be 1 to 32 characters long and include under-
scores. Parameter values can be integer, real, octal, or hexadecimal constants, strings quoted in
either double or single quotes, or anything enclosed in square brackets. An octal constant is an
integer constant followed by the letter ‘b’. A hexadecimal constant is an integer constant followed
by the letter ‘x ’.

Parameter values can also be defined using arithmetic expressions that contain constants and names
and the operators plus(+), minus(-), multiply(*), divide(/), and exponentiate (**). In addition,
the operatorsinteger , real , andcharacter are available to coerce types. The coercion
operators have the highest precedence. Here are some examples of parameter definitions.

{
NMAX = 32 #you can include comments
NMAX_plus_1 = NMAX + 1
NMAX2 = NMAX/2
Root2 = 1.414159 #sqrt(2.)
Root2_over_2 = (Root2)/2.
Greeting = "Hello World"
Reply = ’Get Lost’
define MAXCASE 400
define Prologue [implicit automatic(none)]
One = integer Root2 #Result is 1
FNMAX = real NMAX #Result is 32.0
SEVEN = 7
HALFSEVEN = real 7 / 2 #Result is 3.5
THREE = integer(real 7 / 2) # (or just 7/2)
WORDS = character Root2 + 1 #Result: string "1.414159e00+1"
}

Basis will calculate the value of each parameter. (If a parameter expression involves a name which
is not a previously defined parameter, the parameter will be defined only in string form; no warning
message will be issued.mac assumes that the name will be resolved later bymppl .) The result
of a parameter evaluation will be integer if all components are integer, or real if any component is
real or if any component is raised to a negative power, integer or not. You may use the parameters
subsequently in the variable description file and in your source program.

Any line in the parameter section, or indeed, anywhere in the variable descriptor file, that begins
with a percent sign (%), is copied directly into themac output filemacpkg with the percent sign

12.3. Parameters 55

removed. This enables you to insert complicated macros whose evaluation will be performed by
mppl , or to insert regular FORTRAN statements into your groups.

The parameter section also has a limited facility for declaring user-defined types. There is a section
later in the chapter describing this feature.

12.4 Group Information

Divide your variables into sets, called groups. A group should contain variables that are often used
together or that belong together in natural ways, such as those describing some physical state.

A new group in the description file begins with a line containing three or more asterisks, or the
reserved wordGroup , or both, followed by the name of the group, then an optional series of one
or more words that describe the attributes of the group, and ending in a colon. The general form is,

**** Groupname scope attributelist:
comments

Groupname must be alphanumeric and begin with an upper-case letter. Underscores may be used
after the first character. The name is followed by an optional scope declaration and an optional
arbitrary list of words called “attributes”. Finally, the list of scope and attribute words is terminated
with a colon. The list may extend over several lines and be separated by blanks or commas.

The group description can include one or more comments. A comment is everything from a pound
sign (#) or dollar sign ($) to the end of the line. Normal comments begin with a pound sign;
comments that begin with a dollar sign are not output by any of the programs that access the
description file, and are thus private remarks.

12.4.1 Scope

If no scope word is specified, Basis creates common block names for the variables in this group.
The variables are “visible”, that is, they will be known interactively to the Basis Language at run-
time. These defaults can be changed by declaring the grouplocal , or by specifying the common
block name explicitly. Using the wordhidden hides the variables from the Basis run time system.
Here are the details of these choices:

local designates that this group of variables is local to the subroutine in which they are used.
They are not placed in common blocks, so the same groupUse’d in another subroutine will
not be the same variables. This group of variables is declared in a subroutine using theUse
macro in the usual way, but local variables do not get entered into the run-time database
manager; they are not known to Basis at run-time.

/label/ designates a label for the common block to be generated for this group. The label name
is enclosed in slashes./label/ allows you to declare common blocks that are used in software

56 Chapter 12. Mac and the Variable Description File

supplied by others, such as mathematical packages. See, however, the cautions on labeled
common below.

hidden The wordhiddenmakes this group of variables unknown to the run-time system. The
user will not be able to set or display any variables in the group interactively. The word
hidden may be combined with a common block label.

compileas(spec) (spec)is used to give the compiler and Basis differing views of the di-
mensioning of the dynamic variables in a group. This feature is described below since it is
essentially a variable description. It is allowed as part of the group header to indicate that it
applies to all variables in the group.

language "LANG" This specification tells Basis that you want to access the variables in this
group from code written in the language ”LANG” (which can be C, C++, or FORTRAN–
which is the default, of course). If you specify C or C++, Basis will create so-called ”glue”
code which will allow C or C++ code to access these variables. To access functions writ-
ten in C or C++ from FORTRAN code or Basis, put their descriptions in groups with the
“ language "C" ” or “ language "C++" ” specification. Please refer to the man pages
for mac, mio , andFcc for complete details.

When you use/label/ :

1. Do not mix character and non-character variables in the same common block. This is not
Fortran standard, even though older compilers, likef77 support the mixture.

2. Be sure that the variables are listed in the group in the exact order in which they are to appear
in the common block.

3. With certain compilers, and on some 64-bit architectures, alignment problems are likely
to arise if variables of different size are declared in the same common block. If you do
not specify/label/ , Basis will create separate named common blocks for variables of
different type, thus eliminating this problem.

12.4.2 Attributes

You may specify “attributes” for variables. An attribute is simply a word, beginning with an upper-
or lower-case letter, including digits, underscores, and letters, up to 24 characters in length. An
attribute declared for a group applies to all the variables in that group (unless overridden in the
description of the variable). The BasisLIST command lists the attributes of a variable. The
subroutinertcattr can be used to change the attributes of a variable at run-time. The routine
rtattr tests whether or not a variable has a given attribute.

Thus, attribute words at the simplest level can be used simply as documentation. Basis has facilities
which make it easy to do something to all variables having a given attribute. Four such routines
are supplied:

12.4. Group Information 57

• attredit(jout,attribute) writes the values of every variable having the given
attribute , onto the file connected to unitjout .

• attrlist(jout,attribute) lists every variable withattribute .

• rtattr(name, attribute) returnsTRUEif name hasattribute .

• rtcattr(name,attrstring) changes the attributes of name as specified by
attrstring .

Section [Ref: wrattrser] “Writing Attribute Services” discusses how to write similar facilities of
your own.

12.5 Variable Descriptions

Following the group description line and any comment lines, you can declare one or more variables.
The name of each variable must begin with a lower-case letter. A variable description begins with
the name of the variable followed by optional information about the dimension, type, units, initial
value, and attributes in any order:

variablename(dimension) type [units] /initialvalue/
+attribute -attribute "varname" #comment

where

(dimension) is a dimension for the variable, enclosed in parentheses, e.g.,(100) produces an
array of size 100. (See further discussion in section [Ref: dynamic-dimensioning] “Dynamic
Dimensioning.”)

type specifies the type of the variable, using a Fortran type such as real, double or complex,
or a symbolic type. An underscore preceding the type name (type) declares a pointered
variable of that type (see section [Ref: dynamic-dimensioning] “Dynamic Dimensioning.”)
If the type is omitted, it is inferred fromvariablename integer if the name begins with
i throughn inclusive, real otherwise. (Note: Cray’sCFT77 does not presently handle
dynamic character arrays.)

[units] gives the units of the data contained in this variable, enclosed in square brackets. For
example,[cm] means this variable contains data in centimeters. This information is used
for documentation and labeling purposes only.

/initialvalue/ is a Fortran data specification, as in/4.333/ . The user encloses
initialvalue in slashes as shown. Initializations that are awkward or impossible to
handle in this way should be done in subroutinepkginit . If the variable is dynamic, the
data specification if present must be a scalar and must be of the correct type. This value is
then used byallot andchange to initialize the variable’s contents when space is obtained
for it.

58 Chapter 12. Mac and the Variable Description File

+attribute gives the variable the attribute whose name follows the plus sign. If the group to
which the variable belongs has a certain attribute the variable has that attribute by default.
This feature allows you to give a variable an attribute in addition to any that it inherits from
the group.

-attribute removes the attribute whose name follows the minus sign. This allows you to give
a group a certain attribute but exclude some members of the group.

"varname" The"varname" generates an equivalence statement between ‘variablename ’
and ‘varname ’.

There are some other special keywords which can be added to a variable description:limited ,
compileas , function , subroutine , andbuiltin . These are discussed next.

12.6 Limiting Array Sizes

limited(dimension) Authors may add the keywordlimited to the description of any
variable in the variable description file. This will cause a call tosetlimit , described
below, to be made when the package is initialized. The effect of this call is to cause the
length of a variable to be recalculated whenever the variable is referenced by Basis.

The keywordlimited may be followed by a dimensioning string. This will be the string
passed tosetlimit . If such a string is not given, the dimension string for the variable will
be used.

Here is an example of using thelimited keyword:

n integer
this integer controls the lengths of x and y

x(100) limited(n)
x behaves at all times as if n long;
error if n>100, but Basis does not check this.

y(n) limited _real
#y dynamic, behaves as if n long (but allot/change
#knows the actual size)

The intended use of this facility is to limit the sizes of arrays which are only partly full, and
to allow Basis to access dynamic arrays whose actual length is being managed by the user
rather than through the Basis routinesallot , change , andbasfree .

setlimit("name", "(dimension)") can be called from user or compiled code. The
name may include a package specifier. The parentheses in the second argument are required.
The restrictions on dimension are the same as for regular dimensioning strings: the contents
of the string must consist of names, constants and operators which can be evaluated using
name’s database. The allowed operators are+, - , * , / .

12.6. Limiting Array Sizes 59

12.7 Compileas Option

compileas(dimension) Authors may add the keywordcompileas to the description of
any dynamic variable in the variable description file.

The keywordcompileas must be followed by a dimensioning string. This will be the
dimension used to declare the variable in Fortran. The ordinary dimensioning string will be
used by the Basis interpreter.

Thecompileas specification can also be given in the attribute section of the group header,
in which case it applies to all dynamic variables in the group. Should any of those variables
also contain acompileas specification, the dimensioning string on a variable applies to
subsequent variables in the group.

12.8 Functions

It is possible to make the compiled functions in your program executable interactively by the user.
All you do is add the name of the function and its calling sequence to your variable description
file. The format is the same as for a variable, except that the “dimension ” information becomes
the calling sequence, and you add the word “subroutine ”, “ function ”, or “builtin ”.

function or subroutine The initial letters of the names of the parameters listed in the
calling sequence determine the type of argument expected in that position, unless the
name is followed by a colon and then a typeinteger , real , double , complex ,
logical , string , or external (The typestring means an input variable of type
character*(*) ; The typeexternal means the argument must be the name of another
compiled function which has also been declared in some variable descriptor file).

The type of the function itself determines what Basis expects as a return value, and can be
real , double , integer , complex , logical , or character*(n) wheren is an
integer. Subroutines have no return value and the type, if given, is ignored. We recommend
explicitly typing real arguments rather than relying on the first letter convention. This is
required when using the “Real8 ” facilities in mio or mppl .

A frequent problem is that there may be a great many arguments to a function, so that the
calling sequence must be described over more than one line. Simply break the definition
after a comma to continue it to the next line.

Here is an example. The function gamma expects two real arguments and a complex argu-
ment, and returns a real value in grams/cc:

gamma(a,b,w:complex) real function [g/cc] # comment

At run-time, the arguments a user passes togammainteractively will be checked for type
and converted to the correct type if possible. Arguments are not checked for length. The
user can also pass an argument by address by using an ampersand in front of the argument
as in the following example:

60 Chapter 12. Mac and the Variable Description File

call gamma(\&x, \&y, 7)

The function gamma will be called with argumentsx , y , and 7. The argumentsx andy will
be called by address and therefore not checked for type. The third argument, 7, is not of the
correct type so it will be changed to the complex value(7.0,0.0) and passed by value.

When arguments are passed by value there are no side effects unless the module being called
modifies some variables in common blocks. That is, if the function modifies one of its
arguments, it will be modifying a copy of the actual argument specified, which will then be
thrown away. So it is important to pass an argument by address if it is an output variable.

builtin This keyword declares a built-in function. In this case the dimensioning string is only
used for documentation. The units string is used to declare the number of arguments ex-
pected. This can be a single integer or a range such as[1-5] . A built-in function can handle
a variable number of arguments and can return an array, while regular compiled functions
or subroutines must have a fixed number of arguments. However, built-in functions have to
be written using special facilities. These are described in section [Ref: wrbinfxns], “Writing
Built-in Functions”.

12.9 Making Arguments Optional

The parameters listed in the calling sequence are normally separated by commas. If one of the
commas is replaced by a semicolon, or the parameter list begins with a semicolon, the arguments
following the semicolon are optional. When the user calls the compiled function from Basis with
fewer than the maximum number of arguments, the omitted optional arguments are supplied by
Basis. The symbolic integerDEFAULTcontains the value passed for numeric arguments, the
default logical isFALSE, and the default string is a blank character. Note that you mustnever
assign a value to the formal parameter representing an optional argument. Note also that this
doesn’t mean that you can omit arguments when calling from Fortran. Here is an example of a
routine which has an optional scale factorscale which is to default to 1.0. The source is:

real function scaled(x,scalein)
scalein is optional input, never assign to it

real x, scalein, scalef
if(scalein == real(DEFAULT)) then

scalef = 1.0
else

scalef = scalein
endif
return(x*scale)
end

and the entry in the variable descriptor file is

12.9. Making Arguments Optional 61

scaled(x:real; scaleg:real) real function
#returns x*scale, scale defaults to 1.0

12.10 Commenting the Variable Description File

Comments may appear anywhere in a variable description file after the first line that contains the
package name. Comments that follow group or variable descriptions are available to the user of
Basis at runtime.

