
The Basis System, part 2

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov



COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543



CONTENTS

1 The Basis System 1
1.1 Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basis Is Both a Program and a Development System. . . . . . . . . . . . . . . . 1
1.3 About This Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basis Input 5

3 Basis Tokens 7
3.1 What Is A Token? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Special Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Alphanumeric and ConstantTokens. . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Declaring and Initializing Variables 11
4.1 GLOBAL declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.2 Package declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.3 Chameleon Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.4 Computed Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4.5 Range Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4.6 The Colon Notation For Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Indirect Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

5 Expressions 19
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.2 Operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5.3 Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.4 Delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5.5 Array References and Operations. . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 The Concatenation Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

6 Display and Assignment Statements 31
6.1 Assignment Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
6.2 Operator Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
6.3 The Append Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

i



6.4 The Logical IF Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
6.5 The Structured IF Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

7 WHILE Statement 39
7.1 WHILE Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
7.2 BREAK and NEXT Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 FOR Statement 43

9 DO Statement 45
9.1 Uncontrolled DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
9.2 DO-UNTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
9.3 Controlled DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

10 Functions Listed by Type 49
10.1 Common Mathematical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
10.2 Trigonometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
10.3 Type Conversion and Complex Numbers. . . . . . . . . . . . . . . . . . . . . . 49
10.4 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
10.5 Character Manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
10.6 Special Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
10.7 Obtain/Set Scalar Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

11 Built-in Functions 51

12 User-Defined Functions 61
12.1 Defining Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
12.2 RETURN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
12.3 Local Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
12.4 CALL Is By Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
12.5 Examples of User Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

13 Compiled Functions 65
13.1 CALLing By Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

14 Defining Your Own Commands 67
14.1 The COMMAND Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
14.2 Changing the Default Type of a COMMAND Argument. . . . . . . . . . . . . . 70
14.3 Specifying Other Delimiters in a COMMAND Statement. . . . . . . . . . . . . . 71
14.4 No Delimiters at All: the COMMANDL . . . . . . . . . . . . . . . . . . . . . . 73

15 The Search Stack 75

16 Package Control Statements 77

17 The CTL Package 79

ii



18 Removing Functions and Variables 81

19 LIST Command 83

20 Obtaining and Setting Scalar Values 85

21 Help and News 87

22 Input, Output, and External File Access 89
22.1 Reading Basis Code From a Text File. . . . . . . . . . . . . . . . . . . . . . . . 89
22.2 Resuming Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
22.3 Printing Messages on the Terminal. . . . . . . . . . . . . . . . . . . . . . . . . 91
22.4 Changing the Destination of Basis Output. . . . . . . . . . . . . . . . . . . . . . 91

23 The Stream I/O Facility 93
23.1 Introduction to Stream I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
23.2 Opening and Creating Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
23.3 The Input Operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
23.4 The Output Operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
23.5 The Format Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
23.6 Closing File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

24 The Macro Facility 107
24.1 Protection Brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
24.2 DEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
24.3 MDEF - MEND Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
24.4 IFELSE Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
24.5 UNDEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

25 Executing System Commands from the Parser 113

26 Timing 115

27 Ending Basis 117

28 Error Recovery 119

29 Interrupting Basis 123

30 List of Reserved Words 125

31 List of Non-Alphanumeric Tokens 127

32 List of Parser Variables 129
32.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
32.2 Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

iii



33 List of Compiled Functions 133
33.1 Working With Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
33.2 Help and News. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
33.3 Memory Management of Dynamic Arrays. . . . . . . . . . . . . . . . . . . . . .134
33.4 Opening and Closing Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
33.5 Executing User Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
33.6 Adding Comments to Variables and Functions. . . . . . . . . . . . . . . . . . .135
33.7 Checking for the Existence of Variables and Functions. . . . . . . . . . . . . . .136
33.8 Flushing the LogFile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
33.9 Using the Switches Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
33.10 Protecting User-Defined Variables and Functions. . . . . . . . . . . . . . . . . .136
33.11 Setting Variable Dimension Limits. . . . . . . . . . . . . . . . . . . . . . . . .136
33.12 Specifying Assignment Actions. . . . . . . . . . . . . . . . . . . . . . . . . . .137
33.13 Redefining Array Shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
33.14 Functions With Variable Numbers of Arguments. . . . . . . . . . . . . . . . . .138
33.15 Creating Pauses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
33.16 Returning to the Parser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
33.17 Recursive Parsing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
33.18 RANF and Its Supporting Routines. . . . . . . . . . . . . . . . . . . . . . . . .140
33.19 Manipulating the External Environment. . . . . . . . . . . . . . . . . . . . . . .142

Index 145

iv



CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1



is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System



Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3



4



CHAPTER

TWO

Basis Input

Basis input can come from the terminal, from a file, or via recursive calls from within compiled
code that is being executed. Statements are executed one at a time, immediately. However, state-
ments which are part of a larger construct (such as a loop or IF test) are not executed until the entire
construct is complete. When interactively entering such constructs, the prompt will change to give
you a visual clue to the depth of the structure in which you are presently.

When an error occurs in a series of statements, you can assume that the statements before the
one that caused the error have been executed; but if you make a mistake when entering a more
complicated structure, you will need to begin again from the beginning. For example, if you
are defining a function, and enter a statement that has improper syntax, the preceding part of the
function is lost.

For this reason, it is usual to place complicated Basis input in a file and use the READ command
to process it.

Basis-reserved words (like READ) are written in upper case throughout this manual for purposes
of emphasis but they are also recognized by Basis if they are entered entirely in lower case.

5



6



CHAPTER

THREE

Basis Tokens

3.1 What Is A Token?

The tokens or terminal symbols of a language are the basic building blocks of that language.
Tokens are the lexical entities from which statements in that language are constructed. They are
analogous to the words in a spoken language. It will help in the discussion of the Basis Language
to have an idea of what its tokens are before studying the language syntax. Tokens can be divided
into the following categories:

• Alphanumeric These include identifiers and constants.

• Reserved words Identifiers that have a special meaning and may not be used in another way,
such as the word IF.

• Non-alphanumeric These include punctuation, separator symbols, operators, and the like.

Comments and line-continuation symbols are not language tokens; they are delimited by symbols
that have no significance in the Basis Language. The Basis-reserved words, built-in functions,
non-alphanumeric, and alphanumeric tokens are described in later sections.

3.2 Special Characters

Some of the non-alphanumeric tokens have special interpretations in Basis:

• Blanks and spaces are significant in Basis. They act as token separators. The number of
blanks (spaces) is irrelevant, however, as long as there is at least one. Thus, for instance,
ELSEIF is one token; ELSE IF is two tokens.

• Semicolon and carriage return (the end-of-line character) may be used interchangeably by
the user as statement separators.

7



• If \ (backslash) occurs as the last character on a line, the next end-of-line is ignored, and
so allows continuation from one line to the next. This is the only way to continue a quoted
string. A line is also continued if the last token on a line is a left parenthesis, a comma, or
any logical or arithmetic operator such as+, -, *, !, &, etc.

• #acts as a comment delimiter, and causes the rest of the current line to be ignored except for
the end-of-line. None of the special characters has any special meaning inside quoted strings
or in comments.

3.3 Alphanumeric and ConstantTokens

3.3.1 Identifiers or Names

The names of variables must begin with a lowercase letter or a dollar sign. Subsequently, names
can contain letters of either case, underscores, or digits. Names of variables must be 128 or fewer
characters. Case is significant, sojoe andjoE are distinct variables.

A name can also be specified by enclosing it in single right quotation marks (apostrophes). In that
case the name can include any characters except apostrophes, carriage-returns, or line-feeds. The
enclosing apostrophes do not become part of the name; they simply allow names which do not
obey the above rules to pass the interpreter.

Different variables can have the same name, if they appear in different packages in the search stack.
(Please see “The Search Stack” on page15 for a discussion of the search stack.) An identifier is
taken to be the first one encountered in a package that has that variable name. To access a variable
that is not in the top package or to distinguish between variables with the same name in different
packages in the stack, add the package name as a prefix, and separate the package name and
variable name with a period. For example:

pkg.name2
local.name3
global.name4

The variables in packages are organized into groups. A group name must begin with a capital
letter, and again, can be prefixed with a package name followed by a period to identify it uniquely.
Globalandlocal are legitimate package names for user defined global and local variables.

Variables from packages attached to Basis are organized into groups. Group names can be up
to 128 characters and can be abbreviated to any unique prefix. Any variables the user declares
become members of a special group calledUser.

The identifiers$, $a , $b , ... , $z are pre-declared. They have the chameleon property, which
is discussed in “Declaring and Initializing Variables” on page4. The variable$ always holds the
value of the last expression displayed.

8 Chapter 3. Basis Tokens



3.3.2 Constants

An integer constant is a string of one or more digits, as in Fortran. A real constant in the form
xx.xE+x must contain at least one digit, and either a decimal point or an exponent, or both. The
exponent is expressed as e or E followed by an optional sign and at least one digit. Imaginary
constants are either an integer or real constant followed by i or I. Spaces arenot allowed between
the number and the imaginary notation. Thus, 3I, 3.0i, 0.3E+1I, all represent the same imaginary
constant. Double-precision constants are the same as real constants except that the letters d or D
are used to denote the exponent.

String constants are delimited by double quotes (" ). They must contain at least one character and
can be composed of any printable ASCII characters; to include a double quote in a string constant,
double it.

Two special forms of integer constants are also available: octal and hexadecimal constants. An
octal constant is an octal number followed by b or B. A hexadecimal constant is a hexadecimal
number, beginning with one of the digits 0-9, followed by an x or X.

Basis also contains the variables listed in “List of Parser Variables”, on page32. These variables,
such as “pi ”, are available to the user for use in statements.

3.3. Alphanumeric and ConstantTokens 9



10



CHAPTER

FOUR

Declaring and Initializing Variables

The name of a user declared run-time variable must begin with a lower-case letter.

Users can declare run-time variables to be of type INTEGER, INTEGER(4), INTEGER(8), REAL,
REAL(4), REAL(8), DOUBLE, LOGICAL, COMPLEX, COMPLEX(4), COMPLEX(8), CHAR-
ACTER, CHARACTER*(n), RANGE, INDIRECT, or CHAMELEON. The types CHAMELEON
and INDIRECT are discussed in the following sections. Types REAL8 and COMPLEX8 (no
parentheses) are also available, with the same meaning as REAL(8), COMPLEX(8), respectively.

Variables can be initialized in the declarations statement, as shown in the scalar declarations below:

INTEGER x, y, z
INTEGER(4) i4
INTEGER(8) i8
REAL i, j, k = 2.0
REAL(4) x4
REAL(8) x8
DOUBLE d = 2.d0
COMPLEX c = 2.0 + 3.0i
COMPLEX(4) c4
COMPLEX(8) c8
LOGICAL l1 = true, l2 = false
CHARACTER*3 ch = "abc"

The variables x, y, and z are declared as integers of default size. I4 is an integer at least 32 bits (4
bytes) in length, and i8 is at least 64 bits (8 bytes) long. Variables i, j, and k are of type default real;
k is initialized to 2.0. The variables x4 and c4 have at least 32 bits (4 bytes) precision independent
of platform, and x8, c8 are at least 64 bits (8 bytes) in size.

Basis’ use ofkind selectorsfor integer, real, and complex data types is very similar to their
use in Fortran 90. The discussion of precision above presumes that the underlying hardware
is based on twos-complement integers and IEEE 754-standard floating point representations,
in which casereal(4) corresponds to IEEE single precision andreal(8) to double. To
restate this in Fortran 90 terms, a Basisreal(4) kind should be the same as that result-
ing from kind = selected real kind(6,38) , and real(8) should matchkind =
selected real kind(15,308) .

11



Each individual variable to be initialized must be followed by an equal sign and value. To initialize
i , j , andk to 1, 2, and 1, respectively, enter the following:

INTEGER i = 1, j = 2, k = 1

Variables which are not explicitly initialized are set to 0, or to blanks if they are of character type.

