
The Basis System, part 6

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov

COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543

CONTENTS

1 The Basis System 1
1.1 Environment Variables. 1
1.2 Basis Is Both a Program and a Development System. 1
1.3 About This Manual. 2

2 Basis Package Library 5

3 BES: Bessel Functions 7

4 CTL: Package Control 9
4.1 The History of The CTL Package. 9
4.2 The CTL Model . 9
4.3 The CTL Model . 9
4.4 The User Interface. .10
4.5 Adding CTL to Your Program. .11

5 FFT: Fast Fourier Transforms 13
5.1 Routine Interfaces. .13
5.2 Detailed Documentation. .13

6 FIT: Polynomial Fitting 15

7 The History Package h2 17
7.1 A Facility for Iterative Programs. 17
7.2 Tags. .17
7.3 Installation and Use. .19
7.4 User Interface .19
7.5 Dumping and Restarting. .23
7.6 History Arrays .23
7.7 Deciding When To Collect. .24
7.8 Examples. .24

8 PFB Package 29

i

8.1 Summary. .29
8.2 Reading Files. .29
8.3 Writing Files .33
8.4 Restoring From A FIle. .35
8.5 Time Histories .38
8.6 Actions When Opening a File. .40
8.7 Control Variables. .40
8.8 Installation and Use. .41
8.9 Functional Interface. .41

9 SVD: Singular Value Decomposition 45

10 TIM: Interrupt Timing 47

11 RNG: Random Number Generators 49
11.1 The Mzran Suite. .49

Index 51

ii

CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1

is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System

Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3

4

CHAPTER

TWO

Basis Package Library

This manual contains short descriptions of packages available for inclusion in your program. To
include one of these packages in your program, you simply include its name in your directory list
to mmm, and mmm takes care of the rest.

The source for these packages is available in the Basis source distribution as subdirectories of the
library directory. The naming conventions followed in most of them are:

• pkg.m is the MPPL sources.

• pkg.v is the variable description file.

• pkg.pack is a CONFIG input file describing the package.

• pkg.doc is a text file telling how to use the package.

• pkg.in is a Basis Language input file that the package reads when it is initialized. This file
often does not exist.

• mmm control files are provided so that the package can be compiled with themmmutility.

The binaries for the packages are installed in $BASISROOT/lib, and their pack file is in $BA-
SIS ROOT/include.

5

6

CHAPTER

THREE

BES: Bessel Functions

bes is a package providing a few Bessel functions as built-ins. This package is also a very simple
example of writing built-in functions.

Author: Bruce Langdon, Version 0, 5/89
Kimberly Anderson, Version 1, 6/90

Usage:

i0(x), i1(x), k0(x), k1(x)
with x a real scalar or vector,
return the values of the modified Bessel
functions of order zero and one.

j0(x), y0(x), j1(x), y1(x)
with x a real scalar of vector, return the values of the Bessel
functions of order zero and one.

The error tolerance on all these functions (as found by comparison to Abramowitz and Stegun
tables) is about 1E-7. -

7

8

CHAPTER

FOUR

CTL: Package Control

4.1 The History of The CTL Package

When Basis was first written, it did not yet include the ability to call compiled functions from
the Basis Language. In order to be able to run programs while we figured out how to accomplish
the goal of calling compiled functions, a simple model was devised and built into Basis so that
a user could issue the commands run, generate, step, and finish to control the basic parts of the
simulation. Later, this model was removed from Basis proper and made into this CTL package
to provide the facility to older programs that still needed it. Obsolete though it is in some sense,
people have continued to use this package because it fits many programs exactly, so we continue
to support it despite the complication it adds to the config program.

4.2 The CTL Model

This package is meant to be used in conjunction with other packages. It supplies the command
run , with subsidiary commandsgenerate , step , andfinish for more detailed control. The
next section describes thectl generate-step-finish model. Subsequent sections describe how to
use the commands, and how to installctl into a program.

4.3 The CTL Model

Using thectl model, each package has six executable sections:

1. Generator.

2. Generator plots.

3. Execute a “step.”

4. Post-step plots.

9

(Insert Package Execution Model
graphic illustration here.)

Figure 4.1: Package Execution Model

5. Finish (final edits, etc.).

6. Finish plots.

Normally, a package would be run by executing steps 1 and 2, repeating steps 3 and 4 until the
problem is completed, then finally executing steps 5 and 6. Therun command does just this,
with optional disabling of plots and an optional limit to the number of times the step is executed.
Of course, not all packages have active modules in all of these places. For example, there may
be no step part at all, or it may always complete in one step. By using thegenerate , step ,
andfinish commands, the user can control the six parts in some detail. The generator must be
executed before any of the others, however.

4.4 The User Interface

The user interface supplied withctl consists of variables the user can set plus the com-
mands generate , step maxsteps , finish , and run maxsteps . The command
run(maxsteps) is equivalent to:

generate
step(maxsteps)
finish

Each of the other three commands drives the corresponding section of the model. The optional
argumentmaxsteps to thestep command can be used to set a maximum number of steps to
be taken before returning. Each of the commands sets the variablectlstat with the value of the
status returned by each step: 0 = completed O.K., -1 = error. Thestep command may also return
the value 1 = DONE, indicating the package has concluded its “step” phase.

The detailed behavior of the commands can be changed by setting certain variables in thectl
package. These are:

• ctlpkg – the name of the package to run. If blank, the default, the current package is used.

• ctlplot – if no , do not run the stagespkggenp , pkgexep , pkgfinp .

• ctlexe – ifno , do not run the stagespkggen , pkgexe , andpkgfin .

• ctlopt, nctlopt – ctlopt is an array of 32 integers, which can be set by the user. The values
ctlopt, nctlopt are used as arguments to each of the six stage routines. The default value of
nctlopt is 0.

10 Chapter 4. CTL: Package Control

4.5 Adding CTL to Your Program

This section contains instructions for authors on how to add thectl package to their program.

4.5.1 Using the Model

Each of the six stages is driven by a separate routine. You will write some or all of these six
routines according to the specifications below. Then you will include filectl.pack in your
CONFIG input, and also inform CONFIG in your descriptions of other packages of which of the
six routines you have written.

Deciding how to divide your calculation between the six functionspkggen , pkggenp , pkgexe ,
pkgexep , pkgfin , andpkgfinp is an important step. You can do plotting in any of the six
steps. The user is then going to be able to run or not run the “p”-suffixed routines by setting control
variables inctl . For example, “ctlplot=no;run” skips all plotting routines and results in calls to
pkggen, pkgexe (iteratively), and pkgfin only. It may be appropriate to do some plots no matter
what the user enters; this is entirely up to you. Generally you will want to confine plotting to the
“p” routines and to use the iteration loop if at all appropriate. Which plotting packages you use are
up to you.

4.5.2 Connecting Everything Up

The routines shown in the model routines are called byctl . The CONFIG program supplies
“calls” to any of these routines that apply to your case. In subroutine and function names, replace
the letters pkg with your package name (i.e., myinit, mygen, mygenp, ..., myvers). Or, you may
supply your own names for these routines; see the section “Configuring the Packages” in manual
V, “Writing Basis Programs” for how to do this. In what follows, we will refer to these routines in
the form “pkgrout ” (where “rout ” is the root name of the routine, such asgen , etc.), but bear
in mind that you may give them your own names.