The first# comment is used in Basis to label the variable in queries or printouts, a$ for develop-
ment comments. Here are some sample variable descriptions that include comments:

x1(200) [cm] #zone descriptions

x2 integer (4) $this should be changed to 6!
[pounds] #weights of contributors to this package.
#The heavier the contributor the more weight given
#their terms in the least squares solver?

file3 Filename /"taradim"/
#File containing geometry specification.

Herex1 is a real array of length 200 containing information in centimeters,x2 is an integer array
of length 4 containing information in pounds, andfile3 is of typeFilename and is given the
initial value "taradim" . Whenx1 is displayed, it will be labeled “zone descriptions”.x2 will
be labeled “weights of contributors to this package”, not “this should be changed to 6!” since the
latter begins with a$.

All variable descriptions are input free-form, but each comment must be complete on one line.

Note also that

x(200) [sec] #x is a nice variable /22./ WRONG!

will not give x(1) the value 22. because comments extend to the end of a line. Dimension strings
and initial value specifications can be carried over more than one line by making the last character
on a line a comma. This is usually only necessary for dimensioning strings in the case of functions
that have long calling sequences. There is no limit (except that of prudence) on the total number
of characters for any dimension string or initial value specification.

Succeeding groups have the same form: one or more asterisks (or reserved wordGroup) to warn
of the start of the group, the group name, group attributes, a colon, optional comments, and then
one or more variable descriptions.

Users frequently ask whether they can use FORTRAN-styleparameter statements in groups.
This is one place where the ‘%’ notation comes in handy. Putting a ‘%’ in column 1 causes mac to

62 Chapter 12. Mac and the Variable Description File

ignore the statement, except to strip off the ‘%’ sign, and pass it on tomppl and FORTRAN for
processing. For example:

***** Mygroup :
% parameter (N = 25)
x(N) real

Theparameter statement will be passed along tomppl and FORTRAN. Sometimes users prefer
FORTRAN parameter statements because of FORTRAN scoping rules. The parameter will
only be known in the FORTRAN modules which ‘Use’ the group. Basis-style parameters declared
at the top of the variable descriptor file are known globally.

12.11 User Defined Types

A limited facility for user defined types is available. An author can declare a word to stand for
a symbolic type by including ausertype statement anywhere after the package name but be-
fore the first group.usertype definitions may be interspersed with parameter definitions. The
usertype statement has three forms:

usertype name
usertype name definition
usertype name -character

All of these forms tellmac thatname is a type. If a definition is given, then it is used for declaring
the variable. If no definition is given, it is assumed this definition is supplied elsewhere (such as in
a file which will be included whenmppl is run). The last form letsmac know that said definition
makes name a type ofcharacter*(something) ; such types must be handled specially by
mac so it needs to know. A definition may involve another, previously defined, user type.

The usertypesAddress , Filename , Varname , andFiledes are built intomppl andmac.
These are used for variables which hold pointers, file names, variable names, and I/O connectors,
respectively. We especially urge you to useFilename as the type for any variable which will
hold the name of a file. Basis will make sure you get the right size for each system.Varname
should be used for a string variable which is to hold the name of a Basis variable.

Example:

#a package that includes usertypes
xyz #xyz package developed by me
usertype boolean logical #boolean now a synonym for logical
usertype radoption character*24
{

n=7, m=8

12.11. User Defined Types 63

}
version 1.0
**** Group1:
x integer
y(n,m) boolean
opt1 radoption

This facility has some minor limitations. In particular:

usertype xxx # ok by itself
usertype yyy real*8
{

define xxx real
}

is allowed, (although redundant, since it could be done in a singleusertype statement), but you
can only define a macro to be a type if it has been previously declared ausertype .

Dynamic arrays with a user-defined type likexxx above may be declared by usingxxx as their
type; declaring an identifier as a usertype automatically declares the same identifier preceded by
an underscore.

12.12 Architecture-dependent information

It is possible to put information in your variable descriptor file which will only be processed for
certain specified architectures. For example:

SYSTEM SUN4 HP700 SOL
x(10,20) real(Size8)
SYSTEM XMP YMP CRAY C90 UNICOS
x(10,20) real
SYSTEM ALL
...

specifies that on Sun workstations running SunOS or Solaris, and on HP700 workstations, the
variablex will be a size 8 real (i. e., double precision), while on various Crays it will be a real.
Statements following theSYSTEM ALLwill be processed on all architectures. In general,ALL is
the default; aSYSTEMstatement with a list of architectures causes the statements following (until
the nextSYSTEMstatement, if any) to be processed only for the listed architectures. One may also
have statements such as

SYSTEM +RS6000 -AXP

64 Chapter 12. Mac and the Variable Description File

which addsRS6000 to the list of architectures for which the following statements are processed,
and removesAXPfrom that list. The statement

SYSTEM ALL -SUN4

causes statements following to be processed for all architectures except Suns running the SunOS.

12.13 Interfacing with C and C++; The Fcc Utility

12.13.1 The process is automated

As previously noted, you can interface with C and C++ automatically, using thelanguage di-
rective. Let us discuss C first. If you declare a group aslanguage "C" , then any variables
declared in that group will be accessible from C language routines linked with your code, and
by the same (lower case) names. Whenmac processes your code, it will automatically produce
C header files and source files which declare anextern struct equivalent to the FORTRAN
common block, and C variables which are initialized to point into thestruct . For functions de-
clared in alanguage "C" group,mac will produce an interface-defining file for theFcc utility
described later in this section.Fcc then automatically produces so-called “wrapper” functions;
these are C functions which are the ones actually called by Basis. Their purpose is to convert pa-
rameters to ones that C will recognize (e. q., convert FORTRAN strings to C strings), and then to
call the C routines. FORTRAN names of functions called from Basis should be all lower case; the
corresponding C functions should be mixed case, but otherwise be the same name. (Alternatively,
the user may declare an alias for the FORTRAN name, in which case the alias will be taken as is
to be the name of the C function.)

language "C++" groups are handled similarly, except that mac createsextern "C"
struct s for variables so that names will not be mangled in the usual C++ way. And C++ func-
tions to be called from Basis need to be declaredextern "C" for the same reason. For more
complete details, the reader is referred to themac man page.

Themac utility supplies a second way of interfacing Basis with C++ code (but not C), which also
allows the C++ code to call FORTRAN functions. This is described in the following section.

12.13.2 The -c command line option for mac

While the language directive applies to individual groups only, the-c command line option
causes an interface to be created for an entire variable descriptor file. It has the additional capability
of providing a way for C++ code to call FORTRAN functions. However, the interface is somewhat
less convenient, and requires the use of a special library of array classes which allow C++ to access
FORTRAN arrays in the same way that FORTRAN does.

C++ functions to be accessed from Basis are declared with special reserved wordscsubroutine
(for void C++ functions) orcfunction (if they return a value).maccreates a class whose name

12.13. Interfacing with C and C++; The Fcc Utility 65

is the same as the package belonging to the variable descriptor file, for example “pkg ”. All C++
functions to be called from Basis must be member functions of classpkg . They can be called
from Basis using whatever name they were given in the file;mac produces wrappers which call
the functions in classpkg . Note that no transformation of variables takes place; in particular,
FORTRAN strings will not be converted to C++ strings.

FORTRAN functions to be accessed from C++ are declared in the normal way. In this case,mac
creates an interface which allows a FORTRAN function named (say) “foo ” to be called from C++
aspkg::foo . Again, there is no transformation of variables between the two languages, so, for
example, C++ strings will not be converted to FORTRAN strings, etc.

FORTRAN variables accessed from C++ also must be prefaced by “pkg:: ”, sincemacputs them
all in a class by that name. Accessing scalar variables is straightforward, but arrays having more
than two dimensions are declared as special C++ template array classes, in order to allow C++ to
subscript the arrays the same way as FORTRAN (the user should recall that FORTRAN arrays are
stored in column-major order, while nearly every other language, including C++, uses row-major
order).

This interface is not for everybody. Users wishing to know more details should read themac man
page and experiment with a variable descriptor file to get a better idea of the interface.

12.13.3 How to write an input file for Fcc

Fcc is a Basis utility which takes as input simple prototypes of C functions and produces “wrap-
per” functions which, when called from FORTRAN, convert the FORTRAN parameters to what
C expects, and then calls the C function accordingly. If the C function returns a value, then that
value will be returned to FORTRAN. Because thelanguage directive causesmac to create an
Fcc input file automatically, most users will never need to useFcc directly, and can bypass this
section. However, power users may wish to know how to set up their ownFcc input files, and how
to useFcc to process them.

Fcc accepts the interface file name as a command line argument, has two command line options,
-h and-c. The option-h causes a fileFcc.h to be created which is appropriate for the current
machine. The option-c causes the fileFcc.c to be created, which is the file containing the
runtime support routines needed by the glue routines created byFcc . The interface file itself
contains a series of descriptions of C routines which are to be called from Fortran. Each of these
descriptions has the form:

[return_type] Name(argument_list) [alias ActualCName]

where the square brackets denote optional items.

Name is the name of the C-language routine. It must be a mixed-case name if the alias clause
is not given. The Fortran call should be to a routine calledname, wherename is the lower- or
upper-case version ofName. The C routine called will beName, or ActualCName if an alias
clause is present.

66 Chapter 12. Mac and the Variable Description File

argument list is a (possibly empty) list of type designators separated by commas. This list
should be the same length as the argument list of the C routine.return type , if present, is a
single type designator, or the word ‘subroutine ’. A type designator is one of the following:
integer , logical , real , real(Size4) , real (Size8) , real(Size16) , Address ,
character , or string . This type designator is preceded by an ampersand in the argument list
if the corresponding argument is to be passed by address. The two cases where this is needed are:
(a) the argument is an array, or (b) the argument represents an output argument.

The type ‘string ’ is handled in a special way:

1. If an argument type is ‘string ’, the C routine receives a C string that is a null-terminated
copy of the actual argument with trailing blanks deleted.

2. If an argument type is ’&string ’, the C routine receives a blank, null-terminated string of
the same length as the Fortran character variable used as an actual argument. On return from
the C routine, the actual argument is filled with whatever resides in the string the C-routine
received, less the final null, and is then blank padded if necessary to its full length.

A string argument cannot be used for both input and output.

The type ‘character ’ is also handled in a special way. Because some Fortrans limit the size of
a string, it is sometimes necessary to use a long array ofcharacter*1 to hold all the characters.
To pass such an array to C, use ‘character ’ or ‘ &character ’ as its type; the next argument
after a ‘character ’ or ‘ &character ’ argument must be an integer argument telling how many
characters of the character array are to be used. The C wrapper routines then use the array of
character*1 the same as a string of that length, as described above.

The type ‘real ’ is an abbreviation forreal(Size8) , unless the-r4 option formac has been
used, in which case it is an abbreviation forreal(Size4) . You are encouraged to spell out the
desired kind qualifier and not rely on this option. (Which is why we don’t mention it in the option
section, we were hoping you wouldn’t notice.)

12.14 Writing Your Source

12.14.1 Introduction

By using the/name/ facility in your variable descriptor file, you can tell Basis about common
blocks in Fortran routines. In this case your existing scientific routines will need no modification.
Or, you can usemppl as described in this section. You may choose to supply initialization or
version routines as described below.

The source you write does not need to contain any logic for user input, which the user will do with
the Basis language. Subroutines are available that can eliminate many formatted writes. Much
code that might normally be included for debugging purposes can also be omitted since the user
can inquire about the value of variables at will. Most users eliminate graphics from their source
and use interpreted graphics instead.

12.14. Writing Your Source 67

The document “MPPL Reference Manual” (manual VI) contains complete documentation for
mppl . There is also a manual page for it. Many authors will use just one construct, theUse
macro. Other than that, they use standard Fortran [Footnote: On Crays, eitherCFTor CIVIC may
be used. MostCIVIC extensions can be used except alphanumeric labels.].

A macro is a name recognized by themppl macro processor as a special word. It may or may
not have arguments; if it does, they appear inside parentheses just as arguments to a subroutine or
function do. Macro names may be of arbitrary length and are made up of letters and digits, with
the first character a letter. The underscore () may be used as a letter. We adopt the convention that
at least one character of a macro name will be in upper case to help identify it as a macro. Since
mppl is case-sensitive, a macro namedPoint is not recognized if spelledpoint .

The macros discussed in this chapter are automatically defined bymppl . You must avoid us-
ing the names of these macros, or the names of the built-inmppl macros (define , include ,
ifelse,ifdef , Immediate , Dumpdef , Errprint , Quote , andEvaluate), for any other
purpose. Also avoid the names used for symbolic constants (Pi , OK, ERR, DONE, YES, andNO)
and symbolic types (Filename , Filedes , Address , andVarname).

12.14.2 Declaring a Group in a Subroutine

Use(Groupname)

This causes a set of declarations to be inserted which contain the information aboutGroupname
from the variable descriptor file, thus making the variables inGroupname known to this sub-
routine. Use statements must appear within the declaration section of the subroutine. TheUse
statement may begin in column 1.

CASE COUNTS! If you spellUse as “use ” it won’t work. mppl macros are case-sensitive.

12.14.3 Initialization Routine

You may choose to supply a routine to be called when Basis initializes a package. If you do, you
inform Basis of this by including the keywordinit in your gluepack input. If you do not
choose to supply this routine,gluepack will supply a dummy one for you. The specification for
the routine is:

subroutine pkginit

wherepkg is the name of the package. Basis calls the subroutinepkginit when your package
needs to be accessed for the first time, and never calls it again. An automatically written routine,
pkginit0 , initializes the database and then callspkginit . The call topkginit may be
triggered by an inquiry about variables, for example, and does not necessarily mean thatpkg will
be run at this point. Some values cannot be data-loaded easily, and this routine is a good place
to do such variable initializations. An example is an array that needs a large amount of default

68 Chapter 12. Mac and the Variable Description File

data, or a string that needs to contain a nonprinting character such as “Bell”. For most packages,
however, this routine will consist of just a return statement.