The variable calledautovar controls whether or not declarations are required for all variables.
See “autovar” on page129.

Declare array variables of up to seven dimensions as follows:

REAL x(10), y(3,5), z(-3:5, 7:10)

The lowest value of the subscript range defaults to 1 unless a different value is specified before a
colon, as inz above. Thus,x is subscripted 1... 10,y from 1... 3 and 1... 5, andz from -3... 5 and
7... 10. An individual array can be initialized by a vector of values that follows its type declaration:

INTEGER i(10) = [0,0,0,0,0,1,1,1,1,1], j(5) = [1,2,3,4,5]

Vectors cannot be larger than the variables they initialize (except see the next paragraph), but they
can be smaller, in which case only the first specified number of positions in the array will be filled.
The initialization in a declaration follows the rules for assignment statements.

If an initial value is given, but no dimension is given on the variable being declared, the variable
is created with the dimensions of the initial value. Thus the previous example could also be done
this way:

INTEGER i = [0,0,0,0,0,1,1,1,1,1], j = [1,2,3,4,5]

Basis allows initialization expressions of arbitrary complexity, as long as all operands in them have
values at run-time, since in fact such statements are ordinary assignment statements. References
to functions are allowed as well. For example,

REAL a = sqrt(2) * ones(10,10)

defines a diagonal matrixa with the square root of two on its diagonal. For more details on
expressions, see the next section in this manual, “Basis Expressions”.

The dimension specifications of declared variables are also allowed to be expressions of arbitrary
complexity, as long as they are capable of evaluation at the time the declaration is executed. For
example,

INTEGER i = 5, a(i,0:3*i-2) = 4, b(a(1,0))

declares and initializesi to 5, and then declares a to be an array subscripted 1...5 and 0...13, and
then declaresb to be subscripted 1...4.

As remarked previously, reserved words cannot be used as user identifiers. Previously declared
variables or functions can be redeclared at any time, however. If the parser variabledebug has
been set to yes, Basis prints a warning message when a variable or function is redefined.

12 Chapter 4. Declaring and Initializing Variables



4.1 GLOBAL declarations

When a variable is declared it normally has global scope, that is, it will be known inside user-
defined functions without any further declaration. If, however, a declaration occurs inside the
definition of a user-defined function, the variable becomes local to that function invocation and will
not be visible outside of it, and will vanish when the function returns. The user may override this
by prefixing the keyword GLOBAL to any declaration inside a function, thus creating a variable
which will be identical in scope to one declared outside of any function. For example,

FUNCTION phi(z)
global REAL x = z/2.

ENDF

will create a variablex when functionphi is called. Any existing global variable namedx will be
destroyed.

4.2 Package declarations

In addition to declaring global and local variables, the user may also declare a new variable to
reside in an existing Basis package. When such a declaration is made, the variable is put in the last
group of that package. Such a variable would be declared by a statement of the following format:

pkg type varname

wherepkg is the name of the package in which to create the variable,type is the type of the
variable (such as real or integer), andvarname is the name or the variable.

EXAMPLE:

par REAL x = 3.1

The above example will create variablex in packagepar . The user can determine which packages
exist in a given Basis code by typing,

LIST packages

4.3 Chameleon Variables

The variables$ and$a, $b, $c, ..., $z exist when Basis starts. The variable$ automat-
ically assumes the value of the last expression evaluated in a display statement; the others must
be explicitly assigned (but see the variableautohist , page129.) When assigned a value, these

4.1. GLOBAL declarations 13



variables assume all of the attributes (e.g, type, size) of the value assigned to them. Hence, they are
called chameleon variables. The user may declare other variables to have this chameleon property
by using the type CHAMELEON, e.g.,

CHAMELEON abc = 3.45

causesabc to become a real whose value is 3.45. If a chameleon variable is currently an array
then a subscripted assignment to the variable behaves like a normal assignment statement. Thus,

CHAMELEON abc = [1,2,3,4]
abc(3) = 5.6

results inabc being equal to[1,2,5,4] because the first assignment statement makesabc
an integer array of length 4, and the second assignment statement has a subscript onabc , so its
chameleon property is not invoked and the 5.6 is coerced to integer before being stored.

Except for$ and$a, ..., $z , all variables that are assigned a value at execution time must
exist, i.e., must have been declared. (The control variableautovar can be set toyes to change
this). Formal parameters (the variables in the argument list) in user functions may not be declared.

4.4 Computed Names

It is possible to compute a name to be used in a declaration statement. This is done by surrounding
a character expression with grave accent marks, as in this example which creates a variable named
x1 and initializes it to 3.0:

real ‘ "x"//"1" ‘ = 3.0

4.5 Range Variables

A RANGE type is the same entity as the range used to subscript a variable. It consists of a low
index, high index, and possibly an increment (negative increments are allowed), all separated by
colons. An integer is also accepted as a range in which the low and high index are the same value.

EXAMPLE:

RANGE x = 3:5, y = 1:5:2, z = 5:2:-1, zz = 4

RANGE variables would eventually be used as subscripting information for an array. How-
ever, these variables can be passed in as arguments to a function and used within that func-
tion.Subscripting using a RANGE variable is identical to direct subscripting. Thus RANGE vari-
ables can have defaulted fields for their low index, high index, or increment (i.e. RANGE x = ::3).

14 Chapter 4. Declaring and Initializing Variables



The defaulted fields will take on the appropriate values for each array it subscripts. Some simple
operations can also be performed on RANGE variables. You can add, subtract, or compare (i.e.
==, ¡>) two RANGE variables.

Three sets of examples and descriptions follow to illustrate

1. adding and subtracting RANGES, and the rules governing these operations

2. subscripting with RANGES and using DEFAULT fields

3. passing RANGES as arguments to functions

EXAMPLE OF RANGES WITH DEFAULT FIELDS:

RANGE a=2:10, b=: :3
integer z(a), y(6,7)
z(b)
y(4,b)

The above example will declare an integer vectorz which is indexed fromz(2) to z(10) and a
2D integer array dimensioned 6 x 7. The line “z(b) ” will cause the values ofz(2) , z(5) , and
z(8) to be printed (just as if you enteredz(::3) ). The liney(4,b) will cause the values of
y(4,1) , y(4,4) , andy(4,7) to be printed.

It should be noted that if you print the value of a RANGE variable which has a default low or high
index, then any defaulted indices will be printed as a large negative number. Defaulted fields in a
RANGE variable do not take on the “correct” value until it is used as an array subscript.

EXAMPLE OF ADDING AND SUBTRACTING RANGE VARIABLES:

The precise rules for addition and subtraction of ranges follow the examples.

range a=3:4, b=2:7:2, c=10:6:-1
a+4 ## results in 7:8, remember 4 is the same as 4:4
c-4 ## results in 6:2:-1
b+b ## results in 4:14:2
a+b ## results in 5:11:2
b+c #### illegal operation

When adding or subtracting ranges, the low indices of the operands are added or subtracted to
produce the new low index and similarly the high indices are added or subtracted to produce the
new high index. However, the resulting increment field is calculated in a different manner.

If the increments of both operands are 1, then the resulting increment is 1. If one operand has an
increment of 1 and the other operand has an increment not equal to 1, then the resulting increment
is set to the non-one value. If both operands have an increment other than 1, then these increment
fields must both be the same value or else the operation is illegal. The resulting increment field is
the same value as increments of both operands.

4.5. Range Variables 15



WARNING : Before adding or subtracting RANGES, you should always first call Basis function
RNGSETDF to set any defaulted fields in the RANGE variable to the correct values. Adding or
subtracting ranges with defaulted values which have not been reset by RNGSETDF will produce
unexpected results.

EXAMPLE OF RANGE VARIABLES PASSED TO FUNCTIONS:

function density(x,y); return mass(x,y)/volume(x,y); endf
function diffa(x)

x=rngsetdf(x,2:10) ## replace any default values of range x
return a(x) - a(x-1)

endf
density(2:4, 1:10:2)
integer a(10) = iota(10)
diffa(3:7)
diffa(3: ) ## default value of high index in 3: is 10.

The calls todensity(2:4, 1:10:2) , diffa(3:7) , anddiffa(3: ) will only calcu-
late those values which are given in the ranged subscripts. In addition, the functiondiffa shows
an example of range subtraction. This function makes a call torngsetdf (a Basis built-in func-
tion) to replace any default values before doing the RANGE subtraction. Thus in the case when
argument x is 3:, then x is reset to 3:10 before doing the subtraction. The function then returns the
values a(3:10)-a(2:9).

4.6 The Colon Notation For Vectors

The notationa:b:c can be used with one or more real arguments to create linearly spaced arrays.

a:b:c with c real, a or b real

creates a vector containing values spaced at intervals spacedc apart. Ifa>b, the resulting vector
will contain descending values. The vector created will be at least 2 long, and the first element will
bea and the last will bebEXACTLY.

a:b:ic with ic an integer, a or b real

creates a vector of lengthic of evenly spaced values froma to b. If a>b the resulting vector will
contain descending values.

a:b with a or b real

defaultsic to the value contained in the control variablencolon , whose default value is 100.

It is an error fora or b to be omitted if the other is real. It is an error forc or ic to be<= 0.

Note that the colon operator has a lower precedence than arithmetic operators, so to use a term
a:b:c in an expression it will usually be necessary to enclose it in parentheses.

16 Chapter 4. Declaring and Initializing Variables



4.7 Indirect Variables

A variable declared to be type INDIRECT is actually an indirect reference to another variable. An
INDIRECT declaration must include an initial value assignment setting the variable to the name
of another variable, possibly including a package prefix, such as"x" or "par.x" . Any reference
to an indirect variable after its declaration is equivalent to a reference to the variable named in the
initial assignment. This assignment can only be changed with another INDIRECT declaration.

The variable which is being indirectly accessed may in turn be an indirect reference. INDIRECT
can be used to write user functions which modify variables in their argument list; normal Basis
functions pass arguments by value and such modifications do not

REAL x(100)
FUNCTION w(namex)

INDIRECT y=namex
y(3) = 7.

ENDF
call w("x")

will result in x(3) being set to 7. By contrast,

REAL x(100)
FUNCTION w(y)

y(3) = 7. #THIS IS USELESS
ENDF
call w(x)

does NOT modifyx ; rather, a copy ofx has been modified, and then discarded whenwreturned.

4.7. Indirect Variables 17



18



CHAPTER

FIVE

Expressions

5.1 Introduction

Expressions consist of operands, operators, and delimiters in a string specified by the grammar.
Conceptually, we can consider operands as items that have value (e.g., constants, references to
user variables that have a value, and invocations of functions that return values when executed).
Operators are syntactic tokens that are usually described in terms of their semantic meanings,
(i.e., what they are supposed to do at execution time). Unary operators produce a value from one
operand, binary operators from two operands, and ternary operators from three operands. Finally,
delimiters separate items (e.g., a comma-delimited list) and to change the semantic meaning of
what they enclose (e.g., parentheses that change the precedence of enclosed operators).

5.2 Operands

String constants can be assigned to a variable, concatenated, built into arrays, passed to functions
as arguments, etc. Everything that follows in this section addresses numerical and logical compu-
tations.

There are two types of expressions in Basis: expressions with numerical values denoted here by
<exp >, and more complicated expressions, which, because they are allowed to have either nu-
merical or logical values, are denoted by<lexp >.

The operands in<exp >s can be any of the following:

1. Integer, real, double, or imaginary constants.

2. Scalar variables of type integer, real, double, or complex.

3. References to arrays of type integer, real, double, or complex.

4. References to functions that return scalar or array values of type integer, real, double, logical,
string or complex. There are three kinds of functions:

19



(a) Built-in functions are special functions that have been built into Basis. These are dis-
cussed in “Built-in Functions” on page51.

(b) Compiled functions are Fortran functions that have been entered into a package
database so that they can be invoked through the interpreter.

(c) User-defined functions are functions in the Basis Language defined by user commands,
as explained later.