For each of the six routines that you do supply, include the root name of the routine in the descrip-
tion of the corresponding package in the CONFIG input file. For example, if you have a package
namedabc and you choose to writeabcgen andabcexe , then you would put the wordsgen
andexe in the CONFIG input file, such as:

package abc="ABC algorithm" gen exe limit=100
package ctl="Control Package"
firstpkg=(abc,ctl)

4.5.3 Passing Options

The six routines each have the arguments optlist,nopt. These should be declared:

4.5. Adding CTL to Your Program 11

integer optlist(32), nopt

The user may set the variablesctlopt andnctlopt and the user commands pass these values
to the routines. Authors may make whatever use they wish of these.

4.5.4 Functions PKGGEN and PKGGENP

Thegenerate command calls the functionpkggen(optlist,nopt) to “generate” a prob-
lem, typically after the user has set parameters using the parser. What “generate” means is up
to you. Typically you will want to usepkggen to do problem-dependent initialization, and for
packages which have no iteration loop,pkggen may be the only working module. Basis calls the
functionpkggenp(optlist,nopt) afterpkggen and does any plots desired afterpkggen
has executed. Note that one cannot ensure thatpkggenp will ever be executed since the user may
turn plotting off. However, one can be sure thatpkggen will be executed before eitherpkgexe
or pkgfin , described below.

You must declarepkggen andpkggenp to be type integer and they must return the symbolic
integers OK or ERR to indicate success and failure (CASE COUNTS).

4.5.5 Functions PKGEXE and PKGEXEP

Thestep command calls functionpkgexe(optlist,nopt) repeatedly until it returns either
DONE or ERR. It returns DONE when the problem has been completed, ERR if an error has
occurred, and OK if it should be called again. The step command may be given an integer argument
indicating the maximum number of steps to be taken. If the argument is not supplied, the value
defaults to the one set by CONFIG.

After each completion of pkgexe that returns OK or DONE, Basis calls
pkgexep(optlist,nopt) to do plots requested at that time. Whatpkgexe does on
each call is entirely up to the package author: a step in time, a trace of one ray among several, etc.
The functionspkgexe andpkgexep must be declared type integer.

4.5.6 Functions PKGFIN and PKGFINP

Finally, Basis calls the two functions to do final edits and plots at the completion of a run,
pkgfin(optlist,nopt) andpkgfinp(optlist,nopt) . Any other action desired can
be put in these routines. Basis allows the users to run these two routines together or separately at
any stage of the calculation, so they should be designed accordingly. These functions must be type
integer and return OK or ERR. -

12 Chapter 4. CTL: Package Control

CHAPTER

FIVE

FFT: Fast Fourier Transforms

5.1 Routine Interfaces

The FFT package consists of two functions that implement Fast Fourier Transforms:

• fft(x;dim) returns the discrete Fourier transform of real or complex array x. If present, dim
is the dimension over which the transform is taken for all values of the other subscripts. The
transform length, n = length(x) or shape(x)(dim), can be any integer>0, but the method is
most efficient when n is the product of small primes. x is assumed to be periodic in n+1. See
also the inverse transform, ffti.

• ffti(x;dim) returns the inverse of the Fourier transformfft . For x real or complex,
ffti(fft(x)) = x * n for x one-dimensional, where n = length(x), and ffti(fft (x,dim),dim) =
x * shape(x)(dim) for any x with dimensionality≥ dim.

5.2 Detailed Documentation

Basis built-in functionsfft and ffti are the interface to the SLATEC subroutinescfftf ,
cfftb , rfftf and rfftb . Data can be real or complex, and the length of the transformsN
can be any number, but the method is most efficient whenN is the product of small primes.

5.2.1 Transforms of one–dimensional data

For anyx periodic in N+1,

ffti(fft(x))/N = x

Whenx is a complex vector of lengthN, here regarded as subscriptedj=0,...,N-1, fft (x) returns

zk =
N−1∑
j=0

xj exp

(
−2πijk

N

)
, (5.1)

13

and the inverseffti(x) differs only in the sign in the exponential. Here the designation “inverse”
is arbitrary; either transform followed by the other returns the original values multiplied byN, i.e.
ffti(fft(x))/N = fft(ffti(x))/N = x .

Whenx is a real vector of lengthN, regarded as subscriptedj=0,...,N-1, fft(x) returns a real
vectorzof lengthN, defined as follows: Letl =N/2 for N even, andl =(N+1)/2 forN odd. The real
parts (cosine coefficients) and imaginary parts (sine coefficients) of the complex transform are

ck =
N−1∑
j=0

[
xj cos

(
2πjk

N

)]
(5.2)

, and

sk = −
N−1∑
j=0

[
xj sin

(
2πjk

N

)]
(5.3)

.

These Fourier coefficients are returned asfft = z = c0, c1, s1, ...,cl-1, sl-1, cl for N even, and
fft = z = c0, c1, s1, ...,cl-1, sl-1 for N odd.

TheseN values include all the distinct coefficients.

The inverse transformy =ffti (z) returnsy = Nx,

yj = z0 + (−1)jzN−1 +
l−1∑
k=1

2

[
z2k−1 cos

(
2πjk

N

)
− z2k sin

(
2πjk

N

)]
(5.4)

for N even,j=0,...,N-1, ForN odd, the term with the factor (-1)j does not arise.

5.2.2 Transforms of multi–dimensional data

If x has dimensionality at leastn, fft (x,n) performs a transform over thenth subscript, for all
values of the other subscripts. For example, ifx is two–dimensional,z = fft(fft (x,1),2) is its
transform, andx = ffti (ffti (z,1),2)/length (z) is the inverse transform.

File convolve in public librarybasis contains examples of one– and two–dimensional smooth-
ing and of solving Poisson’s equation.

14 Chapter 5. FFT: Fast Fourier Transforms

CHAPTER

SIX

FIT: Polynomial Fitting

The FIT package consists of two functions that implement polynomial fitting and a subsequent
evalation of that fit:

• fit(x,y,n) returns an array c(0:n) of coefficients of the n’th degree polynomial which best fits
the points y as a function of x in a least square’s sense. The element c(i) is the coeficient of
x**i.

• fitvalue(xx;c) returns the values of the polynomial described byc at the pointsxx . The
polynomial coeficients c are as returned byfit , and default to the set returned by the last
call to that function.

The routine fit causes these variables in the fit package to be set.

**** Fit:
Results of calling fit
fitn integer /-1/

degree of the polynomial
fitc(0:fitn) _real

coefficients

-

15

16

CHAPTER

SEVEN

The History Package h2

7.1 A Facility for Iterative Programs

Specifying package h2 results in a package being loaded whose name ishst ; this package is a
second-generation version of hst which relies on the pfb package for its implementation.

Programs which contain an iterative step, such as a time step, often need to collect the values
of variables after some or all of the iterative steps. This package assumes that there is an inte-
ger variable which is incremented after each iterative step, called the cycle-counter, and possibly
an independent variable, often representing time, which increases monotonically with the cycle-
counter. The package allows the user to periodically collect values of arbitrary expressions, using
a variety of mechanisms to select the frequency at which the values are collected. Each value of a
given quantity is called ageneration, while the entire collection is called itshistory. For example,
if a scalar quantity x is collected 20 times, then the history of x is an array of 20 values, each of
which is referred to as a generation of x.

This package allows many sets of quantities to be collected with differing conditions governing the
selection of generations, and allows different cycle-counters and independent variables for each
collection.

7.2 Tags

The history mechanism is based on the concept of a historytag. Associated with each history tag
are:

• A list of items whose history is to be collected.

• The place the history will be collected (file or memory).