One of the routines,pkgwake , contains references to all your common block variables and so is
a good place to visit when in your debugger.

12.14.4 Version Routine

You may choose to supply a routine to be called when Basis needs to print a version message about
a package. If you do, you inform Basis of this by including the keywordvers in yourgluepack
input. If you do not choose to supply this routine,gluepack will supply a dummy one for you.
The specification for the routine is:

subroutine pkgvers(ius)
integer ius
call baspline(ius,’Your version message here.’)
return

end

wherepkg is the name of the package, andius an integer output unit specifier. This routine
should write a message to unitius (which is already open) describing the package, such as the
author and version number. This message will be printed on the terminal whenpkg is initialized,
and on certain output files when they are created. We recommend you do so withbaspline as
shown so that the version message will work correctly to graphics files.

12.14. Writing Your Source 69

70

CHAPTER

THIRTEEN

Gluepack: Putting Packages Together

13.1 config Execute Line

gluepack ’s execute line is:

BASIS_ROOT/bin/gluepack -i inputfilelist -o outputfilename

where

BASIS_ROOT

is the location of your Basis distribution.

The “-i ” is optional. If the “-o outputfilename ” is omitted, thengluepack will write to
a file called “pack.m .” The inputfilelist should be blank delimited; if you wish to load
several packages, then their descriptions may be in one file or in several files.

If you neglect or forget to specify one or more input files on the command line,gluepack
will want to read from standard input, i. e., the terminal. You may certainly type your input to
gluepack at the terminal if you wish. In this case, use the characterˆ {D} (control-D) to signify
an end-of-file.

The only other command line option likely to be of interest to most users is the “-e ” option, which
echoes the input to the standard output. Normallygluepack produces minimal output to the
terminal; however, all warning and error messages will appear there.

13.2 config Input File Format

Thegluepack input file is mostly free format. Ends of lines have no significance except that, like
commas and white space, they act as delimiters between tokens and/or statements.config input
files may contain the four kinds of statements: package statements, array assignment statements,
scalar assignments, and system specifications. Each type of statement will be discussed in more
detail below.

71

Let us first examine the components ofconfig statements, which are calledtokens. Tokens
include reserved words (the ones discussed earlier and others which will be described later), iden-
tifiers, unsigned integers, arbitrary strings (which may be enclosed in either single or double quote
marks), parentheses ‘(’, ‘) ’, and brackets ‘[’, ‘] ’, which are used to enclose lists of items in array
assignments, and the assignment operator ‘=’. Tokens may be separated from one another by white
space (blanks, tabs, end-of-line), commas, or comments. A comment begins with an octothorpe
‘#’ outside of quotes, and extends to the end of the line on which it occurs.

Enclosing a string in single or double quote marks has the effect of removing any special signifi-
cance that the string or any character in it may have. Thus, if you want a string to contain spaces,
commas, or a ‘#’ character, then enclose it in quotes. As another example,codefile is a re-
served word, while"codefile" is an identifier and not the reserved word, as is’codefile’ .
Single and double quotes are equivalent except that a string enclosed by one kind of quotes may
not contain the same kind of quote within it. If you inadvertently omit the closing quote from a
string,gluepack will print a warning but will accept all characters up to the end of the line on
which the string began.

13.2.1 Package Statement

The package statement must be used to give a name to each package which you wish to include,
and may optionally be used to specify the maximum number of calls to yourpkgexe routine in the
“step ” phase of theRUNcommand, and to specify which (if any) of the eight standard routines
you are supplying. The package statement must begin with one of the reserved wordspackage
or foreign , [Footnote: Foreign packages are described in section [Ref: foreign-pkgs] of this
manual.] but otherwise its form is not unduly restrictive. It is made up of substatements whose
order is quite arbitrary.

The only required part of a package statement is the substatement which gives a name to the
package, which has the form

pkg = <string>

wherepkg represents any identifier with three or fewer characters, and is called theshort nameof
the package. Thestring > is anygluepack string, usually quoted, representing the title of the
package. An example is

dap = "Designer’s Apprentice"

(Note that since the title contains both a space and a single quote, itmustbe enclosed in double
quotes.) The short name of the package may not be any of the two or three letter reserved words
gen , exe , fin , yes , or no , unless it also is enclosed in quotes, but we really hope that you don’t
do this.

Optionally one may specify the maximum number of calls topkgexe (or its substitute routine, if
you specified a different name) in the “step ” phase of theRUNcommand. This is done by means
of a substatement of the form

72 Chapter 13. Gluepack: Putting Packages Together

limit = unsigned decimal integer>

If a limit substatement does not occur, then the default value of 10000 will be used.

Finally, you give the root names of the routines which you will be supplying for this package .
These substatements take one of the two forms

root

or

root = <name>

root representing one of the eight reserved wordsvers , init , gen , genp , exe , exep , fin ,
and finp , andname> being the legal FORTRAN name of an integer function. In the former
case, you must supply a FORTRAN function namedpkgroot , wherepkg is the name of the
package; in the latter case, your function is namedname> instead of the defaultpkgroot . Thus,
for example, the substatements

gen, exe, fin = alldone

mean that you are supplying routinespkggen , pkgexe , andalldone (in lieu of pkgfin).

The substatements of a package statement need not occur in any particular order. Here is an
example of a correct package statement:

package limits = 1000 vers , init , exe
rho = "Density Calculation" , exep = plotexe
finp = plotfin # note that quotes are not required here.

13.2.2 Scalar Assignment Statements

The form of a scalar assignment is:

variable = <string>

wherevariable is one of the reserved wordscodename , cprompt , probname , verbose ,
echo , libpaths , or libs , described in an earlier section, and<string > is, in some cases,
restricted as noted there.

Assignments to any of these variables can be omitted; they then take on the default values noted
in the table. If more than one entry is encountered for a specific variable, then only the first
specification is used. A warning is issued for subsequent assignments to the same variable if a
different value is specified.

13.2. config Input File Format 73

13.2.3 Array Assignment Statements

The array assignment statement may take one of three forms, first

variable = <string>

if only one string is being assigned, or second

variable = (<list of strings>)

or third (and equivalently)

variable = [<list of strings>]

where<list of strings > is delimited by white space or commas.

The meanings of the array variablescodefile , paths , macfile , startups , firstpkg ,
iotable , andncodefil have already been discussed. Multiple assignments may be made to
the array variables; the effect is to add the subsequent values to the end of a list of the values
assigned.

13.2.4 System Differencing Statements

SYSTEM <CPUlist>

This is the reserved wordSYSTEM(which must begin in column 1) followed by a list of one
or moreCPUspecifiers separated by white space or commas (no parentheses). Currently, the
allowed CPU specifiers areCS2, SOL, SUN4, HP700, RS6000, SGI, GENERIC, XMP, YMP,
C90, CRAY2, ULTRIX, VAX, MAC, andMIPS. These specifiers control the setting of toggles in
gluepack , which initially are all toggled on. The effect of a<CPUlist > is to turn off all
toggles except those forCPU’s contained in the list, which will be turned on. Then any statements
following the <CPUlist > will only be processed bygluepack if gluepack is processing
for one of theCPU’s in the list. gluepack is normally processing for theCPUon which it is
executing, but it can be set for a differentCPUby the-CPU option described earlier. The main use
of this statement (and the following) is to specify the names of libraries, library paths, codefiles,
object files, etc., which may differ from one platform to another. Example:

SYSTEM HP700
libpaths="-Wl,-L/usr/lib -Wl,-L/usr/lib/pa1.1 -Wl,-L/lib/pa1.1"
libs="+DA1.1 -lf -lm -lisamstub"
SYSTEM SOL
libpaths="-L/usr/lib -L/opt/lib -L/opt/SUNWspro/SC3.0/lib"
libs="-lF77 -lM77 -lm"
SYSTEM SUN4
libpaths="-L/usr/lang/SC1.0"
libs="-lF77 -lm"

74 Chapter 13. Gluepack: Putting Packages Together

SYSTEM +CPU or -CPU

Here,CPUis one of the allowedCPUspecifiers enumerated above. The effect of+CPUis to turn
on the toggle for just that oneCPU, and of-CPU is to turn it off. No other toggles are affected.
Examples:

SYSTEM +YMP
SYSTEM -SOL

13.3 Configuring the Packages with .pack files

Assume your package name ispkg . You need to create apkg.pack input file as described in
this section. Thepkg.pack input file contains names and various other information about your
packages. This information is of the following sorts:

• Specifying a package to be included in the program.

• Informing Basis of the presence of one or more of the eight optional routines that can be
supplied for each package. Every package may have the routinespkginit or pkgvers .
If you are including packagectl , you may also have chosen to supply one or more of the
routinespkggen , pkggenp , pkgexe , pkgexep , pkgfin , andpkgfinp . The ones
which are present must have their root names specified in thepkg.pack input file. The
user may also supply alternate names for these routines.

• Customizing the appearance and behavior of your program.pkg.pack can set various
“customizing” variables which tell the system what you want to use as a prompt, for in-
stance..

Given this information, thegluepack utility writes a series of routines required by Basis, gener-
ates the calls to the routines which you are supplying for each package, and sets the customizing
variables.

13.3.1 Sample .pack Input File

Here is a typical.pack input file.

package tri = "Trivalent Unit Flow Descriptor" init
firstpkg=tri
codename = "Trivalent"
cprompt = "Tri> "
echo = no

13.3. Configuring the Packages with .pack files 75

This indicates that one package, namedtri , is to be loaded, and that the packagetri has an
initialization routinetriinit that is to be called whentri is initialized. Thefirstpkg=tri
tells Basis to initializetri when the program starts up. The next three lines customize the program
name, its prompt, and cause it not to echo input read from files to the terminal.

13.3.2 Short Tutorial on the gluepack Input File

gluepack input files may contain two kinds of statements: package statements (which begin with
one of the reserved wordspackage or foreign), array assignment statements (which begin
with one of the reserved wordscodefile (formerly macfile), or firstpkg), and scalar
assignments (which begin with one of the reserved wordscodename , cprompt , probname ,
verbose , echo,).

Assignments are the easiest to understand, because they always take one of the three forms

variable = <string>

if only one item is being assigned, or second

variable = (<list of strings>)

or third (and equivalently)

variable = [<list of strings>]

The variables which can be assigned single values (scalar variables) are:

codenameThe code name (1–8 characters; default: Basis).

cprompt The prompt to use (1–16 characters; default,Basis >). If the prompt contains spaces
or other characters with special meaning, it must be enclosed in quotes, thus:"Basis > " .

probname probname sets the Basis variableprobname on startup. This is a deprecated feature
that will be removed in the future.

verbose The initial value of the parser variableverbose . Specifyyes or no . Many of the
system messages to the tty (and logfile) will be eliminated ifverbose = no . (default:
yes)

echo The initial value of the parser variableecho . Specifyyes or no . This controls whether or
not input files are echoed to the terminal when they are read. (default:yes)

The variables which may be assigned either single values, or lists of values enclosed in parentheses
or brackets and delimited by white space or commas are:

76 Chapter 13. Gluepack: Putting Packages Together

codefile codefile is a list of search directories for Unix. Whenever Basis tries to open a file and
cannot, it then will try to search each directory in this list. This list will be searched in the
reverse of the order it is specified, and prior to the default search path. Seepaths (below)
for the opposite search order. If you install your program somewhere, usecodefile to let
Basis find your comment files, standard input files, etc. The list can be separated by either
blanks or commas. The strings assigned must be legal file names on whatever system you
are using. See the routinepathadd in the Basis Language Reference Manual for details
about the default search path.

firstpkg The initial Basis Language search stack. The top of the stack should be on the left (or first
if there are severalfirstpkg specifications). Each package is initialized as it is placed on
the stack.

Strings assigned must be legal package names (identifiers of length 3 or less). Normally,
every package should be mentioned in afirstpkg statement, since typically you will
want each package initialized. (default: parser only).

iotable If you have a code that you wish to convert to Basis you may wish to reserve one or more
I-O unit numbers so that the rest of Basis will not use them. To reserve units 1, 2, and 61,
enter: iotable = (1,2,61)

WARNING : units 5, 6, and 59 can’t presently be reserved.

path A list of directories for unix. Similar to codefile, except that this list of directories will be
searched in the order in which the directories are listed, but still prior to the default search
path. startup] The name(s) of (an) input file(s) for the program to read before it begins
reading any user input. These files will be read in the reverse of the order listed. A program
which reads such a file can thus read in a custom set of user-defined functions or a set of
custom parameter settings. The files should be somewhere where the code can find them,
seepath above. The list can be separated by blanks or commas. Strings assigned must be
legal file names on whatever system you are using. (default: none).

If you wish to end the run immediately after executing thestartup files, setnotty =
yes in a macfile.

A startup file will be treated specially in the following two cases: a. If the first character is a
period, Basis will silently continue if it cannot find the file. b. If the first character is a dollar
sign, Basis will substitute the value of the environment variable whose name follows.

All Basis codes have .basis and $BASIS as startup files. .basis is read first, followed by
$BASIS, if set, followed by any code-specific startup files.

13.4 config Errors

gluepack has three levels of errors, given below in increasing levels of severity. Each type
of error causes an appropriate comment to be sent to standard output, and additional actions as
described below.