A reference to a scalar variable consists simply of its name if it is a user-defined variable, or if it
refers to the top-most variable in the package stack by that name. Otherwise, it is referenced by a
name of the formpkg.name wherepkg is the name of the package in which it is defined.

A reference to a function consists of the name of the function followed by a list of expressions
for its actual arguments in parentheses, as in Fortran or Pascal. Built-in and user functions are
referenced in exactly the same way. If the function has 0 as an acceptable number of arguments,
parenthesis are optional.

The operands in<lexp >s can be any of the operands allowed for<exp >s. In addition,
<lexp >s can have operands of logical type, including the logical constants TRUE and FALSE.
In some cases, logical quantities can also be organized and referenced as arrays. Array references
and values of all types are discussed later in this chapter after a thorough consideration of scalar
expressions.

5.3 Operators

The unary arithmetic operations are + and -. These two symbols also denote the binary operators
“add” and “subtract”. They have the lowest precedence of all operators. This means that in expres-
sions containing other operators, add and subtract are evaluated last, as long as parentheses do not
change the order of precedence. In expressions containing more than one of these operators, they
associate to the left, which means that an expression such as

a + b - c + d

is evaluated as if it had been written

((a + b) - c) + d.

The binary operators “multiply” (* ) and “divide” (/ ) have the next highest precedence, and are
also left-associative. Thus, for example, in

a*b + c*d,

both the productsa*b andc*d are computed, and then the addition is performed. In the expression

20 Chapter 5. Expressions



b/2*a

b will be divided by two, and then the result multiplied bya. To divideb by two timesa, the
expression must be written

b/(2*a) or b/2/a

The (scalar) arithmetic operator of highest precedence is the “exponentiate” (**) operator:

a**3

meansa3. Unlike the other arithmetic operators, ** associates to the right, so that

a**b**c

is evaluated as if it had been written

a**(b**c)

Operands of real, double, integer, and complex types can be intermingled at will in arithmetic
expressions. In expressions containing a complex operand, the result is forced to complex type; if
only integers and reals are present, the result is real. In expressions containing only integers, the
result is always integer. In the case of division with a non-zero remainder, the quotient is taken to
be the integer part of the result. For instance, 17/3 has the value 5.

The “matrix multiply” (*! ) operator has its own peculiar size rules. The dot product operator
(! ), applies to objects of equal size. The dot product operator is included in the discussion of
array operands later in this chapter. Thus, for the time being, we have considered all of the scalar
arithmetic operators. We now discuss<lexp >s, those expressions which may produce logical
values.

Operands for<lexp >s, those expressions that may produce logical values, can be built in three
ways: from the logical constants TRUE and FALSE; from relational (i.e., comparison) operators
between arithmetic values; and by combining previously computed logical values with the use of
the logical operators. The binary relational operators are:

Operator Meaning
= or == or .eq. “equal”
<> or ˜= or .ne. “not equal”
< or .lt. “less than”
<= or .le. “less than or equal”
> or .gt. “greater than”
>= or .ge. “greater than or equal”

5.3. Operators 21



The equal and not equal operators can appear between operands of arbitrary type. If the types do
not match, then coercion takes place in the orderinteger→ real→ double→ complex.

The other four relationals are not meaningful for complex operands, so they can be used only with
real, double or integer operands. Only the equals and not-equals operators can be used between
character strings.

If the operands are not scalar a relational operator produces a logical array of the same shape as
the operands;

(iota(5)=iota(5))

creates a logical array of length 5, all of whose elements = TRUE.

WARNING : The parentheses are essential here.

The relational operators are not associative, so two or more cannot be used in combinations like
a < b <= c . Many languages allow such constructs syntactically, but they are almost always
erroneous semantically. Ifa, b, andc are numeric,a < b is logical, and it is not legal to compare
the logicala < b with the numericc .

Listed in order of precedence, the logical operators are “not” (˜ ) or (.not. ), “and” (&) or
(.and. ), and “or” (| ) or (.or. ). The operands of& and | must be of logical type. Both|
and& associate from the left.

Operators Precedence
(subscripting, reference) 9 (highest)
** 8
* *! / ! // /! 7
+ − 6
: 5
= == ˜= < > <= < >= > 4
˜ 3
& 2
| 1 (lowest)

5.4 Delimiters

The delimiters used in expressions are parentheses( , ) , brackets[ , ] , comma, , and colon: .
We have given a few examples where parentheses were used to change (or emphasize) the order
of operations. In order to understand the function of parentheses in expressions, consider first the
rule for evaluating expressions without parentheses:

Evaluate operations in order of precedence, highest first. When there are multiple operations with
the same precedence, evaluate the expression from left to right (except for **, which is evaluated
from right to left).

When an expression contains parentheses, add the following rule:

22 Chapter 5. Expressions



Evaluate inside the most deeply nested set of parentheses first, then move outwards through the
successive levels of nesting. Thus, parentheses can be thought of as operators that raise the prece-
dence of operators enclosed within them to a higher value than those at any lesser nesting level.

For example, the expression

a*b + c*d

is perfectly legal, but both multiplies are performed before the addition. To force the addition to
be evaluated first, rewrite the expression as

a*(b + c)*d.

As mentioned in the section on predefined and user-defined functions, parentheses are used to
delimit the actual arguments of these functions. Thus,

sqrt(2.0*18)

returns 6.0, and

mod(17,5)

returns 2.

The actual arguments of a function can be any expression that evaluates to a meaningful type (one
cannot extract the square root of a logical, for instance). Naturally, function references themselves
can occur in actual arguments, as in

sqrt(sqrt(3 + mod(17,2))).

Finally, parentheses can be used to delimit subscript and subscript-range references for subscripted
variables. Individual elements of an array are themselves scalars, and can be accessed by specifying
a list of expressions in parentheses separated by commas. The number of subscript expressions
specified must be less than or equal to the number of subscripts declared for the variable, and the
values must be in the proper range. For instance, if we declare

INTEGER x(3:10), y(-5:1,6)

thenx(4) andy(1,1) are legal references to elements of these arrays. A reference tox(1) is
illegal because the subscript is out of range;y(3,5,1) is illegal because there are too many sub-
scripts. If fewer subscripts are given than are declared for the variable, the unassigned elements (to
the right) default to their minimum legal value. Subscript expressions, if not integer, are converted
to integers upon evaluation.

In addition to references to single elements of an array, references to the entire array or to certain
portions of it are allowed. This is discussed fully in the next section.

5.4. Delimiters 23



5.5 Array References and Operations

5.5.1 Subscript References

Any operand in an expression may be a reference to an entire array or to a non-scalar subset
of it. In such a reference, the name of the array may be given alone, or followed by subscript
specifications separated by commas. If subscripts are not present, then the entire array is taken to
be the operand. When subscripts are present, the number of subscripts must be less than or equal
to the dimensionality of the named array. Subscripts can be one of the following:

• Nothing The default low and high subscripts are used. These are the actual limits for that
subscript.

• An integer Any expression that evaluates to a scalar. The scalar is converted to an integer if
necessary. This subscript refers to a single entry.

• A range A range is specified by low:high or low:high:increment, where low, high, and incre-
ment (if present) are each any expressions that evaluate to scalars, or nothing. If low and/or
high is omitted, the actual limit for a subscript is used. If increment is not present it defaults
to 1. Zero is an illegal value for increment, but negative values for increment are legal. Ex-
pressions are converted to integer if necessary, and high must be greater than or equal to low
(unless of course increment is< 0, in which case low must be greater than or equal to high).

• A vector of integers An arbitrary one-dimensional array of integers is allowed as a subscript
of a one-dimensional array of numeric type. Naturally each element of the subscript array
must be within the range of subscripts of the array being subscripted. Ifx is an array of
variables andi is an array of subscripts, thenx (i) is an array the same length asi whose
entries arex (i (1)) , x (i (2)) , x (i (3)) , .... x (i) can be a component of an
expression or the object of an assignment. In the latter case, if there are repetitions ini , then
the order of assignment is undefined.

The Basis Language has the unusual property that the user may subscript expressions, not just
variable names. Subscripting has the highest possible precedence and multiple sets of subscripts
are evaluated left to right. For example,

(x-y)(3:5)

is the vector[x(3)-y(3),x(4)-y(4),x(5)-y(5)] . In an expression, the lowest subscript
of the expression is the common lowest subscript of the operands, if they agree, and 1 if they do
not.

5.5.2 Dimensionality

Each array has a shape, expressed as a dimension n (0 to 7) and a string of n integers (i1, i2, ..., in)
representing the length of the array in each dimension. When a variable is used in an expression,

24 Chapter 5. Expressions



the resulting object, after applying the subscripts, may have some of its dimensional lengths equal
to 1. Each such component is dropped and the dimension of the object reduced accordingly. Thus,
x(5) is a scalar (dimension = 0) andy(3:7,6,2:5) has dimension 2 and shape (5,4).

All operands in an array expression must be the same size and shape, or else be scalars. Basis
automatically creates an object of the appropriate size and shape from any scalar in the expression.
Thus, for instance

a(1:3,2:5) + 2

adds 2 to each element of an array whose first subscript is 1, 2, or 3 and whose second element is
2, 3, 4, or 5. On the other hand,

a(1:3,2:5) + b(1:3,2:4)

is illegal because the two sizes cannot be made to conform;

x(1:6) + a(1:2,1:3)

is illegal because the shapes (i.e., number of dimensions) are different.

When ordinary scalar operators, such as*, /, + , and- , are used among objects of the same
size and shape, they represent component-by- operator. Thus,

a * b

multiplies the matricesa andb component-by-component. This is not matrix multiplication, for
which there is a separate operator (See “Array Operators” on page27.)

5.5.3 Subscripts on Basis-created Variables

Basis constructs variables for you in several cases:

1. An assignment is made to a non-subscripted chameleon variable.

2. An assignment is made to a non-subscripted variable, which doesn’t exist, and
autovar =yes .

3. A function is called with arguments and the formal parameters must be created to contain
the actual parameters.

4. A result is printed and$ must be created to “remember” it.

5.5. Array References and Operations 25



In all of these cases, the new variable’s lowest subscript in each dimension is the same as that of the
item being assigned to it. The highest subscript is the lowest subscript minus one plus the length
in that dimension.

Basis also creates temporary values during the computation of expressions. These have a lower
subscript, a high subscript, and a stride that is used for labeling printed results. When an operation
takes place, if all parties to the operation agree about things, the result continues to be of the same
shape. (Scalars that are broadcast are treated as agreeing.) If the parties to the operation differ in
strides, the result has stride 1. If they differ in lower subscripts, the result has lower subscript 1.
These rules are applied on a per-dimension basis.

The built-in functionfromone can be used to force lower subscripts and strides to 1.

5.5.4 The Square Bracket Operator

The square bracket operator can be used to build arrays. On the simplest level,

[3,4,5]

is a one-dimensional array whose contents are 3, 4, and 5. The following bracketed subscripts

[[1,2], [3,4], [5,6]]

represent a two-dimensional array whose contents are

1 3 5
2 4 6

Note that[1,2] is the first column, not the first row. (This was done for compatibility with
Fortran, which stores arrays in column-major order). Expressions can appear in the array-builder
brackets. For instance, given the declaration

INTEGER a(1:3, 1:3)

then the array expression

[a(,1), a(,2), a(,3)]

is exactly the same asa.

As another example, suppose that i is declared as follows:

INTEGER i = [22, 3, 45, 23, 2, 56]

26 Chapter 5. Expressions



Then ifx is a one-dimensional array,x (i) is exactly the same as:

[x (22), x (3), x (45), x (23), x (2), x (56)]

If different arguments to the square bracket operator have different types, the result is formed
by coercing all elements of an array to the same type in the usual hierarchy:integer→ real →
complex. Thus,

[1,2,5] is integer,
[2,3,5.] is real, and
[2,3,5i] is complex.

The square bracket operator can also take a sequence of operands which are not all the same size
and shape. The operator consumes its operands from left to right. At each stage, then, there are
two operands, the result so far (call it s) and the next operand (t). First, s and t are coerced to the
same type. Then, if s has zero length, the result is t. Otherwise, if t has zero length, then the result
is s. Finally, assume that neither s nor t has zero length, and that ns and nt are the dimensions of s
and t.