• The name of the scalar real variable, if any, which is to be used as the independent variable.

• The name of the scalar integer variable which is to be used as the cycle-counter.

• Conditions determining when a generation is to be collected.

17

• A numerical priority that controls the order in which tags will be collected, if they otherwise
are collected at the same time or cycle.

User commands can be used to:

• Declare a new tag.

• Add an item to the tag.

• Set the name under which an item will be stored.

• Change the conditions determining when a generation is to be collected.

• Change the priority associated with the tag.

The routinehstory is then called after each cycle of the iterative procedure. The conditions gov-
erning the collection of a tag can be changed at any time. Once the first generation of a given tag
has been collected, items can not be added to it and the names under which the items are stored
cannot be changed. New tags may be created at any time.

7.2.1 Definitions

1. A tag containsitemswhose history is to be collected. An item is a string that defines any
Basis expression. They must be no longer than 72 characters in length. (If something more
complicated is needed, make the item the value of a user-defined function which returns the
desired value).

2. The condition determining when a generation is to be collected consists of a set of numerical
and logical conditions as follows:

• One or more of the following conditions on the cycle-counter or independent variable:

(a) Start, stop, and increment conditions, or,

(b) A list of values at which to collect;

and

• A logical-valued expression in Basis Language.

An item is collected if it meets one of the conditions on its cycle-counter or independent
variableand the logical expression evaluates to true. The default is to use a single condition
on the cycle-counter: starting now, never stopping, and collecting every cycle, with logical
condition “true”.

3. An actioncan be associated with a tag. When it is time to collect a generation of the tag, the
associated action is executed before any data is collected.

18 Chapter 7. The History Package h2

4. The numericalpriority associated with a tag affects the order in which tags are collected,
if they otherwise would be collected at the same cycle or time. Priority is a floating point
value. Zero is the default value. If two tags have different priority, the tag with the higher
numerical priority will be collected first at a given cycle. If two tags have equal priority, the
first tag defined is the first one collected at a given cycle.

7.3 Installation and Use

To add thehst package to your program, add the packagesh2 to your Dirlist. This will automati-
cally get everything you need. If you are not usingmmmwe suggest you use it to produce a sample
makefile from which you can extract the correct loading incantations for a given site. These vary
so much from site to site that we will not attempt to list them here.

7.4 User Interface

This section describes the command interface used by the user of a program containing thehst
package. A later section describes the subroutine interface, which may be used by either a user or
an author.

A note on syntax: the user interface is implemented using the Basis command syntax and macros.
Unless otherwise noted, the arguments to the history commands are space or comma delimited,
macros are not expanded in collecting the arguments, and string-valued arguments need not be
quoted unless they contain spaces. Spaces and commas inside parentheses do not count as delim-
iters. The effect is that you get what you want if you type expressions in a natural way, but without
extraneous spaces unless inside parentheses. The macros inside items are expanded when it is time
to evaluate the item.

1. Declare a new time history tag.

newtag <tag> [filename]

• This command declares a new history tag. It is not necessary to use this command
if the tag is to use the default device; the other commands that require a tag name,
such ascollect , will create the tag for you. Macros are expanded in collecting the
arguments, which are string-valued. If filename is omitted, the tag is kept in the default
file. The default file’s name is taken from the package variablehstdev . If filename
is blank, the tag is kept in memory. The initial value ofhstdev is blank, so unless
hstdev is changed, the commandnewtag <tag> keeps the history in memory.
The routinehstsdev can be used to changehstdev .

• The name of the independent variable is taken from the history package variable
hsttime . The routinehststim can be used to changehsttime . If hsttime
is blank, there is no independent variable for this tag.

7.3. Installation and Use 19

• The cycle-counter variable’s name is taken from the history package variable
hstcycle . The routinehstscyc can be used to changehstcycle

Every tag contains the following items initially:

• An item corresponding to the cycle-counter.

• An item corresponding to the independent variable, if there is one.

2. Add an item to the tag. There are two forms of the command for adding items to a tag; the
second form is simply a short-hand way of listing many items that have the same subscript
or function arguments.

items <tag> <itemlist>
items <tag> [elements <elementlist> of] <variablelist>
itemsv <tag> <itemlist>
itemsv <tag> [elements <elementlist> of] <variablelist>

An <itemlist> is simply a list of the items to be collected, space or comma delimited.
Each item is a string specifying the expression to be collected. The itemsv form must be
used if the item represents a quantity whose shape or type may vary over time.

An item may terminate with an at-sign (@) followed by a name; if it does, the name is used as
the name of the history. Otherwise, the name under which the item will be stored in memory
or a file is set to<tag> <item> . If the item is to be stored in a file, the name may be
adjusted to make it a legal name for the database used.

When you have one or more variables you wish to collect at a set of subscripts, the second
form allows you to list the set of subscripts in the<elementlist> and the names of the
variables in the<variablelist> . Every combination of variables and elements becomes
an item added to the tag. The<elementlist> subscripts should include the parentheses.
Do not use the at-sign notation with this form.

This command must be executed before the first collection of the tag occurs.

3. Associate an action to the tag.

An expression can be associated to a tag; this expression will be executed when it is time to
collect the tag but before collecting the next generation. This expression is called the tag’s
action. The usual purpose of an action is to calculate the values of some variables that belong
to the tag. It is only executed after determining that the conditions on collecting the tag have
been met.

tagaction <tag> <action>

whereaction is a string containing any Basis Language expression, sets the action for
<tag> . Omitting action deletes the tag’s action. The second argument includes every-
thing up to the next semicolon or the end of the line, with no macro expansion. When the
action is executed, macros will be expanded. To include a semicolon in the action, enclose
the action in quotes.

20 Chapter 7. The History Package h2

4. Change the tag priority.

tagpriority <tag> <priority>

The default forpriority is 0.0. Higher values indicate higher priority.

5. Change the conditions determining when a generation is to be collected.

When a tag is created, its condition is initialized to cycle-counter condition start = now, stop
= never, step = 1, logical conditiontrue . This condition can be changed or added to with
the collect andandcollect commands. The collect command replaces all existing
conditions on the cycle-counter or independent variable for a given tag. The andcollect com-
mand is identical to the collect command, except that it adds the conditions to the existing
set.

There are three forms of these commands: with the tag name and one real or integer argu-
ment; with the tag name and sets of three scalar integer or real arguments; with the tag name
and one scalar string argument. Macros are expanded in all arguments except the tag name,
and all arguments are expressions, not strings.

• Specifying a list of specific values.

collect <tag> <list>
andcollect <tag> <list>

The collect command declares a list of values of the cycle-counter or independent vari-
able at which the generations of<tag> are to be collected.<list> is either a vector
of real values of the independent variable at which to collect or a vector of integer
values of cycle numbers at which to collect. The values need not be sorted. If the ap-
propriate variable passes over more than one value in the list in a single cycle, only one
sample is collected. The collect command replaces all existing conditions on the cycle-
counter or independent variable for a given tag. The andcollect command is identical
to the collect command, except that it adds the list to the existing set.

• Specifying start, stop, and interval values.

collect <tag> <start> <stop> <step> ...
andcollect <tag> <start> <stop> <step> ...

This command specifies start, stop, and increment values governing the collection of
generations of the<tag> . The type of the values<start> , <step> , <stop> de-
termines which kind of limits these are, cycle or independent variable. If<start> or
<stop> is real, and<step> is integer, the increment used is(<stop> - <start>)/(
<step> -1). There may be as many sets of three values as desired. The collect com-
mand replaces all existing conditions on the cycle-counter or independent variable for
a given tag. The andcollect command is identical to the collect command, except that
it adds the conditions to the existing set.