13.4. config Errors 77

• Warnings. These include attempted reassignment of a scalar variable (the first value assigned
will be retained), a string with no closing quote (the rest of the current line will be taken), and
renaming a package (the most recent name given will be taken). After a warning, processing
continues as if nothing happened. The filepack.m will be written if only warnings occur
during processing.

• Syntax and semantic errors. When these errors occur, scanning of the currentgluepack
statement is terminated, andgluepack proceeds to the start of the next statement. The
writing of the output filepack.m will be suppressed. There are many such errors, e. g.,
attempting to give a package a name of longer than three characters, assigning something
other thanyes or no to echo or verbose , attempting to match a ‘(’ with a ‘] ’, and the
like.

• Fatal errors. These will cause instant termination of execution. They are incorrect command
line, inability to open an input file, and the occurrence of a nonprintable character [Footnote:
However, if reading from the terminal,ˆ{D} (control-D) will be accepted as an end-of-file.]
in the input.

78 Chapter 13. Gluepack: Putting Packages Together

CHAPTER

FOURTEEN

Programming Support Facilities

14.1 Specifying Variables’ Names

Many of the routines in Basis can access variables by name. They do this by searching a run-time
database that is available for each package. It is important to be sure that the name given specifies
the desired variable completely. If there should be a variable of the same name in another package,
confusion may result. Oh, Basis won’t be confused, but you might be. Basis maintains a stack of
open packages and will find an unqualified name in the highest package in the stack in which it
occurs, which may well not be what you want.

The name of a variable can be prefixed with the name of the package and a period, as in:

call edit(STDOUT, "pos.x")

which writes the value of variablex in packagepos to the terminal. If you are sure that the name
of a group or variable is unambiguous, and that the package in which it resides is sure to be on the
search stack at the time the call is made, you may omit the package prefix. A prefix consisting of
‘ local ’ as in

if(exists("local.x")) then...

restricts the search to the local variables of the current user-defined functions, while a prefix con-
sisting of global as in"global.x" restricts the search to the user-defined variables.

One time in which the package in which a variable resides willnot be on the search stack is during
execution of theinitialization routinepkginit . If you wish to calledit , allot , etc., from this
routine, youmustgive the package prefix as part of the name.

14.2 Dynamic Dimensioning

Basis allows the use of variables that change their size depending on the size of the problem. To
make a variable of this type, called a dynamic variable, precede the type of the variable with an

79

underscore in the variable description file, give it a dimension that is a function of variables which
contain the size desired, and then, once your code is running, callallot or gallot (described
below) after the size is known but before the variable is used. This section explains the use of
dynamic dimensioning in detail.

14.2.1 Declaring Dynamic Variables

Normally a variable entered in the description file is made visible to a subroutine when the state-
ment

Use(Groupname)

is encountered in the declaration section of the subroutine. TheUse statement is expanded by the
preprocessing pass to statements

type var
dimension var(dimension) #if specified
common / pngm / var

for each namevar in Groupname and its corresponding type and dimension information. Here
pngm is a name unique to this package, group, and type (unless the user specified a name in the
group header).

To declare a dynamic variable (a variable whose location is determined by the contents of another
variable, called its pointer) use an underscore as the first letter of the type, e.g.,

var(n) _real

This generates:

type var
integer Point(var)
pointer (Point(var), var)
dimension var(n)
common /pngm/ Point(var)

If you are on the Sun or are runningmppl with the-DCOMPILER=CFT77option, theinteger
statement is removed. On 64-bit machines theinteger statement becomesinteger*8 .

Here,Point(var) is a macro that expands into the name of the pointer by prefixingvar with
the letter ‘p’. Dynamic variable names should be chosen to have at most seven characters so that
Point(var) will be a unique identifier. If the letter ‘p’ is not a good choice for your code you
may change it by including a statement like

80 Chapter 14. Programming Support Facilities

%define([Point],Z$1) #change pointer initial to Z

in your parameter section. The percent sign causes this line to be put verbatim in themac output
file macpkg .

Each dimension can include any integer expression involving constants and names of variables.
For example,

n integer
m integer
xx(n, (m + 1)/2) _real

creates a variablexx whose dimensions depend on variablesn andm. After n andmhave been set,
a call toallot such as

call allot("pkg.xx",0)

will compute the value of n* (m + 1)/2 and then allocate that many elements of storage for
xx . In resolving such variable names, the package to which the variable belongs will be searched
first, followed by the normal search stack.

Theallot subroutine is described in detail below.

14.2.2 Run-Time Routines

The following subroutines are used for a dynamic array that is visible to the run-time database
manager.They may be called from the Basis command line at runtime, or they may be called from
Fortran code. The lengths used in the subroutines are element counts that are independent of
variable type.

Each of the following six routines is actually an integer function. They return a value of 0 if they
executed correctly.

allot call allot(”array”,length)allocates a variable namedarray of length elements. The ele-
ments are initialized to 0 (or blank for character types), or to a value specified in the variable
description file. The quotes around the array name are required. Ifarray is a multidimen-
sional array,length is the length of the desired last dimension ofarray . The database
manager calculates the type and other dimensions ofarray . If length is negative or 0, the
database manager also calculates the last dimension. Each element would contain 2 words if
array is complex, for example.If the array has already been allocated space, the old space
is released before reallocating and no error occurs. If you wish to check the value returned
by allot you would do something like:

14.2. Dynamic Dimensioning 81

integer allot
external allot
...
if(allot("array",length) .ne. 0) then

....error handler goes here
endif

The parser variablepadding , whose default value is 0, can be set to a positive integer by
the user. This value is used as a number of elements to be added to the end of the space
allocated byallot . This space is initialized byallot but thereafter is not used by Basis
in any way.If the argumentlength is negative, its absolute value is added topadding
to determine the amount of padding for this variable.Similar remarks apply tobasfree ,
change , gallot , gfree , andgchange .

basfree call basfree(”array”)releases space forarray previously obtained by a call toallot .
Seeallot .

change call change(”array”,newlength)changes the length ofarray to newlength . change
is otherwise the same asallot , except that it preserves the previous contents of the array.
The new elements are initialized to 0 (or blank for character types), or to a value specified
in the variable description file. If you callchange with the name of an array that has not
yet been allotted;change will call allot for you.If an array is multiply dimensioned and
some of the sizes of the dimensions change, the old data is correctly selected and repacked
in the new space. If no sizes have changed, the array is not moved. The algorithm used
in its full generality is given below. Simply stated, if a dimension shrinks, the contents get
deleted, and if it expands, new space is added.If the current size of name isold(i), i =
1, nold and the desired new size of name isnew(i), i=1,ndim , then

1. The new size isnew(i), i=1, ndim

2. This space contains the data from the subobject of the original object described
by:min(old(i),new (i)), i=1,min(nold,ndim) 1 , i=min(nold,ndim)+1, nold

3. This data is stored in the subobject of the new space described by:min(old(i),new(i)),
i=1,min(nold,ndim) 1 , i=min(nold,ndim)+1, ndim

4. The new object has its lower/upper indices derived from the current evaluation of its
dimensioning string. Any limiting string is ignored bychange .

5. If the new and old sizes agree, the array is not copied to a new location;change has
no effect.

6. As before, if the second argument is greater than 0, the value is used to replace the
value ofnew(n) calculated from the dimensioning string.

If the second argument is less than 0, thennew(n) is not affected. A padding of-n elements
is added to the end of the storage for the array. Basis promptly forgets about this padding.
This padding is in addition to the value in the Control variablepadding .This routine must
not be called if the array has been allocated space by the author usingosallot rather than

82 Chapter 14. Programming Support Facilities

allot , unless the author subsequently calls the routinesetshape so that Basis is aware
of the current size of the array. Seeallot .

gallot call gallot(”Name”,n)callsallot for all the dynamic arrays in the group,Name. See
allot .

gchange call gchange(”Name”,n)changes the allocation of all the dynamic arrays in the group,
Name. Seechange .

gfree call gfree(”Name”)frees all the dynamic arrays in the group,Name. Seefree .

14.2.3 Using the System Memory Manager

If you wish to allocate space dynamically from within a Fortran routine without using the above
facilities, you can do so by using the Dynamic and Point macros described in the next section and
then calling the following routines:

osallot call osallot(ipointer, length)allocates an array oflength words. You are calculating this
number. The first argument is a variable which is returned containing the address of the
allocated space. It should have been declared typeAddress . If osallot cannot allocate
the desired space it returns to the user via the routinekaboom.

osfree call osfree(ipointer)releases space located at the address inipointer , which should have
been declared type Address. Ifipointer does not contain a correct heap manager address
control returns to the user viakaboom.

oschange call oschange(ipointer,newlength,oldlength)changes the length of the space pointed to
by ipointer ,which should have been declared type Address. Again,kaboom is called if
anything goes wrong.The variableipointer in all these examples either has been declared
of typeAddress (anmppl macro which expands to the correct type on all architectures),
or has been declared to be the pointer to some dynamic variable. An easy way of creating
such variables is given in the next section.

14.2.4 Dynamic Array Macros

You can usually avoid the use of the following macros. Declare the variables as dynamic in the
variable description file andallot andbasfree them as necessary. Or, declare them in a local
group andUse it in a subroutine. The declarations required will then be taken care of by the
preprocessing system.

Dynamic

Dynamic(array,type,dimstr)

14.2. Dynamic Dimensioning 83

Creates a local dynamic array that is not visible to the run-time database manager. It declares array
to be a local, pointered variable of typetype , and dimensiondimstr . If dimstr is omitted,
array is declared to be a scalar. For example,

Dynamic(iout,integer,1)

declaresiout to be an integer one-dimensional array, while

Dynamic(j2d,real,[5,1])

declaresj2d as a two dimensional real array dimensioned(5,1) . Note the use of square brackets
to protect the comma in the third argument frommppl . Point(array) must be set to some
location (usually byallot , osallot , or assignment from theloc of something) before the
variable is used.

Point

Point(var)

The Point macro returns the name of the pointer tovar , which must have been previously
declaredDynamic . Use this macro if reference to a pointer is needed. For example, ifacol is a
pointered variable declared byDynamic(acol,real,1) , then

call osallot(Point(acol),100)

allocates 100 words of storage foracol .

14.3 Output Routines

Basis provides facilities for sending messages to the terminal, creating output files, writing edits
of variables, etc. One constraint on authors is that you can’t simply pick a unit number, open a file,
and start writing to it. Instead, you must use a variable to hold the unit number and useoutfile
or absfile to create the file and return a unit number for you to use. This procedure allows
different packages to operate independently without conflict.

14.3.1 Writing Messages to the Terminal

remark and Other Choices

The preferred way to do output to the terminal from a Fortran routine is:

84 Chapter 14. Programming Support Facilities

character*80 msg
......
write(msg, format) ...
call remark(msg)

This example assumes that the format only writes one line of 80 characters or less. To write
multiple lines with one format, makemsg an array, write to the array using a multi-line format,
and then after thewrite, loop over the call toremark .

call remark(string)

causesstring to be displayed at the terminal.string may be a constant character string, the
name of a character variable, or even a character expression.remark may be called from Fortran
or at runtime from the Basis command line.remark folds long lines and usesbaspline and
iooutus .

iooutus() is a function that returns to a FORTRAN program the unit number of the current
Basis output. The Basis commandoutput can be used to redirect terminal output to a file. Using
iooutus() as a unit number conforms to theoutput command.

write(iooutus(), format) ...

By contrast,STDOUTis a symbolic constant representing the unit number of the controller.
STDOUTis defined for you bymppl .

baspline, baswline

baspline is called from a Fortran routine:

call baspline(iunit,msg)

where iunit is a unit number (orSTDPLOT) and msg is a character variable containing
the desired message. Another routine,baswline , is called in the same way.baswline
calls baspline and then callsruthere to check for interrupts. Usebaswline instead of
baspline if you are willing to have the program return to the prompt.

baspecho

The routinebaspecho is used to create a kind of log file. It may be called from Fortran code or
from the Basis command line.

call baspecho(iunit)

14.3. Output Routines 85

iunit should be the unit number of a currently open file, or withiunit = STDPLOTfor output
to the graphics package. (Call withiunit = 0 to disable.) The internal variableiecho is set to
iunit . Then:

1. Subsequent calls from Fortran code tobaspline or baswline with a unit number of
STDOUT, STDERR, or STDPLOT, but not equal toiecho , will echo to this unit number. If
iunit is not open on a file, then Basis disables the echo, issues a warning message, and
callskaboom(0) .

2. Input lines read from the terminal will also be echoed, preceded by the characters ‘> ’.

Since most Basis output to the terminal is viabaspline , such a file will be a close approximation
of a log. From the parser one could open such a file with eitheroutfile or basopen . Such a
unit opened withbasopen but then passed tobaspecho will lose its property of being closed
when errors occur.

Example: make an almost-log file:

call baspecho(basopen("Log","w"))

Example: graphics log

call baspecho(stdplot)

Any given application program may, of course, be writing directly to the terminal usingwrite
statements, without going throughbaspline or baswline . Such writes cannot be caught by
baspecho .

baderr

call baderr(string)

This can be called from Fortran only.baderr is the same asremark except that it terminates the
program after issuing the message. The name of the calling package or routine should be used as
part of the message. This routine should only be used for errors which indicate irreparable damage
has occurred and no further problems can be run. For a softer escape seekaboom.