Let n = min(ns,nt), and let m be the largest dimension such that the size of s and t match in the
first m dimensions. The result will have dimension m+1. The length of the m+1 direction will be
the sum of the lengths of s and t considering them as arrays of dimension m+1 with the first m
dimensions equal to their current value.

Thus, if s has shape (3,5,6) and t has shape (3,5,12) the result is of shape (3,5,18). If t has instead
shape (3,4) then the result has shape (3,5*6+4) or (3,34). If t was a vector of length 3, the result
would be of shape (3,5*6+1), since thinking of t as an array of dimension two its shape is (3,1).

This definition of the square bracket operator reduces to the correct result for the simple case when
all the arguments to the operator are of the same size and shape. The square bracket operator
always has a defined result as long as its arguments can be coerced to a common type.

5.5.5 Array Operators

The four array operators are “matrix multiply” (*! ), “matrix divide” (/! ), “transpose”
(transpose(x) ), and “dot product” (! ) or (.dot. ). (In a previous version of Basis, trans-
pose was an operator; now it is a function; but we leave its description here for easy reference.)

The matrix multiply, matrix divide, and transpose operators are peculiar to arrays of two dimen-
sions; they cannot be used in other contexts. Also, the matrix multiply operation*! must be
distinguished from that performed by* written between two matrices, which simply multiplies the
corresponding elements of the two matrices.

Two matrices multiplied with*! must have the property that the number of rows of the first equals
the number of columns of the second (but the second can be one-dimensional and thought of as a
column vector).

The result of the matrix divide operation

5.5. Array References and Operations 27



b /! a

is the solutionx to the equation

a *! x = b

so thata*! ( b /! a) is b. If a is singular,b /! a is an error. The numeratorb may
be a vector or a matrix; the result is of the same shape. Ifa is of type integer it is coerced to type
real.

The transpose functiontranspose(x) exchanges the rows and columns of its operand. For
example,

transpose(a(1:3, 2:7))

results in a matrix whose shape is(2:7, 1:3) and whose elements(i,j) contain the values
that were ina (j,i) .

The final array operator is! , the dot product operator, e.g.,

[1,2,3] ! [0,1,4] = 14.

The dot product can be applied between any two objects whose sizes are equal, regardless of shape.
For example,

[[2,3],[4,5]]![1,2,3,4] = 2*1 + 3*2 + 4*3 +5*4 = 40.

Non-arithmetic operators can be used with array operands.&, | , and˜ can be applied to compatible
arrays whose entries are logical values (i.e., true or false). The operations of= (==) and ˜=
( <>) can be applied between pairs of arrays of compatible size and shape whose elements are of
any type. The remaining relational operators such as> can be applied between real and integer
arrays.

In all these cases the result is a logical array. The built-in functionsland andlor can be used to
reduce logical arrays to the single logical value required in IF tests.

An important thing to emphasize again about size and shape is that any object with a single-value
subscript range is an object of fewer dimensions. For example,

INTEGER x(1), y(1,5), z(5,1)

declares a vectorx and matricesy andz ; but when used in expressions,x is a scalar andy andz
are vectors, not 1 x 5 or 5 x 1 matrices. Likewise the matrix product of a matrix and a vector is a
vector, not an n x 1 matrix. Thus, if the declaration

28 Chapter 5. Expressions



INTEGER x(5,5), y(5)

is followed by

$a = x *! y

this implies that$a is a vector with 5 elements, not a 5 x 1 matrix.

5.6 The Concatenation Operator

The // operator has the same precedence as* , *! , / , ! , and/! . It is called the concatenation
operator and is defined in three cases: (1) both arguments equal to scalar character strings, (2) both
arguments arrays or scalars of type logical, and (3) both arguments arrays or scalars of type(s)
integer, real, double, or complex. The usual coercion rules apply in the latter case if the arguments
have differing types.

5.6.1 Concatenating Character Strings

When its operands are scalar character strings,// simply performs string concatenation. For
example, after:

$a="en"
$b="dow"
$c=$a//$b//"ment"

the variable$c will have the value “endowment”.

5.6.2 Concatenating Numerical and Logical Arguments

Two logical or numerical objects of any size or shape may be concatenated, producing a one-
dimensional array whose total number of elements is the sum of the numbers of elements in the
two concatenated objects, in the order in which they occur in memory (which means column- does
things). For example:

$a=3//4

produces the vector[3,4] , while

$b=[[2,3],[4,5]]//[6,7]

5.6. The Concatenation Operator 29



results in[2,3,4,5,6,7] . If one wanted to produce a 2 by 3 matrix from this, which has
[6,7] as its last column, one could use the shape operator, thus:

$b=shape($b,2,3)

forcing the concatenated result into the desired shape.

As a second example, consider the code fragment below. The routine “update” accepts the in-
coming values of the arrayy and the scalart and returns new values. These new values are
concatenated onto an accumulation of the older values, and then forced into a shape such that they
can be displayed in rows witht in the first column and the correspondingy ’s in columns 2, 3, and
4.

real y(3) = [1., 2., 3.], t = 0.
integer i
$a = t // y #initialize output
do i = 1, 10

call update (&y, &t) #note call by reference
$a = $a // t // y #add next solution
t = t + 0.1

enddo
$a = transpose(shape($a, 4, 11))

Note the use of the transpose operator in the last expression. If this were not used, we would see t,
theny(1) , y(2) , y(3) , etc., running down the columns if we printed$a out, instead of across
the rows.

Logical arrays and scalars whose entries are logical values (“true”, “false”) may be concatenated
following the rules above. Logical and numeric objects are incompatible and cannot be mixed in
concatenations. Neither argument of a concatenation may be a structure, even if all of its entries
are numeric. The result of such an operation, if it is attempted, will be unpredictable.

30 Chapter 5. Expressions



CHAPTER

SIX

Display and Assignment Statements

A display statement is simply a list of expressions separated by commas. When a display statement
executes, the expressions are evaluated left to right, assigned to the special chameleon variable$,
and then displayed. At the end of execution,$ has the value of the last expression computed For
example,

3 + 1, 2

will display 4, then 2, and the variable$ will have the value 2 at this point. If a semantic error
occurs during the execution of a display statement, execution of the remainder of the statement is
aborted, and$ has the value of the last correct expression evaluated.

The variableautohist , 32.1, can be used to cycle the results through$a , $b ,...,$z instead of
always using$.

Note that only arithmetic and string-valued expressions, i.e.,<exp >s, can be displayed in this
way. The syntax of the display statement does not allow for the full generality of<lexp >s,
which include logical-valued expressions. However, this limitation can be circumvented, and the
values of logical expressions displayed, by placing parentheses around them, thus:

(x + y < 2)

Without this restriction we would be unable to translate the statementa = b because we could
not tell if this is an assignment statement or a display of a logical expression.

The assignment statement has the general form

target = source,

wheresource is an<lexp > as described in the last section, (i.e., any expression, capable of
evaluation, of any type, size, or shape). The target is the object where the value or values of
the source object will be stored. Iftarget is a scalar or a scalar element of an array, then the
statement is a simple scalar assignment and needs no further explanation.

If target is a chameleon variable it assumes all the characteristics ofsource (size, shape, and
type), and then receives the value(s) of the source object. It is not possible to generate an error

31



when an unsubscripted chameleon variable is the target object, unless the variable does not exist
(i.e., has not been declared).

Array assignments are more difficult. Generally, if the target and the source expression are not
of the same shape, it must be possible to store the expression as a subset of the target object.
However, if the target is an array and the source is a scalar, then the scalar value will be broadcast
to all specified elements of the array.

If the number of subscripts given in the assignment statement,

variable(subscripts) = expression

is less than the actual dimension of variable, it is assumed that the remaining subscripts have their
lowest value (typically 1). If no subscripts are given in the assignment statement, the target is the
full array variable. The shape of the target object may contain some 1’s. The true shape of the
target is its shape with the 1’s dropped. There are two conditions on the true shape of the target:

• It must be of at least as many dimensions as expression.

• Each component of the target must be at least as large as the corresponding component of
the expression.

If both these conditions hold, thenexpression can be stored as a sub-object ofvariable .
Here are some examples:

If x has shape (3,2) then

x(2) = 5 sets x(2,1) to 5
x(2,) = [5,6] sets the second row of x to [5,6]
x(2:,) = [[5,6],[7,8]] sets the 2 by 2 submatrix of x whose upper
left corner is x(2,2) to the matrix

% MathFF:matrix[2,2,num[5.00000000,"5"],num[7.00000000,"7"],
% num[6.00000000,"6"],num[8.00000000,
% "8"]]

x(1:3:2,) = [[5,6],[7,8]] sets the 2 by 2 submatrix of x
consisting of rows 1 and 3 and columns 1 and 2 to the matrix

% MathFF:matrix[2,2,num[5.00000000,"5"],num[7.00000000,"7"],
% num[6.00000000,"6"],num[8.00000000,
% "8"]]

The assignmentx(2,) = x(,2) is erroneous:x(,2) has shape (3) whilex(2,) has shape
(2). If x had been a square two-dimensional array, however, this would have correctly set the
second row to the second column.

If y has shape (5,6,7) then

32 Chapter 6. Display and Assignment Statements



y(3,2:6,1:7) = x

is a correct assignment. The target has shape (1,5,7). Its true shape is (5,7). The source has shape
(3,2), which is smaller in each component. The assignment is performed beginning aty(3,2,1)
= x(1,1) , y(3,3,1) = x(2,1) , y(3,4,1) = x(3,1) , y(3,2,2) = x(1,2) , etc.

Assignment is allowed to a one dimensional array subscripted by an arbitrary subscript array, e. g.

x ( [20, 13, 3, 56, 43, 5]) = y (3:9)

assignsy (3) to x (20) , y (4) to x (13) , y (5) to x (3) , etc. Note, however, that the result
of an assignment to a variable with repeated subscripts, such as

x ( [20, 13, 3, 13, 43, 13]) = y (3:9)

is undefined. This is because on some architectures this assignment will be parallelized, in which
case we do not know the order in which the assignments tox (13) will occur.

One special case requires some thought to understand. As an assignment target,x andx() are
very different. In the latter case, one subscript has been given, although defaulted, and hence that
one subscript defaults to its lowest possible value; and any other subscripts will then default to
their lowest possible values, since they were omitted. Thus the targetx() is the first element ofx ,
while the targetx is all of x .

6.1 Assignment Actions

For each variable, the user may specify a string containing Basis language statements called its
assignment-action string. This string will be parsed and executed after each assignment statement
in which the corresponding variable name appears on the left-hand side of the assignment state-
ment. See33.12.

6.2 Operator Assignments

The form of an operator assignment statement is

target op= source

whereop can be any of the seven operators+, - , * , / , | , &, or ** . Many readers are no doubt
familiar with the operator assignments from C and C++. The above statement has the same effect
as

target = target op source

6.1. Assignment Actions 33



and so it can be thought of as a shorthand notation. For example,

i = i + 1

can be written with fewer keystrokes as

i += 1

This is especially handy if the left-hand side of the assignment is a long identifier with many
subscripts.

The left side of an operator assignment can be a one dimensional array with an arbitrary array of
integer subscripts. However, if any of the subscripts is repeated, then the resulting element with
that subscript is not defined.

6.3 The Append Statement

The append statement is part of a facility in Basis which assists in the process of collecting lists of
values, such as time histories, in an efficient manner. The components of the facility are:

• setlast , a routine for imposing a limit on the last subscript.

• The:= “append” operator.

• rtadddim , a routine for “adding” a dimension to a variable.

The routinesetlast( name, n) limits the LAST dimension (only) of the variable name to
length ofn. If n is greater than the current length (unlimited) of last subscript of name, then an
attempt is made to expand storage so that the length will be at leastn.