• Specifying a logical condition.

collect <tag> "<condition>"
andcollect <tag> "<condition>"

7.4. User Interface 21

• A string value for the second argument sets the logical condition under which the gen-
eration of<tag> is to be collected. (Note that the quotation marks are usually required
since the arguments to the collect command are expressions.)"<condition>" must
be a string which can be evaluated to yield a logical value in the Basis Language.
Theandcollect command sets the logical condition to the string(present)&(
<condition>) wherepresent is the current value of the condition.

6. Collect history. There are six functions available:

call hstall
call hstalll
call hstallc
call history("<tag>")
call historyl("<tag>")
call historyc("<tag>")

The routineshstall , hstalll , and hstallc each callhstory , hstoryl , and
hstoryc , respectively, for all tags. The argument to the latter routines is the name of a
specific tag.

The essential routine ishstory . Routinehstoryl is used at the end of a problem, and
hstoryc can be be used to check items before beginning a run.

• hstory is meant to be called after every increment to the cycle counter of a tag is
completed. It decides whether it is time to collect a generation of the tag, and if so,
executes any action associated with the tag, collects and stores the data for each item,
and resets the conditions for the next generation to be collected.

• hstoryl is a variant ofhstory for collecting a “last point”. It collects a generation
of every tag for which there is a pending collection value, even though that time has
not yet been reached, as long as the logical condition is met.

• hstoryc attempts to check the items belonging to the tag for validity. It does this by
attempting to evaluate the item. This can fail even when the item is in fact valid. Some
examples of this are: if an array is not currently allocated space but will be by the time
the item is collected; if an item involves an arithmetical calculation which is not valid
now but will be when the tag is collected.

7. Displaying the status of tags.

call hstallp
call hstprint("<tag>")

Routinehstallp callshstprint with the name of each tag in turn.

hstprint prints a report of the status of each tag to the terminal.

22 Chapter 7. The History Package h2

7.5 Dumping and Restarting

All the variables, including any time histories generated during a run, that need to be preserved
over a dump/restart, have the attribute “dump”. Thus, to dump the history package you need only
ask thepfb package to create a file and then dump all variables with attribute “dump” to it. A
typical method is:

integer fileid, pfbopen
fileid = pfbopen("mydump","w")
call pfbsave("all",fileid)
call pfbasave("dump",fileid)
call pfbclose(fileid)

After restoring from a file containing this package, youmustcall the routinepfbhst .

call hstrest

7.6 History Arrays

There are two kinds of history items, those created with the ”items” command, which are of fixed
shape and type, and those created with the ”itemsv” command, which may vary in shape or type.

For normal ”items”, the first time a history is collected in memory, the history array is created
as the first generation with an extra dimension added to it. Any leading dimensions of size 1 are
squeezed out. Thus, if h is the name of the history, and x is the item, the result is:

hst chameleon h = squeeze(x)
call rtadddim("hst.h")

As subsequent generations are collected, the new value of the history will be the result of the Basis
expression

hst.h:=x

which must be a legal expression. This means that if x is always a scalar, then h(i) is the i’th
generation ; likewise h(,,i) is the i’th generation if x is a two-dimensional array.

For items declared with the ”itemsv” command, the semantics of subsequent collection are:

hst.h:=[hst.h,x]

Note that therefore changes of size or shape will obliterate the distinctions between the generations
unless the user also collects auxiliary information to use in decoding the resulting history. Exam-
ple: suppose y is a one-dimensional array which changes its length. Then besides collecting y, we
should collect length(y) so we can calculate where the generations of y begin in the history, which
will be a one-dimensional array rather than a two-dimensional array.

7.5. Dumping and Restarting 23

7.7 Deciding When To Collect

The conditions the user can set can either be on the independent variable or on the cycle-counter.
The user can specify a set of such conditions for each tag; the tag will be collected whenever any
one of the conditions is satisfied (provided the logical condition is satisfied too).

We can view the start-stop-step form of a condition as specifying a list, so the problem of deter-
mining when to collect a generation can be phrased in terms of the list-type condition. The value
of the cycle-counter or independent variable we will call the “current value”. We call the value at
which the next collection may occur the “pending value”.

When a tag is created, the cycle at which the tag was last collected is set to minus infinity. The tag
is marked “active”.

When a collect command is executed, a value for the condition called the pending value is set to
the smallest element in the list. The tag is marked “active”.

When the routine hstory is called, no action is taken if the tag is inactive. If a tag is active, a tag is
collected if, for one of the tag’s conditions, the current value is greater than or equal to the pending
value and the logical condition is true, and the current cycle-counter is larger than it was the last
time this tag was collected.

When a tag is collected, the cycle-last-collected is set to the current value of the cycle-counter. The
pending value is recalculated as follows, for each condition belonging to the tag. (The pending
value is also recalculated if it is time to collect the tag but the logical condition is false). If the
current value is smaller than the maximum value in the list, the pending value is set to the smallest
element in the list which is strictly larger than the current value. If there is no such element, the
condition is removed. If there are no conditions remaining, the tag is marked “inactive”.

7.8 Examples

7.8.1 A simple tag kept in memory

hsttime="time"
hstcycle="ncyc"
items t1 a,b
collect t1 0 100 10
run # run the program, which calls hstall
plot t1a,t1time
plot t1b,t1time

This example assumes that a and b are scalar quantities, so thatt1a , t1b , and t1time are
vectors. The collect statement sets this quantity to be collected every ten cycles up to and including
cycle 100.

24 Chapter 7. The History Package h2

7.8.2 How to deal with fancy names

The history package creates history names which may be long or clumsy. You can use the@name
option in anitems command to make the history have a simpler name. If you do not, you can
make it easier when accessing the variable later in several different ways. For example:

define y timehistr_3_2_
indirect z = "timehistr_3_2_"
function w(;k)
default(k)=1:length(timehistr_3_2_)
return(timehstr_3_2_(k))
endf

makesy , z , andwall easy ways to get attimehistr 3 2 .

7.8.3 A tag kept in a file, collected subject to a condition

newtag blue junkfile
items blue x,y,z(20)
items blue elements (4) (7) (10) of yw
items blue elements (4,5:12) of www
collect blue "energy > 10"
collect blue 0. 3. .2

7.8.4 Using the macro processor

Since macros are not normally expanded in an items command, we need to use a macro which
expands into a list of quoted items, and then precede the macro name with a caret escape. For
example:

mdef myzones= "(3,4)" "(5,10)" "(6,10)" mend
items green elements ˆmyzones of a,b,c,d
items green elements ˆmyzones of e,f,g
collect green 0 10000 20
run
plot ’greena(3,4)’,’greenb(3,4)’

7.8.5 A tag collected at a list of times

collect charged [1.,2.,3.,4.4]
items charged a@ahist,b@bhist,c@chist

7.8. Examples 25

In this example, the history of a is collected as ahist, that of b as bhist, and that of c as chist, rather
than using the default names chargedhista, etc.