14.3.2 Creating Output Files

outfile

call outfile(myout,"comment")

86 Chapter 14. Programming Support Facilities

creates an output file for the package. Subroutineoutfile fills the variablemyout with an
integer value, the unit specifier for the file so created.Myout should be used as the unit specifier
in all formatted write statements to the output file. Multiple output files may be created by one
package. The comment (which must be enclosed in quotes) will be displayed when the program
terminates, along with the name of the output file. If calling from the Basis language rather than
from Fortran, be sure to passmyout by address (outfile(&myout,...)).

basopen

integer basopen
iunit = basopen(name, access)

This routine is used for opening input files and for creating output files. It may be called from
Fortran or from Basis. If called from Fortran, and opened with access"w" , iunit may be used in
subsequent calls tobaspline or baswline , and also, of course, in Fortranwrite statements.
If called from Basis,iunit may be used as the target for stream output.

If access is"r" , basopen opens filename, returning the unit number to use in subsequent
operations. If the file is not present, it is searched for (using the list in variablepath , which can
be added to with the variablecodefile in gluepack , or by the routinepathadd , described
below). Error recovery is invoked if the file cannot be found at all.

If access is"i" , basopen returnsOKor ERR(0 or -1) to indicate whether or not the file can be
opened in"r" mode.

If access is"w" , the file is created in the current working directory, returning the unit number to
use in subsequent operations. Error recovery is invoked if the file cannot be created.

Any file opened withbasopen will be CLOSED whenever error recovery takes place. Files
created withoutfile, however , are NOT closed when an error occurs.

basclose

call basclose(myout)

closes a file that has been opened in any manner.basclose is accessible from both FORTRAN
and Basis.Files will be closed when the program terminates if they have not been closed already.

freeus

call freeus(myout)

setsmyout to a free unit number. You must immediately open a file on it to preserve your reser-
vation. Use ofoutfile is preferable. This routine may only be called from Fortran.

14.3. Output Routines 87

pathadd

An alternative to specifying directories usinggluepack ’s codefile specifier is to callpathadd
with the name of the directory.pathadd may be called from either Fortran or Basis.

call pathadd(directory)

The only difference is that paths added in this way are not available for search at the very beginning
of the program when searching for start-up files.

14.3.3 Printing Variables and their Attributes

edit

call edit(myout,"name")

prints the contents of the group or variable whose name isname (the quotes are required). The
output is written on the file connected tomyout . Example:

integer myout, basopen
myout = basopen("myfile","w")
call edit(myout,"pr.Geometry")
call basclose(myout)

would write the contents of all variables in the group namedGeometry in packagepr to a file
myfile . This code will work both in Fortran and in Basis. If attempts to find the desired name
fail, a remark to that effect is written instead.

list

call list(myout,"name")

is the same asedit except the output consists of a description of the variables and their attributes
instead of their contents. It may only be called from Fortran. (Basis has a ‘list ’ command which
may be used instead.)

14.3.4 Plotting

The EZN Graphics Package is the standard graphics package available with Basis. It uses the
NCARGraphics Package. A separate manual (III) is available to describe the plotting package. For
authors who wish to supply a different graphics package, Basis expects there to be a routine

88 Chapter 14. Programming Support Facilities

call ptext(msg)

which is to write messages on graphics frames, if desired. The user-suppliedptext is responsible
for frame advances, etc.

14.4 Replaceable Routines

There are some routines which you can replace with your own versions. You merely need to be
sure that the binary for your routine is encountered first in the load process.

14.4.1 User main routine

Basis calls a subroutineusrmain immediately after collecting command line arguments. If you
need to do special initialization or to process the command line yourself, provide your own version
of usrmain . Normal basis error recovery procedures are not yet installed at this point. The
defaultusrmain callsbasmain ; your replacement needs to do that too. Any remaining text in
cmdline is treated as the first line of input bybasmain .

subroutine usrmain(argv0, cmdline)
character*(*) argv0,cmdline
call basmain(argv0,cmdline)
return
end

14.4.2 Custom handling of input

Each line read from an input file is made available to a user-replaceable routine calledbasisech .
The default version (see below) does nothing.

subroutine basisech(line,nline)
character*(*) line
integer nline
return
end

14.4.3 Error handling

When Basis encounters an error in its input, it normally calls a routine namedkaboom, to re-
initialize the parser and restore data structures to a clean state if possible. During error recovery, it
calls a user-replaceable routine namedbasiserr , which, by default, does nothing:

14.4. Replaceable Routines 89

subroutine basiserr
return
end

14.4.4 Signal handling

It may be useful for your code to catch certain Unix signals and do special things. For example,
some batch job systems use SIGTERM to tell a process to exit gracefully. Codes running under
such a system might catch SIGTERM and make a restart file before exiting. The default routines,
as shown below, call internal handlers that result in your code exiting immediately after receipt of
any of the signals TERM, URG, USR1, USR2.

subroutine basterm
call dosigterm
end

subroutine basurg
call dosigurg
end

subroutine basusr1
call dosigusr1
end

subroutine basusr2
call dosigusr2
end

14.4.5 Code load time and date

As Basis starts up, it prints various information to the terminal or other output logs. Among this
information, it is often useful to record the time and date at which the particular code you are
running was built. The routineglbtmdat is intended for this purpose. The default version,
shown below, enters blanks for your code’s load time and date. The typical approach for replacing
this routine is to construct and compile it automatically as part of your Makefile dependency tree
for the code itself.

subroutine glbtmdat(codetime,codedate)
character*(*) codetime, codedate
codetime = ’ ’
codedate = ’ ’
return
end

90 Chapter 14. Programming Support Facilities

14.4.6 Conversion Considerations

Here are some of the things to watch out for when converting existing code to Basis.

• A source of possible problems that are easy to fix, but are often difficult to find occurs if the
user’s source has modules with the same names as routines in the Basis system. The Unix
nmutility can help create lists of names, and of course loader output must be scrutinized.

• Unit numbers used for output files must be reserved using theiotable feature of
gluepack . Alternatively, usefreeus , basopen , or outfile .

• Let Basis do as much as possible. Many calculations and plots can be done with the inter-
preter, reducing the amount of Fortran you must maintain. One of the surprising develop-
ments as people got used to Basis was the migration of tasks that used to be in Fortran up into
the interpreter. You can use a startup file (seemacfile in thegluepack documentation)
to read in interpreted Basis Language code as your program starts.

14.5 Symbolic Constants

The following symbolic constants are defined bymppl :

DONEA symbolic integer indicating completion of an iterative process.

ERR A symbolic integer indicating an error.

NO A symbolic integer different from YES; used to indicate a negative condition. Actual value is
0.

OK A symbolic integer indicating success.

Pi pi =3.14159...

YES A symbolic integer different from NO; used most commonly to test conditions. Actual value
is 1.

14.6 Symbolic Types

Symbolic types are used just like ordinary Fortran types such asinteger or real . They are
changed by the macro processor into suitable definitions for the target machine. Their use makes
it easier to read, understand, modify, and port code. The currently defined symbolic types are:

Filename a character variable big enough to hold a legal filename. Usually about 256 characters.

Filedes integer variable that holds an i/o connector number.

14.5. Symbolic Constants 91

Varname character variable big enough to hold a Basis variable name.

Address an integer long enough to hold a pointer. On most architectures, this is the same as a
Fortran integer, but on 64-bit architectures it is aninteger*8 .

14.7 Physics Unit Codes

Unit codes are text strings containing the units of physical data. Currently they are only used
to label output and to improve the documentation of the variables. The following unit codes are
suggested.

m Meters

s Seconds

g Grams

V Volts

A Amperes

eV Electron volts

rad radians

None Ordinal or dimensionless quantity

The units above may be modified and combined. The modifiers are:

u 10-6

m 10-3

c 10-2

d 10-1

k 103

M 106

G 109

T 1012

To combine units use* , /, ** , and parentheses. For example, we have:

cm/s**2 [centimeters per second per second]
V*A/cm**2 [volt-amperes per square centimeter]

92 Chapter 14. Programming Support Facilities

14.8 Interfacing with C and C++ Programs

See the chapter “Writing Basis Packages” for details.

14.9 Communication Between Packages

14.9.1 An Editorial

The big problem in large code development is how to prevent the program from getting harder and
harder to change until finally no one is willing to work on it. I call the resistance of a code to
change its “inertia”, and a goal of the Basis System is to minimize inertia. In my experience, the
main contributor to inertia is the methods used to communicate between different pieces of physics
(especially where there are multiple authors).

Consider two packages A and B, where A needs to know some quantityrho calculated by B.
There are many ways in which A could getrho from B, but the most frequently used method is
for both A and B to declare some common block containingrho . Most typically this is done by
means of a macro statement which declares an entire common block.

Consider the consequences: the author of B now has to watch out that she doesn’t use any of the
other variable names in the cliche, even though she may have no use for these variables. Ifrho
is not the name she prefers for that quantity she may be tempted to alias something torho , thus
leading casual scanners of her source to believe that she doesn’t userho at all. If A wants to add
more variables to his cliche that declaresrho , disaster may strike B. Worse, B has to be recompiled
in order to change A.

Now suppose thatrho represents a spatial quantityrho(x) . Suppose that A has represented
rho by having a gridx(j) and valuesrho(j) that correspond tox(j) . B now needs bothx
andrho . If B needs values ofrho at values ofx not represented in the grid, she needs to use a
table lookup and interpolation scheme. Perhaps A does too, thus leading to duplication of code,
or worse, a different interpolation scheme being used in each package leading to an inconsistency
in the representation ofrho in the program as a whole. Then comes the day when A learns of a
dramatic new breakthrough in calculating rho that involves using a finite-element representation.
But to install it, A must track down every other package that usesrho and change how THEY
accessrho , too. The inertia of the program may discourage this improvement.

To my mind, the source of the problem is that B, a consumer ofrho , has no business at all knowing
how rho is produced. It is far better if A supplies a functionrho (x) that returns the value he
has produced. If there are some parameters in the production ofrho that might need to be set by
another package, A can write a function for B to call that sets the parameter.

There may be a few places in a large program where this leads to efficiency problems; in those
places one could get the information by calling a function that returned appropriate pointers. But
the need should be strong before resorting to sharing a representation in that way, and an interpo-
lation function should be provided so that the quantity is consistently treated.

14.8. Interfacing with C and C++ Programs 93

This editorial was written in 1984 and is left here for historical reasons. Now that we all do object-
oriented programming, you all believe it already, right?

14.9.2 Global Common

If you wish to set up a global common, create a package containing the groups you wish to be
known to all other packages. Typically this package would have little or no source, perhaps only
thepkginit routine. Or, it might be the “driver” for the other packages. If packages residing in
other directories need access to these variables, they should list the path to this variable descriptor
file in theNVDFcategory of theirPackage file. This causes the “global” variable descriptor file
to be processed first and its definitions made available in preprocessing the source.

14.10 The Package Library

Packages can be shared. If you develop a package which might be useful to others as a component
of their programs, please let us know about it. The chapter “Basis Package Library” describes
packages available to you.

94 Chapter 14. Programming Support Facilities

CHAPTER

FIFTEEN

Advanced Package Writing

15.1 There Be Dragons Here

The purpose of this section is to warn you to stop reading this chapter NOW. The following sections
are of interest only to a small minority of those who will use Basis. Before you decide that you
need to use any of the following facilities, you might contact us and describe your problem. We
often know an easier solution.

This chapter covers accessing interpreter variables from compiled routines, writing “foreign” pack-
ages which have variables not declared in the usual way, and writing your own built-in functions
and attribute handlers.

15.2 Accessing Variables from Compiled Routines

Sometimes you may need to access a variable owned by another package or declared interactively
by the user. The following routines are used to access a variable by name. You have the choice
of specifying which package to search or of searching the current stack. The basic procedure is to
use routineparfind to find the variable and its type, and then routinertxdb to get the location
and size of the variable. The types returned are integer codes with the values such asNULL = 0,
INTEGER= 1, REAL= 2, etc. A value of less than zero indicates a character variable holding
that many characters, e.g., the type code forcharacter*8 is -8. Other values indicate items
like functions and structures. The proper way to interpret these codes is by using the functions
utcodstr andutstrcod as explained below in section [Ref: wrbinfxns] , on writing your own
built-in functions.

15.2.1 Finding a Variable

There are two routines available for finding a variable in the database. The first,parfind , is
used when you have a separate name and package number. The second,rtfinder , can be used
on names which may contain a name of the formpkg.name , .name , or ..name . This routine
issues a message if the variable does not exist.

95

Function parfind looks for a variable given a name and package number. See routine
glbpknum below for converting a package name to a number.

function parfind(npack,name,jvar,ndb,tc)
input:
npack package number of package to search,
or zero to search current stack
-1 means ONLY search local variables of
latest user function
-2 means ONLY search global variables
name name of variable/function to find
output : ndb is the number of the package in which
variable is found.
jvar nonzero if name is a variable
jvar 0 (and function returns ERR) if not found
integer type code tc indicates variable type
parfind = OK if found

integer ndb,jvar,tc,npack,parfind
character*(*) name

The calling sequence forrtfinder is:

function rtfinder(name,jvar,ndb,tc,caller)
input:
name name of variable/function to find
output :
ndb the number of the package in which
variable is found.
jvar nonzero if name is a variable
0 (and function returns ERR) if not found
tc integer indicating variable type
caller a string used in the error message if
variable not found. suggested use
is the name of the routine calling
rtfinder.
rtfinder = OK if found

integer ndb,jvar,tc,rtfinder
character*(*) name, caller

15.2.2 Extracting Properties

Once you have found a variable, usertxdb to get the address and size of the variable.