If n is greater than the current maximum value, then the maximum is set to 1.5 times the existing
value or at least 16. This exponential growth is used to help reduce memory fragmentation while
preserving constant time operation cost.setlast can be used on static arrays as long as no
attempt is made to exceed the actual storage available.

The append operator:= works as follows:x := y is equivalent to storingy after the current
end of x , increasing the final subscript ofx appropriately (usingsetlast ’s internal routine
rtsetdl ). y must be of an appropriate shape to be so stored. Ify is of the same dimension
as x , y is viewed as an array of values to be added, and the final subscript ofx will increase
appropriately. Ifx is a scalar, it is first made a one-dimensional vector of length 1.

rtadddim (”name”) adds a new subscript of 1 to name. This can be useful in setting name up as
a target for a:= .

Example 1:

34 Chapter 6. Display and Assignment Statements



real x(3,3)
call setlast("x", 2) # x will act as if it is shaped (3,2)

Example 2:

real x(3,3)
call setlast("x", 0) #x will act as if it is shaped (3,0)
x:=iota(3) # now x is (3,1) (but storage is still (3,3) )
x:=iota(3) # now x is (3,2) (but storage is still (3,3) )
x:=iota(3) # now x is (3,3) (but storage is still (3,3) )
x:=iota(3) # now x is (3,4) (but storage is now (3,16) )
x:=iota(3) # now x is (3,5) (but storage is still (3,16) )
x:=[iota(3),iota(3)]

# now x is (3,7) (but storage is still (3,16) )

Example 3:

integer y(0) # set up an empty array
integer i
do i=1, 1000

y:=i
enddo
# After this loop, y is the same as iota(1000)

6.4 The Logical IF Statement

The IF statement in Basis takes two forms that are similar to the Fortran logical IF and block IF
statements. We use this same Fortran terminology when referring to the two IF statements in Basis.

The syntax for the logical IF is

IF (<lexp>) <nonnullstatement>

where semantically <lexp > must evaluate to a scalar logical value. The
<nonnullstatement > can, but need not, be on the same line as the IF( <lexp >) .
Furthermore, unlike Fortran, the only restriction on the type of controlled statement is that it
cannot be null. Thus, in principle, logical IFs (and other structured statements) can be nested to
any depth.

In the following example,

IF (a < b & b < c) m = c

6.4. The Logical IF Statement 35



setsmprecisely toc if both a < b andb < c are true. A more complicated example is

IF (i <= maxindex)
IF (a(i) ˜= 0)

b(i) = b(i) / a(i)

The nested logical IFs illustrated above are not equivalent to the single IF statement

IF(i<=maxindex & a(i)˜=0) b(i) = b(i)/a(i)

because in the evaluation of a conjunction (expression with&), both operands of the conjunction
are always evaluated even if the first operand is false. Thus, ifi > maxindex , an attempt would
still be made to evaluatea(i) , which would cause a semantic error at run-time (subscript out of
range). For this reason, the first form is preferred.

Like all Basis statements, IF statements are actually compiled into a low-level code, and this code is
not interpreted (i.e., executed) until the complete statement has been read in. If errors in syntax (i.e.,
the grammatical form of the statement) are detected during the compilation process, compilation
is aborted and the offending statement must be retyped. Once a statement is entered correctly, it
executes to completion unless the detection of a semantic error aborts execution. If execution was
nested inside one or more structured statements, user functions, or both, when the error occurred,
information about the nesting is displayed.

The normal Basis prompt at initialization is1:

Basis>

During the input of structured statements, however, this prompt changes to a series of> symbols
that indicate the nesting level. The prompt returns to normal after execution completes. For

instance, the example above with Basis prompts is:

Basis > IF (i <= maxindex)
\> IF (a(i) ˜= 0)
>> b(i) = b(i)/a(i)
Basis >

6.5 The Structured IF Statement

The other type of IF statement is quite similar to the Fortran block IF. In skeletal form, it looks like
this:

1In an application code the main prompt is usually changed by the author

36 Chapter 6. Display and Assignment Statements



IF(<lexp>) THEN
<stlist>

ELSEIF (<lexp>) THEN
<stlist>

...
ELSE

<stlist>
ENDIF

where<stlist > represents either a single statement or a sequence of statements separated by
semicolons or carriage returns.

ELSEIF and ENDIF must be single words. If you enterELSE IF , for instance, then the compiler
will think that a new IF statement, nested inside the current one, is being started.END IF will
cause compilation to abort with a syntax error. The ELSEIF clause is optional. Also note that the
ellipsis above indicates that there may be many ELSEIF clauses. The ELSE clause is optional also,
but, of course, there can be no more than one ELSE clause.

Basis is not overly particular about the placement of THEN; it can be on a separate line, and it can,
but need not, be followed by a statement on the same line. In fact, THEN can be omitted from an
ELSEIF clause, provided that<stlist > begins with a non-null statement. Thus, although THEN
is not syntactically important, ENDIF, ELSEIF, and ELSE are. ENDIF, ELSE, and ELSEIF must
each appear at the beginning of a separate line, or be separated from<stlist > by a semicolon.

Here is a block IF that determines the maximum of two numbers:

IF (a>b) THEN
m = a

ELSE
m = b

ENDIF

This could equally well be written

IF (a>b)
THEN m = a
ELSE m = b
ENDIF

or could even be written on one line as

IF (a>b) THEN m = a; ELSE m = b; ENDIF

Semicolons are required to separate statements that appear on a single line.

The following nested block IFs determine the maximum of three numbers:

6.5. The Structured IF Statement 37



IF ( a>b ) THEN
IF (c>a) THEN

m = c
ELSE

m = a
ENDIF

ELSEIF (c>b) THEN
m = c

ELSE
m = b

ENDIF

Of course, the built-in function max(a,b,c) is a lot easier!

38 Chapter 6. Display and Assignment Statements



CHAPTER

SEVEN

WHILE Statement

7.1 WHILE Statement

The WHILE statement is a loopingconstruct similar to that found in C:

WHILE (<lexp>)
<stlist>

ENDWHILE

As in theIF statement,<lexp > is required to evaluate to a logical value (true, false). Otherwise
a semantic error occurs and execution is terminated. At execution time,<lexp > is evaluated.
If it is false, execution of theWHILE loop is terminated. If theWHILE loop is nested inside
another statement, then control goes to whatever follows theENDWHILE. If <lexp > is true, then
<stlist > is executed. If<stlist > does not contain aNEXT, BREAK, or RETURNstatement
in its flow of control, then<lexp > is evaluated again and execution proceeds as above. (The
NEXT, BREAK, and RETURNstatements alter the flow of control and may cause the loop to
terminate.)

For example, the following sequence of statements adds up the positive elements in arraya. Note
theIF statement nested within theWHILE.

sumpos = 0
i = 1
WHILE (i<=amax)

IF (a(i)>0) sumpos = sumpos + a(i)
i = i + 1

ENDWHILE

Below is a set of nested loops that compute the product of two square matricesa andb and place
the result inc :

i = 1
WHILE (i<=n)

39



j = 1
WHILE (j<=n)

c(i,j) = 0
k = 1
WHILE (k<=n)

c(i,j) = c(i,j) + a(i,k)*b(k,j)
k = k + 1

ENDWHILE
j = j + 1

ENDWHILE
i = i + 1

ENDWHILE

The Basis prompt on the innermost loop will be>>>.

7.2 BREAK and NEXT Statements

TheBREAKstatement provides a way to exit from a loop other than via the controlling condition
going false. Indeed, aWHILE(true) will never terminate unless it contains aBREAK. For example,
the following example is equivalent to the firstWHILE in the first example given above:

sumpos = 0
i = 1
WHILE (true)

IF (i<=amax) THEN
IF(a(i)>0)sumpos = sumpos + a(i)
i = i + 1

ELSE
BREAK

ENDIF
ENDWHILE

Normally, as is the case here, theBREAKstatement will be controlled by some sort of test.

BREAKcan be used to exit from nested structures by using the formBREAK n (or BREAK(n)),
where n is the level of loop nesting.BREAKandBREAK 1mean the same thing.

Here is an example usingBREAKfrom a nesting level of three deep:

i = 1
WHILE(true); j = 1

WHILE (j<=5); k = 1
WHILE(k<=5)

IF(i*j*k > 86) BREAK 3

40 Chapter 7. WHILE Statement



k = k + 1
ENDWHILE
j = j + 1

ENDWHILE
i = i + 1

ENDWHILE

The nesting level expressed in a BREAK can, but need not, be enclosed in parentheses. It must be
a positive integer constant, however, not an expression or variable name.

The BREAK statement is not used exclusively in WHILE statements; it can be used inside any
iterative statement (iterative statements are discussed later). Bear in mind that a specified nesting
level is the level of nesting inside loops only; the fact that each BREAK in the examples above is
in an IF does not affect its level as far as loops are concerned. A BREAK statement that occurs
outside a loop, or one that occurs inside a loop with an expressed nesting level greater than the
actual nesting level, will simply be ignored and has no effect whatsoever.

The NEXT statement has a provision for prematurely reentering a loop (including an outer loop
that contains the loop with the NEXT statement). For example, the following loop adds all the
elements of arraya, except those whose subscript is divisible by 5:

i = 0; sum = 0
WHILE (i<n)

i = i + 1
IF(i/5*5 = i) NEXT
sum = sum + a(i)

ENDWHILE

The integeri/5*5 is equal toi precisely if i is divisible by 5, in which case NEXT causes
control to return to the top of the loop, wherei < n is checked again.

In the NEXT statement, as in BREAK, an optional nesting level can be given, either as an absolute
integer or as an integer in parentheses. NEXT and NEXT 1 are equivalent. NEXT 2 causes iteration
to proceed to the top of the next outer loop, and so on. As with BREAK, a NEXT is ignored if its
expressed nesting level is greater than the current actual level, or if it occurs outside a loop.

7.2. BREAK and NEXT Statements 41



42



CHAPTER

EIGHT

FOR Statement

The FOR statement, except for minor syntactic variations, is similar to the one in the C Language;
C programmers should beware the interchanged roles of comma and semicolon.

Its general form is

FOR (<forinit>, <lexp>, <stlist2>)
<stlist1>

ENDFOR

where<forinit > is a (possibly null) list of one or more assignment statements, separated by
semicolons or carriage returns. These initializations are performed exactly once, when the loop is
first entered from above. The logical expression<lexp >controls iteration. If it evaluates to false,
the loop is exited; and if it is true,<stlist1 > executes, then<stlist2 >, and then<lexp >
is tested again, etc. BREAK works exactly as described in the preceding section, while NEXT
transfers control to the execution of<stlist2 >.

Logically, the FOR loop above is equivalent to

<forinit>
WHILE (<lexp>)

<stlist1>
<stlist2>

ENDWHILE

except that NEXT transfers control to<stlist2 >.

Normally<forinit > might be used to initialize a loop control variable,<lexp > to test it, and
<stlist2 > to increment it at the end of the loop. For example

sum = 0
FOR(i = 1, i<=n, i = i + 1)

sum = sum + a(i)
ENDFOR

43



adds up the elements of arraya. This could also be written as

FOR (i = 1; sum = 0, i<=n, sum = sum + a(i); i = i + 1)
ENDFOR

or even

FOR (i = 1
sum = 0,
i<=n,
sum = sum + a(i)
i = i + 1)

ENDFOR

The semicolons separating statements are not required if statements are on separate lines. However,
the commas between the three parts of the FOR header are required.

Note that ENDFOR must be preceded by a semicolon or carriage return.

Here is a matrix multiply using a FOR:

FOR (i = 1, i<=n, i = i + 1)
FOR (j = 1, j<=n, j = j + 1)

a(i,j) = 0
FOR (k = 1, k<=n, k = k + 1)

c(i,j) = c(i,j) + a(i,k)*b(k,j)
ENDFOR

ENDFOR

ENDFOR

44 Chapter 8. FOR Statement



CHAPTER

NINE

DO Statement

9.1 Uncontrolled DO

There are three forms of the DO statement. The first, called for obvious reasons the uncontrolled
DO, is the simplest in form:

DO
<stlist>

ENDDO

The initial DO must be followed by, and the ENDDO preceded by, a semicolon or carriage return,
as indicated above. In this uncontrolled DO,<stlist > repeatedly executes; in fact, if it does
not contain a BREAK statement, or if it does and it never executes, then the loop repeats forever.