7.8.6 A tag collected at log intervals

newtag neutral file
neutral d,e,f
#collect neutral at 1.e-5, 1.e-4,, 0., 10.
collect neutral 10.**iota(-5,1)

7.8.7 Function items

mass and volume are code variables dimensioned (k,l).
function density(i,j)
default(i)=1:k
default(j)=1:l
return mass(i,j)/volume(i,j)
endf
items yellow density(2,3)@den23
items yellow density
collect yellow [10,20,30,40,44]

At cycles 10, 20, 30, 40, and 44, the following quantities will be collected:

density(2,3) #history named ’den23’
density(1:k,1:l)

7.8.8 A traveling probe

Imagine the program contains one-dimensional arrays x and y, and we want to track the values of
x and y at the point at which y is a maximum.

real x1, y1
items probe x1, y1
collect probe 0., 10., .1
tagaction probe "global real x1=x(mxx(y)), y1 = y(mxx(y))"

When it is time to collect probe, the action is executed so that x1 and y1 have the desired values.

Here is another way to accomplish the same thing:

items probe2 x(mxx(y)), y(mxx(y))
collect probe2 0., 10., 1.

26 Chapter 7. The History Package h2

For further examples see the test routine, test.hst. It is located in thehst library.

7.8. Examples 27

28

CHAPTER

EIGHT

PFB Package

8.1 Summary

PFB is a Basis package (Portable-Files-from-Basis) which adds an interpreter interface built on top
of a Fortran interface to portable database files. The PFB package can be easily added to any Basis
program (See8.8.) On installations where PDB is present, the program basis usually includes
the PFB package. PFB can be used with or without the PDBSAV package. Currently, the only
database format available is PDB.

openfilelist

opengfilelist

ls [-aflrs] varlist

closefileid

record [number]

jt when

createfilename

write varlist

writeas expression,name

writef varlist

restorefilelist

8.2 Reading Files

8.2.1 File Numbers

As each file is opened for read or write, it is given a number. The list of files and their numbers
can be seen using thels -a command. Once a particular named file is opened, it always retains the
same number even if it is closed and reopened later.

29

The current file open for read is the last one specified in anopencommand. The current file open
for write is the last one specified in acreatecommand. These commands can be used to switch
attention between several files open for reading and writing.

8.2.2 Opening and Closing Files

open

Calling Sequence

open filelist

open filenumber

Description

open opens each file for reading. The list can be comma or space separated. The names of the
files need not be quoted. If you wish to open a file whose name is the result of a Basis expression,
preceed the expression with a caret. If an open command is given on a file open for write, it is first
closed.

The Basis path is searched for the file if it is not in the current directory. If more than one file is
specified, they are opened in the order given and the last one becomes the current read file.

If a file is already open, theopen command can be used to make it the current read file. In this
case, the file number can be given in lieu of the file name. The variablepfbofam governs whether
or not a family of files is opened as a whole.

openg

Calling Sequence

openg filelist

Description

openg is a command for connecting together history files which pfb either does not recognize or
which it has not opened as a unit due to thepfbofam option being no.

The arguments can be file names or the fileid numbers of previously accessed files.

Each file is opened normally, observing the convention to open subsequent family members or not
depending on the status of pfbofam. Each successive file is “glued” to the first, and then closed, so
at the end only one file sequence is open, the first, which contains records that span the entire set.

The files should be given in order of increasing sequence number. Example: a user has a family
file00, file01, file02, file03, but file02 has been lost. Withpfbofam=yes , we do:

30 Chapter 8. PFB Package

openg file00 file03

Please note that if you close a glued sequence the gluing is lost. In the above example about the
missing file02, closing file00 and then doing open file00 would result in only opening files file00
and file01 as a unit.

The process of gluing is carried out by routine

pfbglue(fileid1, fileid2)

which is Fortran or Basis callable. The two arguments are the fileids (not the names) of the two
pieces to be glued. The sequence represented by fileid2 is “glued” to that of fileid1 and then fileid2
is closed.

Gluing means: The last record kept from the first sequence is the last one whose cycle number is
strictly less than the first cycle number from the second sequence. It is an error if there is no such
record. Given the set of files f00,f01,f02,f03, the following two lines lead to equivalent sequences
open under the name “f00”.

pfbofam=yes; open f00
pfbofam=no; openg f00 f01 f02 f03

Other than the check on the cycle number, no attempt is made to see if the operation of gluing
makes sense. In particular, the only accessible variables are those occurring in the first file, and it
is assumed they occur in the later files with the same size and type.

It is not yet ok to open together files with different representations, such as part of a family from a
workstation with part from a Cray.

close

Calling Sequence

close [fileid]

Description

Closes a file so that its variables are no longer visible to Basis. Files not otherwise closed are
closed when the program ends. If fileid is not given, the file currently open for write is closed, if
there is one. Otherwise the file currently open for read is closed.

8.2.3 Disambiguating Variables with Identical Names

If an open file contains a variable with a given name, sayfoo, the question arises of how to refer
to this variable in preference to another variable in the program which has opened the file. The

8.2. Reading Files 31

variable in the file is considered a variable in the pfb package, and as such its “full” name ispfb.foo.
If you wish to make file variables have precedence over compiled code variables you can give the
pfb package a higher precedence with the command

package pfb

User-created variables have a higher priority than file variables unless you setusrfirst =
false .

8.2.4 Listing Files and Their Contents

ls

Calling Sequence

ls [-aflrs] [varlist] [-x ls_options]

Description

The ls command can list information about files opened or created, and about variables and time
history records in the current file open for read. The options can be given separately or together
(ls -ar or ls -a -r , for example).

The -f option causesls to print information about the open files. Files open for read will be
preceded by “>>”, those open for write will be preceded by “<<”. The current file open for read,
and the current file open for write, will be marked with a plus sign.

The -a option causes all files that have been accessed to be listed, even if they are not currently
open.

The-r option will list information about the current family of files and the times and cycle num-
bers of therecords in each. See the discussion of time history files, below.

ls will describe the variables in the current database file. Thevarlist can be a space or comma
delimited list of names or keywords. Each name given will be described. If no argument is given,
all entries in the given file will be described.ls can list information about the chosen variables
in two forms, short and long. The short list lists only the names of the variables in the file and is
the default. The default can be permanently changed by setting the control variablels = yes
or no , yes meaning a short list. (See CONTROL VARIABLES.) The default form of the listing
can be overridden withls -l or ls -s for long and short forms respectively.ls foo.* will
list only those variables in the file whose package designator isfoo. Macro texts have a package
designator of “macro”. Functions have a package designator of “funct”.ls foo* will list those
variables whose names start withfoo.

When als command is issued when no file is open for read, the files of the current directory
are listed instead. The-x option can be used to add directory listing to ordinary variable listing
requests.

32 Chapter 8. PFB Package

If no file is open for read, the arguments to thels command, if any, are passed on to a call to the
standard Unix ls. (The actual command executed is in control variablepfblsopt . The default
value is “pwd;/bin/ls” to which any arguments are appended. Remember that the command is
executed by the Bourne shell.)

If a file is open for read, you may add a-x option, followed by other arguments, to be passed on
in the same fashion, at the end of an ordinary ls command (in this case, if-x is the first option, no
list of file variables is done).

8.2.5 Accessing Variables

All the variables in the current read file will be known to the interpreter. Each variable in the file
has an official name by which it is known in the file. If that name contains an at-sign (@), as it does
for any file written by thewrite command, orpfbsave , the part before the at-sign is the “short
name” and the part after it is the “package name”. A short name can be used to access a variable
from the interpreter; if this name is ambiguous the first such variable encountered in the file is
returned. The package name is the name of the Basis package to which the variable belonged, or
a keyword “macro”, “funct”, “history”, “open”, “hidden”, or “record”, used to indicate that the
variable has contents with a special meaning. If no at-sign occurs in the variable name, both the
short and long names are equal to this name, and the package name is blank. (The only way to
write a item whose full name does not have at at-sign in it is to use thewriteas command, below,
and end the target name with an at-sign.)