96 Chapter 15. Advanced Package Writing

subroutine rtxdb(jvar, ndb, fwa, ndim, ilow, ihi, icol, access)
get out facts about variable number jvar
input:
jvar and ndb returned by parfind o:202:positive parenthesis level at end of paragraph

Unclosed open parenthesis at line 198
:202:positive parenthesis level at start of sectional division: reset to zero

Unclosed open parenthesis at line 198
r rtfinder
access: access desired
(0=INFO only, 1= LIMITED, 2=FULL,-1=INFO_LIMITED)
output:
fwa address of variable
ilow, ihi low, high subscripts
icol column lengths in memory
ndim number of dimensions

integer jvar, ndb, fwa, ndim
integer ilow(7),ihi(7),icol(7), access

Values for accessLIMITED andINFO LIMITED return the dimension information using a lim-
iting string if present. INFO andFULL return the non-limited dimensioning information. The
dimension information returned is the size the array currently occupies. If it is currently unallo-
cated,rtxdb returns the sizeallot would allocate for it if it were called now.

If rtxdb is called withaccess =FULL or LIMITED , and if variableautodyn is YES, then
rtxdb will first allocate storage for any unallocated array and then return the information as
requested.

15.2.3 Changing a package name to a number

function glbpknum(pn)
#find number of package whose name is pn
integer glbpknum
character*(*) pn

15.3 Writing Attribute Services

Names known to the Basis Language, such as variable, function, or macro names, may have one or
more attributes assigned to them. This can be done by an author using the variable description file,
or done at runtime using the routinertcattr . Routines are supplied for listing or editing every
variable having a given set of attributes. This section describes how to write such routines.

The key element is the routinertserv , which will evaluate an attribute expression and will call
a user supplied subroutine for each macro, function, and/or variable name for which the given
attribute expression is true. The determination of which type or types of names (macro, function,

15.3. Writing Attribute Services 97

variable) are evaluated, is under user control. NOTE: function and variable names are evaluated
only if they exist in an initialized package.

The calling sequence is:

call rtserv(attr,actor,param,servestr,actstr)

whereattr is a string containing the attribute expression to evaluate. Ifattr is “ ”, then the
expression is always TRUE. (described more fully below).

actor is the name of a compiled subroutine (DO NOT put quotes around the name). The name
actor must also be declaredexternal in the routine that callsrtserv .

param is an integer scalar or array which will be passed to subroutineactor .

servestr is a string governing how and with what type of input the user-supplied serveractor
is called. (Described more fully below in section [Ref:servestr]).

actstr is a string determining which actions to perform on a name or temporary variable after it
has been serviced by subroutineactor . (Temporary variables and stringactstr are described
more fully below (sections [Ref: temp-vars] and [Ref:actstr]).

15.3.1 Attribute Expressions

An attribute expression is a simple logical expression. In addition to attribute names, it can contain
parentheses() ’s, and the operators& (and),| (or), and˜ (not). (An operator must always appear
between attribute names). For example: if you wanted a server to be called with those names that
have both attributesa andb, then use attribute expression"a & b" .

15.3.2 Servestr

SERVESTRis a string governing how and with what type of input the user supplied serveractor
is called.

SERVESTRconsists of a type designator followed by 0 or more blank delimited
keyword:value combinations.

The type designator is a string of 1 to 4 characters. This string can contain 1 or 0 instances
of the letters “m”, “ f ”, “ v ”, and “p”, which stand for macro, function, variable, and package
respectively. If its letter does not appear in thetype designator , then the server will be not
called with any names of that type. If the letter does appear then the names of that type which
satisfy the given attribute expression will be passed to the server routineactor .

The allowable keywords forSERVESTRand their default values are as follows. You do not have
to specify a keyword if it is not applicable to your server, or if you wish to use the default value.

98 Chapter 15. Advanced Package Writing

Keyword Definition Option values Default value
serve Whether the server is to be called

with data, database index only, in-
formation only, or not called at all

data , info , no ,
index

data

skip Whether the server is to not ser-
vice any particular type of quan-
tity

len0 none

pkg Name of package where tempo-
raries are to be created.

any package name none

dims Whether the dimension infor-
mation returned reflects any
SETLIMIT limitations set upon
the variable.

limited ,
unlimited

unlimited

db Whether one or all databases are
to be available for servicing.

package name of the
databases to service

all databases to be ser-
viced.

lang Language of the callback. fortran , c fortran

Examples follow at the end of this section.

Keywordserve determines what information about the names is passed to the server (or even if
the server is to be called). If its value isdata , then all information including the address to the
data is passed. If (and only if) any macros or functions are to be serviced, then a temporary variable
is created to hold the data, and the information passed refers to this temporary variable (including
database indices, address, type, dimensionality information). Thus all information passed refers to
the data. It should be noted that any function or macros served in this way will be invoked without
arguments.

If the value of keywordserve is info , then the address to the data is not passed, no temporary
variables are created, and the information passed (database indices, type, dimensions, etc.) refers
to the name (not data). Thus if a name is a function, the information describes the function, not the
data produced by the function.

If the keywordserve is set toindex , then no information, other than database indices, is passed
to the server. No temporary variables are created, since no data address is passed to the server. As
in the info case, the indices passed reference the name (not necessarily data).

If the keywordserve is set tono , then the server is not called. This option is useful if you only
want to perform anACTSTRaction on the names. In this case argumentactor can be 0.

Keywordskip determines what quantities are not to be serviced. If this keyword is set tolen0
then no 0-length variables will be serviced, even if they satisfy the given attribute expression.

Keyword pkg MUST be specified if temporary variables might be created. This occurs only if
keywordserve is set todata (the default value) and macros and/or functions are to be serviced,
i.e. thetype designator contains an “m” or “ f ”. If this is the case, setpkg to the name
of the package where all temporary variable are to be created. Note: you can use package name
global .

Keyworddims determines whether the dimensionality information passed to the server refers to

15.3. Writing Attribute Services 99

a variable as originally dimensioned, or if it reflects any limitations created by a limiting string.
If dims is set tounlimited then the former is given, else iflimited the latter is given. The
default isunlimited .

Keyword db determines if one or all databases are to be serviced by subroutineactor . If this
keyword is not present inSERVESTR, then all databases (and macros if requested) are serviced.
Otherwise, you can set keyworddb to the name of a package, in which case, the named package
is the only package serviced. It should be noted that ifdb is set, then macros can not be serviced.
If you are interested in the global database, then setdb to global .

EXAMPLES:
"mfv pkg:tmp dims:limited"
"mfv serve:info"
"v"
"v skip:len0 db:global"

The firstSERVESTRwill service macros, functions, and variables. The data address is passed and
temporary variables will be placed in packageTMP. The dimensionality information will refer to
the limited portion of the data.

The secondSERVESTRwill service macros, functions, and variables, but the data address is not
passed and no temporary variable are created. The information returned refers to the name and the
dimensions returned describe a variable as originally dimensioned. Functions and macros have no
dimensions.

The thirdSERVESTRservices only variables. The data address is passed along the with all other
information, including the dimensions of the variable as originally declared.

The fourthSERVESTRservices only global variables which are not of 0-length. The data address
is passed along with all other information, including the dimensions of the variable as originally
declared.

15.3.3 Actstr

ACTSTRis a string determining which actions to perform on a name or temporary after it has been
serviced by subroutineactor .

If ACTSTRis " " then no additional actions are performed. OtherwiseACTSTRis a series of 0
or more blank delimited keyword:value combinations.

The allowable keywords forACTSTRand their default values are as follows. If a keyword is not
specified then, the action corresponding to that keyword is not performed.

100 Chapter 15. Advanced Package Writing

Keywords Definition Option values
forget forget any temporaries created and/or the

original name
name, temp , all

tag tag any temporaries and/or the origi-
nal name with the given attribute list
ATTLIST

name: ATTLIST , temp :
ATTLIST, all : ATTLIST

Action keywordsforget and tag have three possible values:name, temp , andall which
causes the action to be performed on the the original name, on any temporary variable which may
have been created, or on both the original and temporary variable, respectively.

The actionforget will cause the names and/or temporaries to be forgotten. The actiontag will
cause names and/or temporaries to be tagged with a given set of attributes (attributes may also be
forgotten). Thus a third component oftag action is an attribute list, which is a list of attributes
names separated by blanks,+, or - . A blank or+ preceding an attribute means to add this attribute;
if prefixed by a- , then the attribute is removed. Note: the attribute list must be written without
blanks.

All actions are performed after the name has been serviced.

EXAMPLES:

"forget:name tag:temp:myatt"
pkg: option was given in SERVESTR

"tag:name:myatt-oldatt"
"forget:all"
" "

The firstACTSTRwill cause all the original names serviced to be forgotten, and all the temporary
variables (in packageTMP) to be tagged with the attributeMYATT.

The secondACTSTRwill cause all the original names serviced to be tagged with the attribute
MYATTand to remove the attributeOLDATT.

The third argument will cause both the original names and the temporary variables to be forgotten.
It is assumed that keywordpkg was set inSETSTR. If not, then an error occurs.

The fourth string will not perform any actions.

15.3.4 RTSERV and Temporary Variables

You will most likely want to tag or forget any temporary variables which were created and also
add a new group to the end of the package vdf file in which the temporaries are to be stored. The
reasons for this are described below.

It is safest if a special group exists which is dedicated to holding the generated temporary variables.
This group MUST be the last group in your package vdf file.

15.3. Writing Attribute Services 101

Efficiency comes into play when you are servicing data created by functions and macros. You will
eventually want to forget (i.e. destroy) all the temporary variables which were created (in order to
reclaim the space). However, if you need to reference this data over multiple calls toRTSERVyou
may not want to create and destroy the temporary variables for eachRTSERVcall. You can avoid
this by tagging these temporary variables with two or more attributes: one attribute to mark them
for future deletion and the other attribute(s) to allow future servicing.

The following example demonstrates this method.

NOTE: the order of the variables might change between the server call which creates the tempo-
raries and the next server call which uses those temporaries.

EXAMPLES:

call rtserv("myatr", myserv1, param,
"mfv pkg:tmp",
"tag:temp:myatr+tempv")

call rtserv("myatr", myserv2,
param, "v", " ")

call rtserv("tempv", 0, param, "v serve:no",
"forget:name")

In the above example, it is assumed that attributeTEMPVis used only to tag variables for deletion.

The first call toRTSERVservices all macro, functions, and variables with attributeMYATR. The
temporary variables are then tagged for later servicing and deletion. The second call toRTSERV
services only variables with attributeMYATR. It will find the variable data generated by the macros
and functions of the first call toRTSERV, since it was not destroyed and was marked with attribute
MYATR. The third call toRTSERVwill destroy the macro and function data generated by the first
call, since this data was tagged with attributeTEMPV. Notice that keywordserve is set tono in
order to improve efficiency.

As noted above, the order in which the variables are served may change in the above example
between the server callsmyserv1 and myserv2 , due to the creation of temporary variables
between these two calls. If it is important that the ordering does not change, then you can do an
extra rtserv call that does nothing except create the temporaries and change the ordering so
that the ordering would remain constant for all subsequent calls. The previous example would be
modified as follows:

EXAMPLES:

call rtserv("myatr", rtcount, param,
"mf pkg:tmp",
"tag:temp:myatr+tempv")

call rtserv("myatr", myserv1, param, "v", " ")
call rtserv("myatr", myserv2, param, "v", " ")
call rtserv("tempv", 0, param, "v serve:no",

"forget:name")

102 Chapter 15. Advanced Package Writing

Note: rtcount is a Basis supplied server which returns the number of entities (variables, macros,
functions) serviced.

The user-supplied attribute server will be called in four stages. First,rtserv callsactor with
argumentstage set to 0. Next, if packages are selectedactor is called withstage set to
3. Then, for each name satisfying the attribute expressionattr , rtserv calls actor with
argumentstage set to 1. [NOTE: your user server will not be called with any name that resides
in an uninitialized package.]. Finally, when all processing is complete,rtserv calls actor
with argumentstage set to 2.

The fortran interface of subroutineactor should be of the form:

call actor(npack,jvar,name,typecode,fwa,ndim,ilow,
ihi,icol,attr,param,moreargs,istage)

wherenpack is the number of the database package,jvar is the index into databasenpack ,
name is the name of the variable,typecode is an integer giving the type of the variable,fwa
is the first-word-address of the variable,ndim is the number of dimensions,ilow is an array
of up to 7 integers containing the origin subscript in each dimension,ihi an array of up to 7
integers containing the highest subscript in each dimension, andicol an array of up to 7 integers
containing the column length in each dimension. The value ofparam is passed through from
rtserv andistage is set by rtserv, above.

The value of argumentmoreargs is integer data passed down from subroutinertserv . It is
available to supply the user with addition information about the name or about the server op-
tions (i.e. servestr) selected inrtserv . Currently only 1 value ofmoreargs is defined.
moreargs (1) is set to 0 if name is a variable, 1 if name is a function, or 2 if name is a macro.

It should be noted that if thertserv call hasSERVESTRkeywordserve set to info then
actor argumentfwa is not set. If keywordserve is set toindex , thenactor arguments
fwa , typecode , ndim , ilow , ihi , andicol are not set.

More esoteric note: If keywordserve is set to eitherinfo or index , andname is a macro,
thennpack is set to 0 andjvar is set to the macro number. If you wish to use these numbers,
you must call special macro routines, and NOT the standard Basis database routines.

The C interface of subroutineactor should be of the form:

void actor(BA_dbnode *node, void *param, int istage)

wherenode is a pointer a database node, either macro, variable or function.param is a pointer
to user data andistage is the stage.