9.2 DO-UNTIL

The second type of DO, DO-UNTIL always executes its body once, and performs the test at the
end.

DO
<stlist>

UNTIL (<lexp>)

In the DO-UNTIL loop,<stlist > executes and then<lexp > is tested. If<lexp > is true, the
loop terminates; if it is false,<stlist > repeats, and so on. The logical expression must evaluate
to a logical scalar at run-time, or a semantic error will occur.

BREAK works exactly as it does in other types of loop to effect exit. NEXT works in a reasonable
way, but maybe not as one might expect without a little thought. NEXT causes control to proceed
directly to the top of<stlist >, bypassing theUNTIL ( <lexp >, on the philosophy that when
reinitiated, this type of loop always executes its body once before testing at the end.

45



9.3 Controlled DO

The third type of DO is appropriately called the controlled DO, because its iterations and ter-
mination are controlled by an explicitly named scalar whose initial and termination values (and
optionally, increment) are specified prior to execution of the loop. This construct is quite similar
to the one from Fortran:

DO <lhs> = <init>, <term>, <incr>
<stlist>

ENDDO

The controlling scalar<lhs > must be integer and scalar; unlike FORTRAN, it may be an element
of an array. The other loop specifications,<init >, <term >, and <incr > must be scalar
expressions with numeric values which can be coerced to integer. The “, <incr >” can be
omitted. If it is, it defaults to 1 as in Fortran.

The controlled DO is roughly equivalent to the following statements, where%C1and%C2can be
thought of as variables accessible only to the Basis run-time system that cannot be changed by the
user:

<id> = <init>
%C1 = <term>
%C2 = <incr> # Or 1, if <incr> is absent

DO
IF (%C2 > 0 & <id> > %C1) BREAK
IF (%C2 < 0 & <id> < %C1) BREAK
<stlist>
<id> = <id> + %C2

ENDDO

Thus, the control expressions<term> and<incr> are evaluated exactly once, when the loop is
entered. This is important because it enforces the concept that the loop will execute a number of
times that is known upon entry, and that the number of iterations will not change subsequently,
even if the user alters components of the expressions<term> and<incr> . Likewise, if the loop
controlling scalar is a subscripted variable, its subscripts are evaluated exactly once, before the
loop is entered. Even should these subscripts change within the loop, the same array element will
still be used for the loop control. Finally, note that the test for loop exit is at the top of the loop,
and that the incrementing is at the bottom (after each execution of the body).

The next DO loop squeezes the zeroes out of an array:

j = 1
DO i = 1, maxa

IF(a(i) = 0) THEN
maxa = maxa-1

46 Chapter 9. DO Statement



ELSE
a(j) = a(i)
j = j + 1

ENDIF
ENDDO

The loop executes as many times as there were elements in a at the time the loop was entered,
because the initial value ofmaxa is saved and used for loop control. Upon exit from the loop,
maxa will have been changed to reflect the size of the smaller array.

The following example is, again, the matrix multiply; this time it is performed using several dif-
ferent DO loops:

i = 1
DO

IF (i>n) BREAK
DO j = n, 1, -1 # note negative increment

c(i,j) = 0
k = 1
DO

c(i,j) = c(i,j) + a(i,k)*b(k,j)
k = k + 1

UNTIL (k>n)
ENDDO
i = i + 1

ENDDO

9.3. Controlled DO 47



48



CHAPTER

TEN

Functions Listed by Type

Basis contains three different kinds of functions: user-defined, built-in, and compiled. The latter
two must be distinguished because there are different rules for using built-in and compiled func-
tions. The built-in routines are documented in the following section. The compiled functions are
documented in Chapter33. The following tables are intended for browsing to locate the routine
you need. They list the built-in and compiled functions classified by their general function or
nature. Compiled functions are listed initalic face.

10.1 Common Mathematical

abs aint anint exp log log10
alog alog10 nint ranf sign sqrt
mod min max sup inf

10.2 Trigonometry

acos asin atan atan2 cos cosh
cot sin sinh tan tanh

10.3 Type Conversion and Complex Numbers

aimag cmplx conjg dble float int
sngl struct

49



10.4 Arrays

Most of the built-in functions can take arrays as arguments or produce them as output. These
functions are helpful in working with arrays:

ave cumaddin diag iota land lor
length load max min mnx mxx
ones outer psum ptp ranf rangex
rsum shape struct sum sup inf
setlimit setshape where gather fromone trueshape
truerange setact spanl rmsdv squeeze setlast
rtadddim sorti trans-pose

10.5 Character Manipulation

len trim index trim triml trimr substr
format toupper tolower

10.6 Special Purpose

format index load range shape struct
type help news dec oct hex
allot change basfree gallot gchange gfree
execuser comment exists flushlog swset switch
protect paws setmnarg kaboom parsestr setranf
getranf seedranf mixranf cd,chdir setenv getenv
disk- space

10.7 Obtain/Set Scalar Values

ibasis rbasis dbasis cbasis lbasis sbasis
sibasis srbasis sdbasis scbasis slbasis ssbasis

50 Chapter 10. Functions Listed by Type



CHAPTER

ELEVEN

Built-in Functions

The user has access to a number of built-in functions, which are invoked in an expression by
using the name of the function followed by a parenthesized list of its actual arguments. Basis can
return not only scalars, but also array values or even what are called structures. A structure is an
array whose individual elements can be objects of different types: scalars, arrays, or even other
structures.

In this section, there is a brief alphabetic list of currently implemented built-in functions, their re-
quired parameters, and a description of what they return. Generally speaking, the built-in functions
allow the user license in what arguments can be sent. The number of arguments is checked, but
frequently the type of argument can be virtually anything, and a correct result will be returned.
Most of the arithmetic functions, for instance, will accept arguments of any size and shape, apply
the function to each component, and return an object of the same size and shape with the new
components.

In what follows, unless otherwise noted, a single argument can be a scalar of type integer, real,
double, or complex, or an array whose elements are of these types. A function is applied compo-
nent by component to arrays. Unless otherwise noted, the result components are of the same type,
unless they need to be coerced to real or complex.

This list can be obtained at run-time with the command “list Builtin ”.

abs(x) returns the absolute value of object x.

acos(x) returns the inverse cosine (in radians) of object x. The inverse trig functions do not return
complex values (e.g., acos(2) = 0). If x is complex (or has complex components), acos is
applied only to the real part(s) of x.

aimag(x) returns the imaginary part of object x. Use float to get the real part of complex x.

aint(x) returns the integer part of object x (i.e., truncates the fraction.) The result is always real.
If x is complex, aint is applied to the real part of x.

alog(x) alog(x) = natural logarithm of x

alog10(x) alog10(x) = base 10 logarithm of x

anint(x) returns the nearest (real) whole number to x. See “aint(x)”.

51



asin(x) is the inverse sin (in radians) of x. See “acos(x)”.11

atan(x) is the inverse tangent (in radians) of x. See “acos(x)”.11

atan2(y,x) is the inverse tangent (in radians) of the angle between the positive x axis and the vector
whose components are (x,y). x and y can be vectors of the same length, or both scalars, or
either can be a scalar and the other a vector. See “acos(x)”.11

ave(x,idim) returns the average of array x. x can be of type complex, real, double or integer. The
resulting type is the same as x, unless x is of type integer. In this case, the resulting type is
real. If idim is supplied, then the function is applied to each group of elements in x whose
indices vary only in the i-th dimension. The output array produced is the same shape as x,
except that the i-th dimension is removed. If idim is not supplied, then the function is applied
to the entire array, resulting in a scalar output.

cmplx(x), cmplx(x,y) returns x if x is complex; if x is integer or real, it returns a complex number
with imaginary part = 0 and real part = x (componentwise if necessary). In the two argument
form, returns the complex number (x,y). It is a semantic error if x and y are not real or
integer, or if x and y are not the same shape (except that one could be a scalar, which would
be broadcast).

conjg(x) returns the complex conjugate of object x.

cos(x) returns the cosine of object x, which must be in radians. x can be integer, real, double, or
complex; cos(x) will be real, double or complex as necessary.

cosh(x) returns the hyperbolic cosine of object x. See “cos(x)”.

cot(x) returns the cotangent of object x. See “cos(x)”.

cross(x,y) returns the cross-product of two real 3-d vectors x,y.

cumaddin(&x(i),y x and y are one-dimensional arrays of numeric type, andi is an arbitrary
integer array of subscripts intox . i andy are of the same length. Note that the ampersand
on x is required, because the contents ofx will be changed by this operation. The effect of
this function is the same as the Basis loop do j = 1, shape (y) x (i (j)) += y (j) enddobut of
course it is faster because the operations are done by compiled code. Note that ifi contains
repeated subscripts, then the effect of this is to accumulate the sum of corresponding values
from y into thex values corresponding to the repeated subscripts. Also note that ifi does
not have repeated subscripts, then it is much easier to do this as x (i) += yThe latter will not
work, however, ifi has repeated values, because only one of the sums will be assigned, and
furthermore, it is impossible to know which, if the computation is parallelized.

dble(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to double.

dcmplx(x [,y )]dcmplx(x) convert x to double complex type, dcmplx(x,y)=dble(x)+idble(y)

52 Chapter 11. Built-in Functions



diag(x), diag(x,k) where x is a vector, returns a matrix whose main diagonal is x. The matrix will
be n by n, where n is the length of x. diag(x,k), where x is a vector of length n and k is an
integer, will return an(n + |k|) by (n + |k|) matrix with x on the kth diagonal (k
may be negative; k = 0 is the main diagonal). The remainder of the entries are 0. If k is not
an integer, it or its real part is truncated to integer. If k is not a scalar, its first component is
extracted and used.

exp(x) returns the real, double or complex exponential of x, componentwise if necessary.

fft(x [,dim )] Fourier transform. x real or complex. If present, dim is the dimension over which the
transform is taken for all values of the other subscripts. The transform length, n = length(x)
or shape(x)(dim), can be any integer>0, but the method is most efficient when n is the
product of small primes. For x complex, fft(x) returns z(j) = x .dot. exp(-2i*pi*j*iota (0,n-
1)/n), j in range 0:n-1. For x real and n = 5 [6], fft(x) returns c0, c1, s1, c2, s2 [,c3], where cj
= x .dot. cos(2*pi*j*iota(0,n-1)/n), and and sj = x .dot. -sin(2*pi*j*iota(0,n-1)/n). See also
the inverse transform, ffti.

ffti(x [,dim )] Fourier inverse. For x real or complex, ffti(fft(x)) = x*length(x) for x one-
dimensional, and ffti(fft(x,dim),dim) = x*shape(x)(dim) for any x with dimensionality>=
dim. See also fft.

fit(x,y,n) fit(x,y,n) fits an n-th degree polynomial in x to y.

fromone(x) produces a value of the same type and shape as x, with its lowest subscript in each
dimension set to 1.

float(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to real.

format(x,fw,nd,flg) returns a character string containing the formatted value of x. If fw is positive,
the string length is fw; if fw is zero, the string has no leading blanks; if fw is negative,
the string length is abs(fw) and the string is filled with leading zeros following the sign, if
present. If nd is given, output is real with nd places after the decimal point. If flg is 1, output
is fixed format; if 0, E- or D-format is used, depending on the type of x; if 2, E-format is
used even if x is double precision

gather(x,index) gathers up a vector from source vector, x. x is a one dimensional array of type
real, double, integer or complex. index is a one dimensional integer array which determines
which elements are accessed. The output vector is the same type as the source vector. Its
length is the same as the vector of indices.EXAMPLE:

real x(-2:2)=[-4,-2,0,2,4]
integer index(3)=[-2,0,2]
chameleon a=gather(x,index)

would result in:

53



a(1) = x(index(1)) = x(-2) = -4.00000e+00
a(2) = x(index(2)) = x(0) = 0.
a(3) = x(index(3)) = x(2) = 4.00000e+00

index(s,r) wheres andr are strings, returns the position ins wherer first appears as a substring,
or zero ifr is not found.

inf can have an arbitrary number of arguments of any sizes and shapes. inf returns a scalar which
is the minimum value present amongst all the components of all the objects. Arguments
must be of arithmetic type; only the real parts of complex objects participate.

int(x) returns x converted to integer, componentwise if necessary. If x is complex, int is applied
to the real part. Conversion is by truncation.

iota(n), iota(m,n) where m and n are integer, returns a vector of length n-m, whose components,
in order, are integersm, m+1, m+2...,n . If m is omitted it is assumed = 1.

land(x,y,...) can have an arbitrary number of logical arguments of any shapes. land returns a
logical scalar which is true if every component of every argument is true.

length(a) returns the number of elements in a.

len trim(s) returns the string length of string s without counting trailing blank characters.

load(a,n) returns a real vector with n components, the consecutive values in memory starting at
address a. This function is useful for debugging.

log(x) returns the natural logarithm of object x, by components if necessary. See cos.

log10(x) returns the common logarithm of object x, by components if necessary. See cos.

lor(x,y,...) can have an arbitrary number of logical arguments of any shapes. lor returns a logical
scalar which is true if some component of some argument is true.

max accepts two or more arguments and returns the maximum component by component. Scalars
will be broadcast, but otherwise the arguments must have the same number of components.
The result has the shape of the first non-scalar argument or is scalar if all the arguments are
scalar. Only real parts of complex objects participate. See “sup”.11

min does the same as max, but returns the minimum. See “inf”.11

mnx(x,idim) returns the minimum index of array x. x can be of type real, double, or integer. The
resulting type is the same as x. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array, resulting in a scalar output.

mod(x,y) returns the remainder after division of object x by object y. If x and y are not the same
size and shape, y must be a scalar, which is then broadcast.

54 Chapter 11. Built-in Functions



mxx(x,idim) returns the maximum index of array x. See “mnx(x,idim)”.11

nint(x) returns the nearest integer to real object x. Similar to anint except for type of result.

ones(n) returns a vector of length n whose components are all 1, with a single scalar integer
argument n. ones of more than one integer scalar argument returns an array of that shape
whose components are the Kronecker delta.

outer(x,y) returns the outer product of objects x and y.

psum(x,idim) returns the partial sum of array x. x can be of type integer, real, double, or complex.
The output is an array of the same type, size and shape as x. If idim is supplied, then
the function is applied to each group of elements in x whose indices vary only in the i-th
dimension. This value is stored in the output array element whose indices are the same as
the indices of the input elements. If idim is not supplied, then the function is applied to the
entire array.

ptp(x,idim) returns the peak to peak of array x (maximum value - minimum value). See
“mnx(x,idim)”. 11

ranf(x) returns an object of the same size as x whose components are random numbers. These will
be between 0 and 1 if x is integer, real, or double, on the unit circle if x is complex. See the
chapter on Compiled Functions for additional documentation about ranf and its supporting
routinessetranf, getranf, seedranf, andmixranf.

rangex(x) where x is an array, returns a matrix whose rows contain the lower and upper subscripts
for each dimension of x which is not of length 1. If x is scalar range, returns[1,1] .

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
rangex(x # returns 4x2 matrix with rows

# [1 3], [2,4], [1,1], [1,5]
rangex(y(,,,1:4)) # returns 4x2 matrix with rows

# [1 3], [2,4], [1,2], [1,4]

rmsdv(x,idim) returns the root mean square deviation of array x. x can be of type real, double
precision, or integer. The resulting type is the same as x, unless x is of type integer. In this
case, the resulting type is real. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array.

rngbeg(rng, begindx) rng - the range (or array of ranges) whose beginning index (or indices) is
to be returned.begindx - the integer value (values) to be used for any beginning index (or
indices) whose value has been DEFAULTED.

This function returns the beginning index (or indices) of the given range(s) (argument rng) in
which all the DEFAULTED fields (e.g. :10) have been replaced by the corresponding value

55



of argument begindx. If argument rng is an array, then argument begindx must be either a
scalar integer or an array of the same length as argument rng.

EXAMPLES:

rngbeg(:8,2) # returns 2
rngbeg(1:4, 3) # returns 1
rngbeg([:8, 1:4, :7], 3)

# returns vector [3,1,3]
rngbeg([:8, 1:4, :7], [1,2,3])

# returns vector [1,1,3]

rngend(rng, endindx) rng - the range (or array of ranges) whose ending index (or indices) is to
be returned.endindx - the integer value (values) to be used for any ending index (or indices)
whose value has been DEFAULTED.

This function returns the ending index (or indices) of the given range(s) (argument rng) in
which all the DEFAULTED fields (e.g. 2: ) have been replaced by the corresponding value
of argument endindx. If argument rng is an array, then argument endindx must be either a
scalar integer or an array of the same length as argument rng.

EXAMPLES:

rngend(8:,15) # returns 15
rngend(1:4, 3) # returns 4
rngend([8:, 1:4, 7:], 3)

# returns vector [3,4,3]
rngend([8:, 1:4, 7:], [11,12,13])

# returns vector [11,4,13]

rnginc(rng), rnginc(rng, incindx) rng - the range (or array of ranges) whose stride (or strides) is
to be returned.incindx - a value which is not used or checked. This argument need not be
present.

This function returns the stride(s) of the given range(s) (argument rng). A second argument,
incindx, is allowed but is not required (and is not used) in order to provide function RNGINC
with an interface similar to RNGBEG and RNGEND. Defaulted values for range strides ar
always 1. The first argument can be ny array in which case an array of increment fields is
returned.

EXAMPLES:

rnginc(1:8,2) # returns 1
rnginc(1:8) # returns 1
rnginc([1:8, 10:4:-1, 1:7:2])

# returns vector [1,-1,2]

rngsetdf(rng, default rng) rng - the range (or array of ranges) to be returned with any DE-
FAULTED fields replaced.defaultrng - a range (or array of ranges) which has no DE-
FAULTED fields (increment fields are ignored). The corresponding fields will be returned in
place of any DEFAULTED field in argument rng.

56 Chapter 11. Built-in Functions



This function returns the given range(s) (argument rng) in which all the DEFAULTED fields
have been replaced by the corresponding fields in the given default ranges (argument de-
fault rng). If argument rng is an array, then argument defaultrng must be either a scalar
range or an array of the same length as argument rng.

EXAMPLES:

rngsetdf(:8, 2:10) # returns 2:8
rngsetdf(2: , 1:22)

# returns 2:22
rngsetdf(::3 , 1:15)

# returns 1:15:3
rngsetdf([:8, 1:4, 7:], 2:15)

# returns vector [2:8,1:4,7:15]
rngsetdf([:8, 1:4, 7:], [-1:5, 2:3, 3:9])

# returns vector [-1:8,1:4,7:9]

rsum(x,idim) returns the partial sum of array x in reverse order. See “psum(x,idim)”.11

shape(x), shape(x,n1,n2,...)shape(x), where x is an array, returns a vector that gives the shape of
x (i.e., its ith component is the range of the ith subscript of x). All dimensions of length 1 are
removed from x before the shape information is returned. If x is a scalar then shape(x) is 1. If
the shape of x is one dimensional, shape(x) is a scalar giving the length.shape(x,n1,n2,...nk)
returns x reshaped to the specified dimensions. It is an error if the length of x is not the
product of those n1 through nk that are positive. If ni is negative, this is a so-called ”rubber
index” signal. It indicates the number of repetitions of the data in the given dimension that
are required. This is frequently used to create copies of data so as to match the shape of a
higher-dimensional object with which it is used in arithmetic statements. The final number
of elements in the result will be the product of the length of x with the absolute values of
those ni that are negative.

EXAMPLES (reporting the shape):

integer x(3,2:4,1,5), y(3,2:4,2,5)
shape(x) # returns [3,3,5]
shape(y(,,,1:4) # returns [3,3,2,4]
shape(0) # returns 1
shape(iota(6)) # returns 6

EXAMPLES (changing the shape):

shape(x, 2, 3) # returns [[1,2], [3,4], [5,6]]
integer w = iota(3)
shape(w, -2, 3) # returns 2 by 3 matrix,

# with each row = [1, 2, 3].
shape(w, 3, -2) \# returns 3 by 2 matrix,

# rows = [1,1], [2,2], [3,3].

57



Suppose you have a variable x of shape (20, 35) and you wish to multiply each plane of y by
it, where y is of shape (20, 35, 12). You would write: y * shape(x, 20, 35, -12)Note how you
can read off the final shape of the result by taking absolute values.

sign(x,y) returns object x with the corresponding signs of the components of y attached to the
components of x. If x and y are not the same size and shape, x must be a scalar, and it will
be expanded into an object the same size and shape as y before the signs are attached, Both
arguments must be integer or real, or double.

sin(x) returns the sine of object x, which must be in radians. See “cos(x)”.11

sinh(x) returns the hyperbolic sine of object x. See “cos(x)”.11

sngl(x) returns an object of the same size and shape as x whose components are those of x, con-
verted to real.

sorti(&sortary, &sortidx, length) where sortary is an integer array to be sorted in ascending or-
der and length is the number of integers to be sorted. The sorted list is returned in array
sortary. Array sortidx is an output array of integers containing the permutation used to sort
array sortary. The i-th value of sortidx is the index into the unsorted list of the i-th element in
the returned sorted list.NOTE: an & is needed in front of both arguments sortary and sortidx
since they return data.

spanl(start,stop,npoints) returns a list of floating point numbers logarithmically spaced, where
start is the starting number, stop is the stopping number, and npoints is the number of points.

squeeze(x)array x is reshaped such that all dimensions of length 1 have been removed. If no such
dimensions exist, then squeeze(x) is the same as x.

sqrt(x) returns the square root of object x. See “cos(x)”.11

strchpat(s, oldpat, newpat) string substitute. Returns a string in which every occurrence of old-
pat in s is substituted with newpat. if newpat is not specified, all occurrences of oldpat are
removed.

strlen(s) returns the string length of string s.

struct accepts any number of arguments (including other structures) and returns a structure whose
components are these objects. To access a component of a structure, one selects that compo-
nent like an array component, by means of its subscript in parentheses.

substr(s,pos,len)returns a substring of s starting at the 1-origin index pos and is of length len.

sum(x,idim) returns the sum of array x. x can be of type integer, real, double, or complex. The
resulting type is the same as x. If idim is supplied, then the function is applied to each group
of elements in x whose indices vary only in the i-th dimension. The output array produced is
the same shape as x, except that the i-th dimension is removed. If idim is not supplied, then
the function is applied to the entire array, resulting in a scalar output.

58 Chapter 11. Built-in Functions



sup can have an arbitrary number of arguments of any sizes and shapes. sup returns a scalar which
is the maximum value present amongst all the components of all the objects. Arguments must
be of arithmetic type; only the real parts of complex objects participate.

svd(x) svd(x)= singular value decomposition , structure (u, d, v) such that x = u *! diag(d) *! v’,
u, v unitary matrices, d vector of singular values.

tan(x) returns the tangent of the object x, which must be in radians. See “cos(x)”.11

tanh(x) returns the hyperbolic tangent of x. See “cos(x)”.11

tolower(s) converts a string from uppercase to lowercase.

toupper(s) converts a string from lowercase to uppercase.

transpose(x) transposes the matrix x.

trim(s) returns the string s with both leading and trailing blanks removed.

triml(s) returns the string s with leading blanks removed.

trimr(s) returns the string s with trailing blanks removed.

truerange(namex) where namex is string which is the name of an array or subscripted array. This
function returns a matrix whose rows contain the lower and upper subscripts for each dimen-
sion of the array named by namex. If namex references a scalar range, returns[1,1] .The
values returned by this function might be different than those returned by function rangex.
Function truerange will return information about dimensions of length 1.