If a name is specified that contains a percent sign (%) followed by an integer, and that integer
corresponds to the number of a file which is open for read, it is interpreted to mean that the name
up to the percent sign is to be read from the file of the corresponding number. The current file does
not change. Note that any name containing a % must be surrounded by single quotes.

Example

For example, if filesabcanddef both contain a variable namedx, then their difference could be
printed with:

open abc, def; ’x%2’ - ’x%1’

The ’x%2’ could just be a plainx , since at that pointdef is the current file.

See also ACTIONS WHEN OPENING A FILE, below.

8.3 Writing Files

8.3.1 Creating or appending to PDB files

create and append

Calling Sequence

8.3. Writing Files 33

create filelist
append filelist

Description

Creates each file named in the list. If a file exists but is not currently open for write, it is destroyed.
The control variablepfbask controls whether or not the user is given a chance to object to this.
(See CONTROL VARIABLES). Theappend command can be used to open a file and then writing
more information into it..

If a file is already open for write, the create command can be used to make it the current write file.
In this case, the file number can be given in lieu of the file name.

8.3.2 Writing Information to Files

write

Calling Sequence

write list

Description

Given alist of comma-delimited list of items, each of which is a variable name or basis expression,
writes their contents into the current output file. The keyword “functions” causes all user defined
functions to be written. The keyword “macros” causes all macro definitions to be written. The
keyword “variables” causes all user-created variables in the global database to be written. The
keyword “all” writes macros, functions, and variables.

The name used to store the value in the file will depend on the nature of the item to be written.
For the name of a variable, it will bename@pkg, wherepkg is the package to which the variable
belongs. For an expression, the name will bee@value, wheree is derived from the text of the
expression by replacing all non-alphanumeric characters by underscores and truncating characters
in excess of 24. It is the users responsibility to avoid name collisions between different items.

If an item is simply the name of a macro or function, the macro or function it must accept being
called with no arguments. The name used to store the result isname@value. (Seewritef , below,
for storing the function or macro text.)

writef

Calling Sequence

writef list

34 Chapter 8. PFB Package

Description

Thewritef command works the same aswrite except in the case of an item which is the name
of a function or macro, in which case the function or macro definition is stored, not the value
obtained by calling it with no arguments. The name used to store it in the file isname@functor
name@macro.

writeas

Calling Sequence

writeas expression name

Description

Writes a variable into the file with file namenamewith a value equal toexpression. If namedoes
not contain an ampersand, “@value” will be appended. Ifnameends in an ampersand, the name
used will benameless the final @.

8.4 Restoring From A FIle

8.4.1 The restore command

While the normal read procedures can access the data in a file, they do not bring it into memory
as a permanent variable. Therestore command is used to bring in variables and store them in
appropriate places in the receiving program. The most common reason for doing this is as part of a
restart procedure that allows continuing a long calculation whose state was saved. Most commonly
this is done using a combination ofwrite commands with the attribute server routinepfbasav e.

restore

Calling Sequence

restore filelist

Description

Opens each file in the list, restores the variables in it into the code, as described below, and closes
it. Filelist can be comma or space separated. The names of the files need not be quoted. If you
wish to restore from a file whose name is the result of a Basis expression, precede the expression
with a caret. If you wish to restore selected items from a file, see pfbrest.

Restoring is the act of putting back into memory the values in a file written by PFB. This is done
according to the following set of rules. Each “item” in the file is treated in the order written.

8.4. Restoring From A FIle 35

• A macro is restored if it is NOT currently defined.

• A Basis function is restored if it is NOT currently defined.

• A structure is not restored.

• A history variable is not restored.

• If the package name isvalue the variable is not restored. Such variables result from
writeas , above.

• For each other item in the file the following protocol is followed. If the package name is not
that of a package in this program, it is changed to “global”. Then:

1. If a variable name corresponding to the package name and short name exists, the values are
restored to it. If the variable is dynamic, memory is allocated for it using the dimensions of
the item in the file. Any existing contents are lost.

2. If there is no corresponding program variable, it is created and the values restored to it. Its
“original shape” string is set to reflect the current shape.

3. An existing chameleon variable also has its shape set to the new size.

For an existing variable, if there is not a perfect match between file and variable in terms of size
and type, the file variable is read into memory and an assignment is attempted (as if executing
codevar = filevar). If the program variable is statically allocated, an assignment is at-
tempted. If it is dynamically allocated, it is allocated at the correct number of elements with its
current type.

Cautions

• A dynamic variable with the right type but a completely different shape can chameleon itself
to the new shape under these rules.

• There is no checking against the compiled dimension string in these cases. A call to
baschange after restoring may be in order if you aren’t playing straight with PFB.

• Dynamic, limited variables which are saved and then restored will be at the limited size,
which may make them inconsistent with their dimensioning string.

• Restoring into a different program than originally wrote the data is permitted but errors may
occur due to conflicts in names, types, or shapes.

Following a restore , the functionpfbrerrs() returns the number of errors due to these
causes.

An individual item may be restored by using the functional interfacepfbrest .

Example: Simple Dump/Restart Using Basis

36 Chapter 8. PFB Package

create mydump
write all
call pfbasave("dump")
close

on a later date ...
restore mydump

Example: More Sophisticated Dump/Restart From Fortran

Here is a typical invocation from Fortran, saving all user functions, macros, and variables along
with all variables that have the attributechanged , keep , or dump. The calls topfbalist are
to ensure that variables to which the user has given these attributes at run-time are able to be given
the attribute after restore bypfbaset.

subroutine dumper(dumpname)
character*(*) dumpname
integer fileid, pfbopen, basisexe, status
external pfbopen,basisexe
logical isthere
character*300 basiscmd

inquire(file=dumpname,exist=isthere)
if(isthere) then

basiscmd="/bin/rm "//dumpname
status = basisexe(basiscmd)

endif

fileid = pfbopen(dumpname,"w")
call pfbalist("v_changed","changed")
call pfbalist("v_keep","keep")
call pfbalist("v_dump","dump")

call pfbsave("all",fileid)
call pfbasave("dump|keep|changed",fileid)

call pfbclose(fileid)
return
end

subroutine restart(dumpname)
integer fileid, pfbopen
external pfbopen
character*(*) dumpname
integer space

8.4. Restoring From A FIle 37

fileid = pfbopen(dumpname,"r")
call pfbrest(fileid," ")
call pfbclose(fileid)

needed only if h2 package used
call hstrest

re-establish attributes keep, dump, changed
call pfbaset("global.v_keep")
call pfbaset("global.v_dump")
call pfbaset("global.v_changed")
return
end

8.4.2 pfbrest(fileid,name)

Therestore command is actually implemented via the routinepfbrest , which may be called
directly if you wish to restore just a particular item from a file.

8.4.3 pfbrs

pfbrs(name;fileid) calls pfbrest(fileid,name) . This allows you to restore one
item from the current file without explicitly referring to the fileid since the second argument de-
faults to it.

8.5 Time Histories

8.5.1 Beginning and Ending Records

PFB can write variables periodically to a file so that in the file they appear to have an extra final
dimension representing time. The normal write functions are used to write history variables. To
begin time history output, one first callspfbbegr . At the end of a set of writes for that time, call
pfbendr .

History files written by the old dmi2pdb interface can be read by PFB. The package namerecord
is used for each data member. Data members whose names contain a period cannot be accessed.
The names of the structures and certain auxillary variables are also hidden from the user.