15.4 Basis Supplied Servers

In addition to writing your own servers, there are currently two servers available in Basis which
you can supply tortserv . They arertcount andrtcntsiz . They both have the standard
server interface which is

15.4. Basis Supplied Servers 103

call actor(npack,jvar,name,typecode,fwa,ndim,ilow,
ihi,icol,attr,param,moreargs,istage)

Both servers return output in argumentparam . In serverrtcount , param(1) is set to the num-
ber of entities (variables, macros, functions) which the server was called with. Serverrtcntsiz
is an extension of serverrtcount . In addition to the number of entities, it also returns the total
number of words of data for those entities, and an error flag.param(1) is set to the number of
entities,param(2) is set to the total data length, andparam(3) is the error flag which is set to
1 if an error occurred, otherwise it is set to 0. An error occurs if the data dimension information is
not available, such as a macro or function for which a temporary variable has not been made or if
servestr optionserve have been set toindex .

15.5 Writing Built-in Functions

It is possible to write built-in functions which the Basis parser knows about. To do this, you
need to do two things. You need to write a subroutinepkgbfcn , wherepkg is the name of the
package containing the built-in functions, and you need to add a declaration of these functions to
the variable descriptor file.

The way to declare a built-in function into a variable descriptor file is described in detail in section
[Ref: wrpkgs-fxns] “Functions” in chapter [Ref: wrpkgs] “Writing Basis Packages”. Package
bes , described in the chapter “Basis Package Library”, is a very simple example of writing a
built-in function. The following is a descriptor file used to declare in packagetst the built-in
function variablemydummy, a function which takes 1–3 arguments.

tst
variable descriptor file for package tst
this package illustrates how to add built-in function
mydummy.
***** Dummy_1:
mydummy(array [,ilen [,idim]]) builtin [1-3]
Reduce the length of dimension idim in array by ilen
default value for ilen = 0.
default value for idim = last dimension.
This function has no purpose other than
illustrating how to install built-in functions.

Additional parameters used by the subroutine are

ERR Value returned if an error occurred.

OK Value returned if no error occurred.

104 Chapter 15. Advanced Package Writing

ERRandOKare defined automatically byMAC.

Note that all these parameters must be in CAPITAL letters.

The subroutine to execute the built-in functions needs to call a number of Basis functions and
subroutines. These functions will be described and then a sample subroutine will be provided
which will execute built-in functionmydummyin packagetst . When using these routines, you
must spell their names exactly as seen below. There is a difference between spelling a name in
UPPER, lower, or Mixed case.

Dynamic, Point, remark

Dynamic(name, type, ndim)
Point(arraynam)
call remark(string)

These routines have been previously described—Dynamic andPoint in section [Ref: dynamic-
dimensioning] “Dynamic Dimensioning” andremark in section [Ref: output-routines] “Output
Routines”. In brief,Dynamic is used to declare dynamic arrays. The macroPoint is used in
conjunction withparaddr (described later) to equivalence arrayarraynam to the data of an
argument. Subroutineremark is used to print messages to the terminal.

When a built-in function is called, the Basis parser creates data descriptors of all of its arguments
on the parser stack. In order to access these arguments, you will need to use the following two
functions:

arg fetch init call arg fetch init(nargs, sx) Initialization function to allow fortran
to access stack variables.nargs is the number of arguments andsx is the return value.
They will be passed to you through thepkgbfcn function call.

arg fetch fin call arg fetch fin() Call after all processing is finished.

Once the arguments are initialized, they can be fetched with these routines.

arg fetch actual arg fetch actual(iarg)

arg fetch copy arg fetch copy(iarg)

arg fetch default arg fetch default(n, iarg, name)

Once the arguments have been fetched we can use the following routines to get more information
about the data.

arg get address pointer = arg get address(iarg) returns the pointer to the data of
argumentiarg . It is used in conjunction with macro Point to equivalence an array to this
data. Remember to declareparaddr of typeAddress . This wasparaddr(dd) .

15.5. Writing Built-in Functions 105

arg get name len = arg get name(iarg, name) set name to the name of argument
iarg .

arg get type tc = arg get type(iarg)

arg get shape arg get shape(iarg, extent, lower, stride)

arg fix dim arg fix dim(iarg)

arg get length arg get length(iarg) returns the length of the data in argumentiarg . Re-
member to declarearg get length of type integer. This wasparlen(dd) .

arg get integer if (arg get integer(iarg, mying) .eq. ERR) return
(ERR) if you expect some data to be a scalar integer value, then you may like to call
functionarg get integer . This function will check if the data of argumentiarg is a
scalar integer. If it is, then this routine will setmyint to this integer value and the function
will return the parametrized valueOK. Otherwise the routine will print an error message and
return the parametrized valueERR. Remember to declareparint of type integer. This was
parint(dd, myint) .

arg get coerce if (arg coerce(iarg, tc) .eq. ERR) return (ERR) will co-
erce the data of argumentiarg to the typetc and modify the data descriptor to reflect
the change. Ifiarg cannot be coerced to typetc , then this function will print an error mes-
sage and return the valueERR. Otherwise the routine will return the valueOK. Remember to
declareparcoerc of type integer. This wasparcoerc(dd, tc) .

arg kill call arg kill(iarg) releases the memory of the data of argumentiarg Used to
release the memory of all the input arguments of a built-in function. This must be done in
order to avoid memory leaks. This wasparrel(dd) .

utstrcod typecode = utstrcod(typestr)returns the type code associated totypestr . Valid val-
ues for typestr are "integer" , "real" , "external" , "name" , "complex" ,
"logical" , "chameleon" , "indirect" , "group" , "double" , "structure" ,
"range" , "function" , "address" , "string" , and"null" . Remember to declare
utstrcod to be type integer.

Finally, to create the return value we use these routines.sx is the value passed intopkgbfcn .

sx set ndim sx set ndim(sx, ndim) sets the number of dimensions ofsx to ndim .

sx set type sx set type(sx, tc) sets the typesx to tc .

sx set shape sx set shape(sx, extent, lower, stride) Sets the shape ofsx to
extent , lower , andstride . Each must be an array at leastsx get ndim long.

parget call parget(sx) gets enough space to hold all of the data described by the data
descriptorsx . Note: this routine does not store or retrieve any data. It just gets the required
space.arg get address(0) can be used to find the address.

106 Chapter 15. Advanced Package Writing

15.5.1 Sample Subroutine PKGBFCN

To install a built-in function you must write a function calledpkgbfcn wherepkg is the name of
your package. This subroutine is described as follows:

function pkgbfcn(nargs, f, sx)

nargs number of arguments built-in function was called with

f name of built-in function

sx (output) data descriptor of built-in function’s output

Argumentsx is the only output argument. It is the data descriptor which describes the output
returned by the built-in function. Your job is to determine the type and size ofsx , set corresponding
entries ofsx , call parget(sx) to get storage, then fill the storage with the result.

A samplepkgbfcn subroutine follows. The subroutine’s name iststbfcn since the built-in
functionmydummyis declared in packagetst .

function tstbfcn(nargs,f,sx)
implicit none
integer nargs, tstbfcn
character*(*) f #name of function
integer sx

integer inttyp ! type code for integer
integer realtyp ! type code for real
integer cmplxtyp ! type code for complex
integer tc ! type code
integer i, idim, ndim, ilen, nskip, nstore, npoints, indxx, indxy
integer extent(7), lower(7), stride(7)
integer, external :: utstrcod ! converts type string to a type code
external parget ! gets space for an element
integer, external :: arg_get_type
integer, external :: arg_get_integer ! gets integer
external :: arg_get_shape
integer, external :: arg_get_ndim
integer, external :: arg_get_length ! gets the length of a stack element
Address, external :: arg_get_address ! gets pointer to data
Dynamic(ix,integer,1) ! integer output argument
Dynamic(rx, real, 1) ! real output argument
Dynamic(cx,complex,1) ! complex output argument
Dynamic(iy, integer, 1) ! integer input argument1
Dynamic(ry, real, 1) ! real input argument1

15.5. Writing Built-in Functions 107

Dynamic(cy, complex, 1) ! complex input argument1

! mydummy (arrayname [, ilen [, idim]])
! arrayname type can be integer, real, or complex
! default value for ilen is 0
! default value for idim is sy(SS_N) i.e. last dimension

tstbfcn = ERR
call arg_fetch_init(nargs, sx)

if (f .eq. "mydummy") then
! get the type codes for the types integer, real and complex.
inttyp = utstrcod ("integer")
realtyp = utstrcod ("real")
cmplxtyp = utstrcod ("complex")

! get the first argument
call arg_fetch_copy(1)
ndim = arg_get_ndim(1);

! the second argument (if present) must be an integer scalar.
! store its value into ilen
if (nargs >= 2) then

! call fcnargb(2, sz) ! get second argument
call arg_fetch_copy(2)
if (arg_get_integer(2, ilen) .eq. ERR) return
if (ilen < 0) then

call remark("mydummy: arg2 is negative")
return

endif
else

ilen = 0
endif

! the third argument (if present) must be an integer scalar.
! store its value into idim
if (nargs = 3) then

call arg_fetch_copy(3) ! get third argument
if (arg_get_integer(3, idim) .eq. ERR) return
if (idim < 0 | idim > ndim) then

call remark("mydummy: arg3 is out of range")
return

endif
else

idim = ndim

108 Chapter 15. Advanced Package Writing

endif

! shape, size, and type of the output is almost the same as
! the input’s.
! reset shape and size of output as follows:
! the length of dimension idim in the output array is ilen
! shorter than that dimension in the input array
! Make sure the new length of that dimension is still positive
tc = arg_get_type(1)
call sx_set_type(sx, tc)

call arg_get_shape(1, extent, lower, stride)
extent(idim) = extent(idim) - ilen
! reset one entry of sx
if (extent(idim) .le. 0) then

call remark("mydummy: arg2 is too large")
return

endif
call sx_set_ndim(sx, ndim)
call sx_set_shape(sx, extent, lower, stride)

! calculate the number of consecutive elements in the input to
! be stored into the output --- nstore
! calculate the number of consecutive elements in the input
! which are not stored into the output --- nskip
nskip = 1
do i = 1, idim-1

nskip = nskip*extent(i)
enddo
nstore = lower(idim)*nskip
nskip = ilen*nskip

! get space for answer
call parget(sx)
npoints = arg_get_length(1) ! size of input array

if (tc .eq. inttyp) then
! store integer output
Point(ix) = arg_get_address(0) ! ix is integer output array
Point(iy) = arg_get_address(1) ! iy is integer input array
indxx = 1
indxy = 1
do

do i = 1, nstore
ix(indxx) = iy(indxy)

15.5. Writing Built-in Functions 109

indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

elseif (tc == realtyp) then
! store real output
Point(rx) = arg_get_address(0) ! ix is real output array
Point(ry) = arg_get_address(1) ! iy is real input array
indxx = 1
indxy = 1
do

do i = 1, nstore
rx(indxx) = ry(indxy)
indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

elseif (tc == cmplxtyp) then
! store complex output
Point(cx) = arg_get_address(0) ! cx is complex output array
Point(cy) = arg_get_address(1) ! iy is complex input array
indxx = 1
indxy = 1
do

do i = 1, nstore
cx(indxx) = cy(indxy)
indxx = indxx+1
indxy = indxy+1

enddo
indxy = indxy + nskip
if (indxy .gt. npoints) exit

enddo

else
call remark("mydummy: arg1 is wrong type")
return

endif
else

call remark("unknown type for built-in function mydummy")

110 Chapter 15. Advanced Package Writing

return
endif

! release storage occupied by the input
call arg_kill(1)
if (nargs >= 2) call arg_kill(2)
if (nargs >= 3) call arg_kill(3)
call arg_fetch_fin
tstbfcn = OK
return
end

15.6 Foreign Packages

15.6.1 Cooperating with Other Systems

A foreign package is created by using the keyword “foreign ” instead of the word “package ”
in the GLUEPACKinput file. The effect of this declaration is to require additional routines to
be written by the author. These routines are to communicate with Basis about the attributes of
variables which are NOT listed in the variable description file.

The foreign-package facility allows you to write a package which creates variables that did not
exist at compile time and wishes to make these variables known to Basis. Or, you may write a
package that uses some symbolic memory manager to manage some variables and Basis needs to
access them too.

Only some services are available for foreign variables. Basis can use them or assign to them.
Basis cannot change their size,FORGETthem, and inLIST ing them, Basis only knows their basic
properties, not things like their original dimensioning string and units.

A foreign package is otherwise identical to a regular package. In particular it has a variable de-
scription file (which is perhaps nearly empty) and must be connected usingGLUEPACK.

15.6.2 The Foreign Connection

A foreign package must supply three extra routines. These have namespkgfind , pkgxdb , and
pkgxcom , wherepkg is the name of the package.

function pkgfind(name, typecode)
character*(*) name
integer key, typecode, pkgfind

is a function which takes inputname and returns a positive integer function value and an integer
type codetypecode . The function value should be 0 ifname is unknown. Otherwise, it should

15.6. Foreign Packages 111

be set to a positive integer (whose meaning is up to you) andtypecode should be set to a
code which gives the type of the variablename. This type code can be obtained with the utility
functionutstrcod which is an integer function taking a string as an argument and returning the
corresponding code, such as

typecode = utstrcod("integer")
typecode = utstrcod("real")
typecode = utstrcod("character*(12)")

It will be faster, of course, to get the typecodes you will need once during the package initialization
routinepkginit . After pkgfind returns successfully, the other two routines may be called by
Basis. Basis will pass the function value you return frompkgfind back to you as the argument
namedkey .

subroutine pkgxdb(key, fwa, ndim, ilow, ihi, icol)
integer key, fwa, ndim, ilow(7), ihi(7), icol(7)

This function must return, for the variable last found withpkgfind , the address (fwa), the num-
ber of dimensions (ndim), and the firstndim entries ofilow , ihi , andicol , giving respectively
the lowest subscript for the variable (usually 1), the highest subscript (usually the length in that
dimension), and the dimension length in memory (usually the length in that dimension, but possi-
bly not, such as a matrix which is only partially full). For example, if the variable is dimensioned
(0:10,12) but currently contains meaningful elements in the first 8 rows and the first 5 columns,
pkgxdb would return:

fwa = loc of first element
ndim = 2
ilow(1) = 0
ihi(1) = 7 #highest meaningful subscript
icol(1) = 11
ilow(2) = 1
ihi(2) = 5 #highest meaningful subscript
icol(2) = 12

The third routine allows Basis to process any comments available for the variables.

subroutine pkgxcom(key, icom, comment)
integer key, icom
character*(*) comment

This routine haskey and icom as input. The value oficom will be 1 the first time, and then
increase by 1 with each subsequent call. The outputcomment should be set to theicom ’th
comment line available for the variable. If no such comment is available, comment should be set
to all blanks with

112 Chapter 15. Advanced Package Writing

comment = " "

Fortran blank-fills in character assignment statements so the statement above sets all ofcomment
to blanks.