History files written by the POP-to-PDB translator can be opened by PFB correctly. To get a
correct time catalog, first setpfbdtime = "time@history" .

38 Chapter 8. PFB Package

8.5.2 File Families

The integer functionpfbfam(fileid) looks at the current file being written associated with
fileid, and if it contains more than the number of words in the control variablepfbmax, it closes
that file, opens the next file in the sequence, and returns the new fileid. Otherwise it simply returns
fileid.

8.5.3 Reading History Values

When reading history variables, the user may specify all dimensions, but if the user does not
explicitly supply the final (time) index, it defaults to the current value determined by therecord
command or thejt command, given below.

When supplying the final index, the user may give an integer record value or a real value represent-
ing a time. The latter will be converted to an integer representing the record whose time is nearest
the given time. In this case the current record number is not affected.

record

Calling Sequence

record [n]

Description

record sets the current record number ton. If no record number is given, the current record
number is printed.

jt (jump to time)

Calling Sequence

jt t
jt n

Description

jt sets the current record to the given time or cycle n. The type of the argument determines
whether it is interpreted as a time or as a cycle number. See also the functionspfbjc andpfbjt .

History File Details

PFB treats a variable in a file as a history variable if and only if the package name of the variable is
historyor record. , A file is treated as a possible familied file for reading if and only if it contains

8.5. Time Histories 39

at least one history variable. The control variablepfbofamcan be set tono in order to open only
one member of a family.

Caution

When a family is open, do not open explicitly any other member of the family except the first one.

8.6 Actions When Opening a File

writeas can be used to store a scalar or array of type character into a file under a namesome-
thing@open. If such a file is later opened, the entire text of each item whose name ends in@open,
treated as one long character string, will be parsed as Basis Language when the file is opened. (An
open command done for the purposes of switching from one open file to the other does not trigger
this, just the initial open.)

This behavior can be suppressed by setting the variablepfbact = no .

8.7 Control Variables

A number of variables are available to control the detailed behavior of the PFB package.

• pfbdebug controls the debugging output of the pfb package. The amount of extra detail
increases as you increase the value. (default 0)

• pfbask controls what happens to an existing file when asked to create a file by that name.
Think hard before setting yes in a batch job. (default:no)

• pfbls controls whether or not the default listing mode is short (default, yes)

• pfbmax is the number of words a file can contain beforepfbfam will family it. (default
250000 words)

• pfbcycle is the name of the variable to use for cataloging cycles when creating a history file..
If blank, the record number is used. Default: blank

• pfbtime is the name of the variable to use for cataloging time when creating a history file. If
blank, the floating point record number is used as time. Default:blank

• pfbofam if set tono prevents more than one family member from being opened. record and

jt still work within the one file. Default: yes.

• pfbhide if set to no lists variables in old-stylerecord files that you normally shouldn’t see.

• pfbhide if yes, don’t show dmi2pdb superstructure in dap-style old history files (yes)

40 Chapter 8. PFB Package

• pfbdcyc informs PFB of name of cycle variable in non-standard file; set it before opening
file (blank)

• pfbdtime informs PFB of name of time variable in non-standard file; set it before opening
(blank)

• pfbact – on open for read, parse contents of variables named *@open? (yes)

8.8 Installation and Use

To add thepfb package to your program, add the packagespfb to your Dirlist. This will auto-
matically get everything you need.

8.9 Functional Interface

These routines are callable from Fortran or Basis, except for the builtin functions which can only
be called from Basis. When a semicolon appears in the argument list, it indicates that the following
arguments are optional from Basis.

8.9.1 File manipulation

pfbopen(name:string;access:string) integer function
returns fileid

pfbopend(fileid:integer) subroutine
parse contents of each variable named *@open in file.

pfbclose(;fileid:integer) subroutine
close the file; defaults to write file, if any, else read file

pfbfile(fileid:integer) builtin [1]
return the name of the file given fileid

pfbfile(fileid1:integer,fileid2:integer) subroutine
glue family connected to fileid2 to fileid1, closing fileid2.

8.9.2 Writing

These routines assumefileid is the file id (returned bypfbopen) of a file open for write.

pfbsave(name:string;fileid:integer) subroutine
save item to file; can invoke with write macro
fileid defaults to file id of current write file

pfbsavee(expr, name:string, fileid:integer) builtin [2-3]

8.8. Installation and Use 41

save expr as name
pfbasave(aexp:string;fileid:integer) subroutine

save things satisfying attribute expression aexp.
fileid defaults to file id of current write file

pfbalist(v:string, a:string) subroutine
create a list of variables satisfying a as variable v
first element of the list is a

8.9.3 Restoring

These routines assumefileid is the file id (returned bypfbopen) of a file open for read.

pfbrest(;fileid:integer,name:string) subroutine
restore from the file; restore just name if not blank

pfbrs(name:string;fileid:integer) subroutine
restore from the file; restore just name if not blank

pfbaset(v:string) subroutine
Given v made by pfbalist, restore attribute to variables
Call after doing the restore from the file

pfbrerrs() integer function
return number of errors in last call to pfbrest

pfbpad(jvar:integer, ndb:integer) integer function
User-replaceable function to pad variable being restored.

8.9.4 File catalog

These routines assumefileid is the file id (returned bypfbopen) of a file open for read.

pfbcount(;fileid:integer) integer function
number of names in current read file

pfblong(i:integer;fileid:integer) character*(NPDBN) function
return the long name of the i’th entry

pfbpack(i:integer;fileid:integer) character*(NPN) function
return the package name of the i’th entry

pfbname(i:integer;fileid:integer) character*(NPDBN) function
return the short name of the i’th entry

8.9.5 Time History

pfbjt(t:real;fileid:integer) integer function
return record number closest to given time

42 Chapter 8. PFB Package

pfbjc(n:integer;fileid:integer) integer function
return record number closest to given cycle number

pfbbegr(;fileid:integer) subroutine
enter record mode

pfbendr(;fileid:integer) subroutine
leave record mode

pfbgrec(;fileid:integer) integer function
return current record number in file being written

pfbsrec(;irec:integer) subroutine
set record number for reading

pfbfam(;fileid:integer) integer function
return fileid or fileid of new family member of file, if full

pfbgoto(when) builtin [1]
set record number to last record before or equal to given time or cycle

8.9.6 Internal and Command Implementation

The following routines are not normally directly called by users from either Fortran or Basis.

file_access builtin [0-7]
Internal mechanism used by PFB package to access data in files

pfbopenl(namelist) builtin [0-100]
implements the open command

pfbopeng(namelist) builtin [0-100]
implements the openg command

pfbclosel(fileidlist) builtin [0-100]
implements the close command

pfbcreatel(namelist) builtin [0-100]
implements the create command

pfbappendl(namelist) builtin [0-100]
implements the append command

pfblist(stringlist) builtin [0-100]
#ls [help|files|names|records]

pfblsrec(;fileid;unit) subroutine
#ls records implementation

pfbwras(fileid,irec,name:string,typecode:integer,fwa:integer,
ndim,ilow,ihi,icol) subroutine

nitty-gritty output routine, do not try this at home
pfbrestl(namelist) builtin [0-100]

restore name1, name2, ...
pfbsavel(namelist) builtin [0-100]

write name1, name2, ...
pfbsavfl(namelist) builtin [0-100]

writef name1, name2, ...

8.9. Functional Interface 43

44

CHAPTER

NINE

SVD: Singular Value Decomposition

SVD supplies the routinesvd(a) , which performs a singular value decomposition of the input
matrixa and returns the results in variables in the svd package.

svd(x) calculates the singular value decomposition (svdu, svds, svdvt) such that x = svdu *! d *!
svdvt, where svdu and svdvt are unitary, and d is a matrix whose first svdnm diagonal elements are
svds. uses the appropriate lapack routines to return 64 bit precision answers

In Basis Language terms:

call svd(x)
real(8) d(svdm,svdn)
d = diag(svds)
svdu *! d *! svdvt => should be approximately x

The variables set by the call tosvd are as follows. The precision of the real variables returned is
64 bit regardless of the precision of the input.

**** SVD:
svdm integer /0/

#first dimension of most recent argument to svd
svdn integer /0/

#second dimension of most recent argument to svd
svdnm integer

min (svdn, svdm)
svdu(svdm,svdm) _real

output u
svds(svdnm) _real

vector of singular values
svdvt(svdn,svdn) _real

v-transpose
svdinfo integer /0/

result code, 0 means ok
svdlw integer /0/

45

Work space used is at least 5*max(svdn,svdm)
svdlw holds the ideal amount suggested by Lapack
this is used on
the next call to svd with an identical problem size

svdwork(svdlw) _real
work space

-

46 Chapter 9. SVD: Singular Value Decomposition

CHAPTER

TEN

TIM: Interrupt Timing

tim is a package which drives the 4 ms. interrupt p-counter sampling timer package. It is used
in conjunction with the tally program. See filetim.doc for full instructions. tim is useful
for finding out where your program (and Basis) is spending its time.tim works only on Cray
machines. It is available as LIB filetim inside public librarybasis .

47

48

CHAPTER

ELEVEN

RNG: Random Number Generators

This package gives Basis codes an alternative random number generator, with support functions to
query or set current seed values, and so forth.

11.1 The Mzran Suite

All random number generators likeranf suffer from a common problem in that if you plot succes-
sive values into two (or more) dimensions, the points fall on a series of lines (hyperplanes). It is
possible to avoid these higher dimensional correlations by combining the output from two or more
generators. Marsaglia and Zaman1 showed several ways to do this recently; the following routines
are based on their work.

All the routines in this group are available either to your compiled code, or from the Basis inter-
preter. Themzrangenerator is based on 32 bit arithmetic, anduni32returnsreal(Size4).

11.1.1 Mzran

integer mzran,i
i = mzran()

Mzranreturns random integers in[−231, 231 − 1]. As noted by Marsaglia and Zaman, this routine
provides flexibility to code developers in that you can easily write Fortran statement functions to
rescale, translate, or mask its return value.Mzran is a compiled function in the Basis interpreter
(not built-in.)

11.1.2 Uni32

real(Size4) uni32, rr
rr = uni32()

1Some Portable Very-Long-Period Random Number Generators, Computers in Physics, V8N1, Jan/Feb 1994,
pp.117.

49

Uni32 callsmzran,then scales and translates the result to the interval[2−32, 1 − 2−24]. The mini-
mum is the smallest positive IEEE 754 single precision value, and the maximum is the largest such
value less than 1. Thusuni32can safely be relied upon to produce uniform deviates in the open
interval (0,1). Likeranf, uni32 is a Basis built-in function.

11.1.3 Setmzran

integer a,b,c,d
call setmzran(a,b,c,d)

The internal state of themzrangenerator can be stored in four integer values, andsetmzranchanges
its state to the four given arguments.A, b, c, andd can be any legal (32 bit) integers, not all zero.
If all arguments are zero, the default values are reset.

11.1.4 Getmzran

integer a,b,c,d
call getmzran(a,b,c,d)

Getmzranretrieves the current state of themzranRNG into the four integer arguments. If calling
this subroutine from the Basis interpreter, be sure to pass the arguments by reference.

50 Chapter 11. RNG: Random Number Generators

INDEX

Symbols
%. .33

A
andcollect (hst package)21
at-sign .33

B
Basis

data types. .2
documentation .2
overview .1
parser .2

BES .7
Bessel Functions .7

C
close;commands

close .29, 31, 44
collect (hst package) .21
commands

hst package .19
open;open .29, 30
openg;openg .29
restore;restore .29
summary .29
write;write .29
writeas;writeas .40
writef;writef .29

Comparing between files33
create. .30, 40
create;commands

create .29
create;append;commands

append .33

CTL .9
ctlexe .10
ctlopt .10
ctlpkg .10
ctlplot .10

D
dump .23

E
environment variables1

BASIS ROOT. .1
DISPLAY .1
MANPATH .1
NCARG ROOT .1

EZN .2

F
FFT .13
fft, ffti .13, 14
file number; fileid .29
file access .43
finish .10
FIT .15
fit. .15
fitvalue .15
Fourier transform13, 14

G
generate .10
getmzran .50

H
History Package .27
HST .19, 22

51

HST;History Package .17, 19, 20, 22–25, 27,
41

hstall .22
hstallc .22
hstalll .22
hstory .18
hstrest .23

I
items (hst package)18, 20
itemsv (hst package) .20

J
jt .39, 40
jt;commands

jt .29, 39

L
ls (files) .32
ls variables) .32
ls;commands

ls .29, 32, 44

M
Marsaglia, G. .49
mzran .49

N
newtag (hst package)19

O
open .33

actions .41
actions when .40
file family .39

open;commands
open .44

P
package

execution .9
percent sign .33
pfb .17
pfbact .41
pfbask .40

pfbbegr .43
pfbclose .41
pfbcount;pfblong;pfbpack;pfbname42
pfbdebug .40
pfbendr .43
pfbfam .43
pfbfile .41
pfbglue .31, 41
pfbgoto .43
pfbgrec .43
pfbjc .43
pfbjt .43
pfbls .40
pfblsopt .33
pfbmax .40
pfbofam .30
pfbofam;familied files30
pfbopen .41
pfbopend .41
pfbrest .38
pfbrs .38
pfbsave;pfbsavee;pfbasave;pfbalist41
pfbsrec .43

R
Random Number Generators49
record32, 39, 40, 43, 44

selecting. .39
selecting .39
writing .38

record;commands
record .29, 39

restart .23
restore

pfbrest;restore
selective .38

restore;pfbrest;pfbrs .42
run .10

S
setmzran .50
Singular Value Decomposition;SVD;svd .45,

49
steerable applications .2
step .10

52 Index

T
tag .17
tagaction (hst package)20
tags (hst package) .18
TIM .47
timing

TIM .47

U
uni32 .49

W
writeas .33
writeas;commands

writeas .29, 35

Z
Zaman, A. .49

Index 53

	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	Basis Package Library
	BES: Bessel Functions
	CTL: Package Control
	The History of The CTL Package
	The CTL Model
	The CTL Model
	The User Interface
	Adding CTL to Your Program

	FFT: Fast Fourier Transforms
	Routine Interfaces
	Detailed Documentation

	FIT: Polynomial Fitting
	The History Package h2
	A Facility for Iterative Programs
	Tags
	Installation and Use
	User Interface
	Dumping and Restarting
	History Arrays
	Deciding When To Collect
	Examples

	PFB Package
	Summary
	Reading Files
	Writing Files
	Restoring From A FIle
	Time Histories
	Actions When Opening a File
	Control Variables
	Installation and Use
	Functional Interface

	SVD: Singular Value Decomposition
	TIM: Interrupt Timing
	RNG: Random Number Generators
	The Mzran Suite

	Index