Sometimes Basis will ask only for the first comment. Other times Basis will ask for successive
comments until it gets a blank comment back. If you don’t wish to supply online documentation
for the variables, it suffices to havepkgxcom simply setcomment to blank and return.

The routinepkginit is an appropriate place to initialize your memory manager or other tables.

15.6.3 Sample Foreign Package

Here are some pieces of a sample foreign package namedlsp . (This is a modification of the full
sample package presented later.) The package contains five variables namedx , y , z , w, andwc,
which are made visible to Basis. A table of their properties is initialized in lspinit.

Variable Description File

The variable description file is the same as usual; it contains definitions for some variables and one
function. We have chosen to use it to declare the variables needed for the symbol tables for the
foreign variables.

lsp
#This package illustrates how to write a Fortran driver for lsode
#lsode calls a user function in Basis for its values.
{
NFRGN = 5 # size of foreign variable tables
NFRGN1 = NFRGN + 1
MAXCOMMENTS = 50
}
****** Lsodet:
userfn Varname

#name of basis function to be called by lsode
lrw integer /0/

#length of real work area
rwork(lrw) _real

#dynamic storage for real work area
liw integer /0/

#length of integer work area
iwork(liw) _integer

#dynamic storage for integer work area
neqc integer /0/

#number of equations to be solved

15.6. Foreign Packages 113

yc(neqc) _real
#current values of solution

tc real
#current value of time

ydotc(neqc) _real
#place for function to put the values it computes

**** Functions:
lsdriver(f:string,neq:integer,y,t,tout,rtol,atol:real) subroutine

#makes this compiled routine visible to Basis

***** Tables hidden:
Tables to hold attributes of Foreign variables
$ These tables don’t need to be in the variable description file
$ but they are in this example.
$ This group can be declared hidden so the user won’t see it.
names(NFRGN) Varname #names of variables
tcs(NFRGN) integer #types
ndims(NFRGN) integer #dimensions
ilows(7,NFRGN) integer #low subscripts
ihis(7,NFRGN) integer #high subscripts
fwas(NFRGN) integer #addresses
comments(MAXCOMMENTS) character*72 #comments about variables
cfirst(NFRGN1) integer # points into comments

Configure File

It is the word “foreign ” on line 1 of this file that makes the package foreign. Having done that,
we need to supply the routineslspfind , lspxdb , andlspxcom . As line 1 indicates, we shall
also need to supplylspinit .

foreign , lsp = "Interactive Lsode" , limit = 10, init
codename = Lsode , firstpkg = lsp , cprompt = ’Lsode> ’
macfile = lspbas , probname = lout , codefile = lsode

Foreign Connections in the Source File

Here are the four routines used to implement the foreign variables. We have chosen to initialize
the tables inlspinit .

subroutine lspinit
initialize tables for foreign package calls
Use(Tables)
these are the variables which are "foreign"

114 Chapter 15. Advanced Package Writing

real x
integer y
real z(10)
real w(5,-3:3)
character*12 wc
common /lspa/ x,y,z,w
common /lspc/ wc

###
integer icom
integer utstrcod
external utstrcod

size information
data ndims/0,0,1,2,0/
data ilows(1,3) / 1 /
data ihis(1,3) /10/
data ilows(1,4) /1/
data ihis(1,4)/5/
data ilows(2,4) /-3/
data ihis(2,4) /3/

names
names(1) = "x"
names(2) = "y"
names(3) = "z"
names(4) = "w"
names(5) = "wc"

types
tcs(1) = utstrcod("real")
tcs(2) = utstrcod("integer")
tcs(3) = utstrcod("real")
tcs(4) = utstrcod("real")
tcs(5) = utstrcod("character*(12)")

addresses
fwas(1) = loc(x)
fwas(2) = loc(y)
fwas(3) = loc(z)
fwas(4) = loc(w)
fwas(5) = loc(wc)

comments
cfirst(i) to cfirst(i+1) -1 are the comments for i’th entry.
use icom to make it easy to add new comments.
caution, no checking done on overflowing comments array.

icom = 1
cfirst(1) = icom
comments(icom) = "Facts about x" ; icom = icom + 1

15.6. Foreign Packages 115

comments(icom) = "Comments about x are hard to come by."
icom = icom + 1
comments(icom) = "Perhaps we should investigate."
icom = icom + 1
cfirst(2) = icom
comments(icom) =
"Little is known about y except that she likes flowers."
icom = icom + 1
cfirst(3) = icom

comments(icom) = "Little known about z"
icom = icom + 1
comments(icom) = "except he once lived in Indiana"
icom = icom + 1
cfirst(4) = icom
comments(icom) = "w is two-d as you can see"
icom = icom + 1
cfirst(5) = icom
comments(icom) = "Say the secret word and win 50 dollars"
icom = icom + 1
cfirst(6) = icom
return
end
function lspfind(name,tc)

given name, return key as function value
return 0 if not found
if found, return type code tc

integer tc, lspfind
character*(*) name

Use(Tables)
do i=1, NFRGN

if(name = names(i)) then
tc = tcs(i)
return(i)

endif
enddo
return(0)
end

subroutine lspxdb(jvar,fwa,ndim,ilow,ihi,icol)
given key jvar returned by lspfind, return address (fwa),
dimension (ndim), low subscripts (ilow), high subscripts (ihi),
and dimensions in memory (icol)

integer jvar,fwa,ndim,ilow(*), ihi(*),icol(*)
character*(*) name

116 Chapter 15. Advanced Package Writing

Use(Tables)
if(jvar < 1 | jvar > NFRGN) call baderr("lspxdb error")
fwa = fwas(jvar)
ndim = ndims(jvar)
do j=1, ndim

ilow(j) = ilows(j,jvar)
ihi(j) = ihis(j,jvar)
icol(j) = ihis(j,jvar) - ilows(j,jvar) + 1

enddo
return
end

subroutine lspxcom(jvar,icom,comment)
integer jvar, icom, jcom
character*(*) comment

returns the icom’th comment about the variable
whose key is jvar
Use(Tables)

if(jvar < 1 | jvar > NFRGN)
call baderr("lspxcom error")

jcom = cfirst(jvar) + (icom - 1)
if(jcom < cfirst(jvar+1)) then

comment = comments(jcom)
else

comment = " "
endif
return
end

15.6. Foreign Packages 117

118

INDEX

Symbols
.56, 58, 62
$.56, 62

. .54

A
actor .103
allot .81
ARCH .24
arg coerce .106
arg fetch actual .105
arg fetch copy .105
arg fetch default .105
arg fetch fin .105
arg fetch init .105
arg fix dim .106
arg get address .105
arg get integer .106
arg get length .106
arg get name .106
arg get shape .106
arg get type .106
arg kill .106
arguments

optional .61
arrays

dynamic .79
dynamic$endrange>84
limiting .59
partially full .59
setlimit;setlimit .59
temporary .83

attredit .58
attribute expression .98
attributes57, 59, 97, 103
attrlist .58
autodyn .97

B
baderr .86
basclose .87
basfree .82
Basis

data types. .2
documentation .2
overview .1
parser .2

basisech .89
basiserr .89
basiskit .27
basopen .87
baspecho .85
baspline .85
basterm .90
basurg .90
basusr1 .90
basusr2 .90
baswline .85
built-in .61
Burow, Burkhard .93

C
C and Fortran .93
C Language modules93
C++ Language modules.93
cfortran.h .93
change .82

119

codefile .77, 87
codename .76
comments

in variable description file56, 62
used to label output62

compileas
variable attribute60

config
array assignment73
array variables .76
errors .77
execute line .71
foreign packages114
input format .71
iotable .91
package statement72
package statement example73
sample input32, 114
scalar assignment.73
tokens .71

config¡$endrange> .78
continuation

long function declarations60
conversion

name conflicts .91
unit numbers .91

cprompt .76

D
data loading .62
differential compilation24
dsys .9

targets for dsys .9
build .9
commit .9
config .9
dist .9
help .9
info .9
install .9
link .9
remove .9
sync. .10
test .10

Dynamic .105

dynamic dimensioning79
dynamic dimensioning$endrange> 84

E
echo .76
edit .88
environment variables1

BASIS ROOT. .1
DISPLAY .1
MANPATH .1
NCARG ROOT .1

equivalence statement59
errors

gluepack .77
external .60
EZN .2

F
Filedes .63, 91
Filename. .63, 91
files

closing .87
opening .87

firstpkg .77
foreign packages .111
Fortran and C .93
Fortran intrinsics

precision .48
freeus .87, 91
functions

arguments
optional .61

as arguments to compiled functions . .60
built-in

declaring .60, 61
writing .104

declaring compiled60
long calling sequences62
optional arguments61

G
gchange .83
gfree .83
glbtmdat .90
gluepack .71

120 Index

scalar variables .76
short tutorial .76

glurpack
sample input .75

group
defining .56

H
hexadecimal constants55

I
initialization

routine .68
initialize

dynamic array space79, 81, 83
variables .58, 62

iooutus .85
iotable .77, 91

L
limited

variable attribute59
list .88
local

group attribute .56
log

terminal .84, 85

M
MIO .11
mio .11

adding a second package41
input .11
simple Package file39
single package example37

MIO¡$endrange> .24

N
names. .79

O
octal constants .55
osallot .83
oschange .83
osfree .83

output
Basis command .85
terminal .84, 85

P
package

foreign .111, 117
naming .45, 72
the .pack files .75

padding .81
parameter

defining in vdf .54
expressions .55
section in vdf .54

parfind .96
parget .106
path .77, 87
pathadd .88
Point .105
probname .76
Prologue .48

R
ranf .47
Real4, Real8 .47
remark .85, 105
reserved words .45
rtcntsiz .103
rtcount .103
rtfinder .96
rtserv .97

action string .100
server string .98
temporary variables101

rtxdb. .96

S
SC. .93
search path .87
search stack .79
servers .58, 97
short name .72
Size4, Size8 .47
Smaug .95
startup .77

Index 121

steerable applications .2
subroutines

declaring compiled60
sx setndim .106
sx set shape .106
sx set type .106
symbolic

constants .91
types .91

T
terminal .84, 85

log .85
tokens

gluepack .71
types

user defined. .63

U
unit numbers .91
Use statement .29
user defined types .63
usertype .63
usrmain .89
utstrcod .106

V
variable description file28, 53

attributes .57
commenting .62
group information56
parameters .54
sample .53
scope .56
structure .54
unlisted variables.111

variables
access from compiled routine95
accessing through database95
dynamic dimensioning79, 81, 83
dynamic dimensioning$endrange> . . .84
temporary .101

Varname .63, 92
verbose .76

122 Index

	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	Basis Development Overview
	Installing Basis
	Install Overview
	Build Details

	Dsys: Automating Building and Testing
	Dsys Targets

	MIO: Make is OK
	Mio Overview
	MIO output files
	MIO syntax
	Global Variables
	System Group
	Define Group
	Setenv Group
	Compiler Groups
	CGroup Group
	FGroup Group
	LDGroup Group
	LibGroup Group
	Mac Group
	Directory Group
	File Group
	Package Group
	Archive Group
	Library Group
	Program Group
	BasisProgram Group
	Fparse Group

	Getting Started Writing Packages
	Outline of the Process

	A Complete Example
	Overview
	Variable Description File
	config input File
	mio input Files
	Compiling and Loading
	Changing to Dynamic Memory

	Compiling Basis Packages
	Single Package Example
	Adding a Second Package

	Writing Basis Packages
	Basis Packages

	Precision and Portability
	Description of the Problem
	Specifying Precision in the Source
	Making Your Source Portable

	Fcc: Fortran Calls C
	Mac and the Variable Description File
	Sample Variable Description File
	Structure of the File
	Parameters
	Group Information
	Variable Descriptions
	Limiting Array Sizes
	Compileas Option
	Functions
	Making Arguments Optional
	Commenting the Variable Description File
	User Defined Types
	Architecture-dependent information
	Interfacing with C and C++; The Fcc Utility
	Writing Your Source

	Gluepack: Putting Packages Together
	config Execute Line
	config Input File Format
	Configuring the Packages with .pack files
	config Errors

	Programming Support Facilities
	Specifying Variables' Names
	Dynamic Dimensioning
	Output Routines
	Replaceable Routines
	Symbolic Constants
	Symbolic Types
	Physics Unit Codes
	Interfacing with C and C++ Programs
	Communication Between Packages
	The Package Library

	Advanced Package Writing
	There Be Dragons Here
	Accessing Variables from Compiled Routines
	Writing Attribute Services
	Basis Supplied Servers
	Writing Built-in Functions
	Foreign Packages

	Index