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
truerange("x") # returns 4x2 matrix with rows

# [1 3], [2,4], [1,1], [1,5]
truerange("y(,,,1:4)")

# returns 4x2 matrix with rows
# [1 3], [2,4], [1,2], [1,4]

trueshape(namex)where namex is a string which is the name of an array or subscripted array.
This function returns a vector that gives the shape of the array named by namex (i.e., its
ith component is the range of the ith subscript of x).The values returned by this function
might be different than those returned by function shape. Function trueshape will return
information about dimensions of length 1.

EXAMPLES:

integer x(3,2:4,1,5), y(3,2:4,2,5)
trueshape("x") # returns [3,3,1,5]
trueshape("y(,,,1:4)")

59



type(x) returns the type of x as a string. Possible values are: ”integer ”, ” real ”, ” complex ”,
”double ”, ” logical ”, ” character ”, ” chameleon ”, ” range ”, ” function ”,
” indirect ”, ” structure ”, ” word address ”, and ”null ”.

utype(t1,t2,...) Defines from one to ten user delimiters for use in COMMANDs. Each delimiter
ti must be a string. Each call to utype creates a new table of user delimiters from scratch,
and for subsequent reference in a COMMAND, they will be referred to by one of the digits 1,
2, ... , 9, 0 according to the order in which they occurred anmong the arguments ofutype .
utype is intended to be called as a subroutine, but if used as a function, it returns its last
argument as its value.

vmax(x [,i )] with one argument, vmax(x) is the same as max(x), i. e., gives the maximum compo-
nent of x, a scalar. vmax(x, i) performs the maximum over the ith dimension of x, delivering
an array of one less dimension whose components are the maximum of x with those sub-
scripts, as i varies. For example, if x(1,1) = 1, x(1,2) = 15, x(2,1) = 16, x(2,2) = 12, then
vmax(x,1) is the vector [15,16] and vmax(x,2) is [16,15].

vmin(x [,i )] with one argument, vmin(x) is the same as min(x), i. e., gives the minimum compo-
nent of x, a scalar. vmin(x, i) performs the minimum over the ith dimension of x, delivering
an array of one less dimension whose components are the minimum of x with those sub-
scripts, as i varies. For example, if x(1,1) = 1, x(1,2) = 15, x(2,1) = 11, x(2,2) = 12, then
vmin(x,1) is the vector [1,11] and vmin(x,2) is [1,12].

where(cond,x,y) cond is an array or scalar of type logical. x and y each can be either a scalar
or an array of the same length (but not necessarily the same shape) as cond; and their types
can be either integer, real, double, or complex. Note: x and y do not have to be of the same
type. If y is present, the output is the same size and shape as cond and its type is the more
encompassing of x and y. For example, if x was of type integer and y was of type complex,
then the output would be complex. All data will be coerced to the proper type before being
stored into the output array. The value of the output array is calculated as follows. Those
elements of the output array corresponding to true values of cond are set to the corresponding
values of x (or set to x if x is a scalar). Those elements of the output array corresponding to
a false value of cond are set to the corresponding values of y (or set to y if y is a scalar). If
y is not present, then the output is a one dimensional array whose length is the number of
true values in cond and whose type is the type of x. The values of the output array are those
elements of x which correspond to a true value of cond. If x is a scalar, then all elements
in the output array are set to x. Example: where([true,false,true],[1,2,3],0.0) evaluates to
[1.0,0.0,3.0]

zcen(x) applies zone centering to the array specified.

60 Chapter 11. Built-in Functions



CHAPTER

TWELVE

User-Defined Functions

12.1 Defining Functions

The user can define functions to perform some task not available in the built-in functions. At
compile time, user-defined functions are translated into intermediate code, which is not executed
upon completion of the function definition, but instead is stored. Later the function can be invoked,
like a built-in, by executing code that calls the function.

The skeleton used for function definition is as follows:

FUNCTION name formalparams
<stlist>

ENDF

name is any user identifier of 128 or fewer characters; it must not be a keyword. If a user variable
or function with the same name already exists it is deleted.

formalparams is an optional parenthesized list of identifiers separated by commas. These
identifiers are interpreted in<stlist > as associated with the actual parameter values passed at
run-time. These names may be chosen arbitrarily; when the function is invoked variables with
those names come into being at the highest level of the search stack. Thus, if a user-defined
variable exists, and a function is called with that same name as a formal parameter, the user-defined
variable will be inaccessible while in that function. Ifformalparams begins with a semicolon,
or contains a semicolon in place of one of the commas, the arguments that follow the semicolon
are optional. The user may call such a function with none, some, or all of its optional arguments.
See “Functions With Variable Numbers of Arguments” on page138 to see what happens in that
case.

The<stlist > in a function is unrestricted, except that functions cannot be nested. An attempt
to define a function inside a function or other structured statement is not allowed and will result in
an error.

There is no provision for declaring the formal parameters and the function name. The formal
parameters act like chameleon variables at call time, in that they assume all the attributes of the
associated actual parameters. They can be coerced to a particular type by the built-in functions int,
float, or cmplx, if the user wishes.

61



12.2 RETURN

An object (and hence a chameleon-like type, size, and shape) is associated with the function name
by the statement

RETURN <lexp>

which returns control to the calling statement with the object<lexp > as the “value” returned by
the function. A simple

RETURN

returns no value. If flow of control in a function drops to the ENDF, then a RETURN is automati-
cally executed.

12.3 Local Variables

User variables can be declared inside a function. If they are, these variables are dynamic, and are
allocated space when the function is executed. They are then deallocated upon RETURN. These
variables can have the same names as other user variables, and if so, they supplant those variables
as long as the function is at the end of the call chain. Because these variables exist only during
execution of a function, they cannot be accessed from outside that function, and hence are strictly
local to it.

Prefixing the declaration of a variable with the keyword GLOBAL creates a variable which is
visible inside all functions and which replaces any currently existing variable with the same name.

12.4 CALL Is By Value

Actual parameters are passed by value, meaning that at run-time, their values are computed and
passed to the function to be linked to the formal parameters. Thus, assignment of a value to a
formal parameter in a function will not alter the actual parameter in the calling routine.

If a function is to have side effects (i.e., change the value of some existing variable), then this may
be done by accessing the variable globally: a variable is accessible to a function if it has been
declared outside all functions (or is predefined), and if no formal parameters or local variables
within the current function have that same name. Another method is to make the formal argument
the name of the array, and use an INDIRECT variable to reference it (See “Indirect Variables” on
page17.)

A function can be invoked in either one of two ways. The first is exactly the same as for built-in
functions: as an operand in an expression (function name followed by expressions for its actual

62 Chapter 12. User-Defined Functions



parameters in parentheses). The number of actual parameters must agree with the number of formal
parameters (possibly zero) declared in the FUNCTION header.

The second way to invoke a function is to use the CALL statement

CALL name actualparams

wherename is the function being invoked.actualparams is optional; it can be absent if
name was declared with no parameters, and present (with the same number of parameters) when
name was declared with parameters. Whether or not name returns a value is irrelevant to the
CALL statement, since the value is discarded. Presumably, CALL only makes sense if used with
a function that has side effects, say giving values to global variables, displaying values, or running
physics packages.

If a function has no formal parameters then it can be called in any of the following ways:

CALL name
CALL name()
name()
name

but of these onlyname() can be used in an expression, and onlynameor name() return a value.

The meaning of a name is decided at execution time, so it is acceptable to define a function that
calls a second function that has not yet been defined, as long as the second function is defined
before the first function is executed. If this is not done, an error message will be received to the
effect that the name does not exist. A function MAY call itself; logic to prevent infinite recursion
is your responsibility.

12.5 Examples of User Functions

As an example of function definition, the following function computes the square root of its argu-
ment (if real and positive) within a specified tolerance:

FUNCTION myroot (x,eps)
REAL y= 1.,eps1 = max(abs(eps),1.e-12)
IF (x<0) THEN

REMARK "myroot called with negative value";x
RETURN 0.0

ENDIF
IF(x = 0) THEN RETURN 0.0
DO

y = .5*(y + x/y)
UNTIL (abs(y*y-x) <eps1)
RETURN (y)
ENDF

12.5. Examples of User Functions 63



The tolerance of the result is measured with eps. Note that 0.0 is returned if the actual argument
was negative. In addition, an error comment is printed and x is displayed. If x is not negative, then
either 0.0 is returned or else iteration proceeds until the desired tolerance is met.

The following function computes the value of n factorial. Note that this function calls itself recur-
sively, which is allowed in Basis.

FUNCTION nfact (n)
IF (n<0) THEN

REMARK "negative factorial not defined"
ELSEIF (n = 0)

RETURN 1
ELSE

RETURN n*nfact(n-1)
ENDIF
ENDF

64 Chapter 12. User-Defined Functions



CHAPTER

THIRTEEN

Compiled Functions

Certain packages, including the Basis parser, contain compiled functions and subroutines. These
are modules written in Fortran or assembler which have been compiled and loaded into the exe-
cutable program. Basis has the ability to execute some of these functions and subroutines in a way
similar to the way Basis executes built-in and user-defined functions.

The difference between a function and a subroutine is that a function returns a value, while a
subroutine does not. In what follows we will simply use the name “function” to mean “function or
subroutine”.

In order for the function to be executable from Basis, the function must be listed amongst the
variables of the package. That is, the author of the package had to incorporate a description of the
function into his or her variable description file, which is part of the process of making a Basis
code. The function will be listed with a “template” for its calling sequence, which will consist of a
parenthesized list of arguments with optional types attached with a colon to the name, such as:

blah(x,y,z:integer,w:string) complex

This means that blah is a function that takes 4 arguments, the first two of type real (by default,
since they have names that begin with letters other than i through n), the third one of type integer,
and the fourth one of type “string” which means a character string of any length up to 500. The
function blah returns a complex value.

The functions that are declared in the parser package are described in this manual. (33) For other
packages, consult the documentation supplied by the author or poke around with the list command
until you find some.

Compiled functions can be of type integer, real, double, complex, logical, or character*(n). Argu-
ments to compiled functions can be of the same types. Currently, arguments to compiled functions
cannot be the names of functions of any type. Compiled functions only return scalar values.

A compiled function that modifies one of its input arguments may be dangerous. Basis has no
way of checking the length of an array expected by a compiled function, and a call to a compiled
function that modifies a location not supplied in the call will typically cause Basis to crash. Also
note that functions are called by value, and hence the modified argument is not accessible after
the function returns (but see below). However, used properly, compiled functions can be a very
powerful tool.

65



13.1 CALLing By Address

A (possibly subscripted) variable can be passed to a compiled function by address. (See “Indirect
Variables”,4.7 for the equivalent method for user-defined functions.) In this case modifications
which the function makes to the array WILL change the original. To do this, precede the name
with an ampersand in the calling sequence. For example, suppose zero(x,n) is a routine which sets
the first n components of x to zero. Then

real x(10) = iota(10) ; call zero(&x,5); call zero(&x(7),1)

will result in x containing[0.,0.,0.,0.,0.,6.,0.,8.,9.,10.] .

Only compiled functions can be passed an argument by address. If the variable being passed by
address is of any character type, it cannot be subscripted. When a variable is passed by address no
type conversion is done.

66 Chapter 13. Compiled Functions



CHAPTER

FOURTEEN

Defining Your Own Commands

14.1 The COMMAND Statement

fname COMMAND arglist
fname command_spec arglist

A formal description of this syntax will be developed step-by-step in this section. Informally, the
COMMAND statement will cause functionfname to be called with argumentsarglist . This
capability can be used in conjunction with the macro facility to define your own blank and/or
comma delimited “commands”. It is also possible to specify other delimiters between arguments,
or even to define your own. In the following example

mdef mycommand = myfunction command mend
mycommand arg1, arg2

a command calledmycommand is defined and is used. The above usage of this command
(mycommand arg1, arg2 ) will cause functionmyfunction to be called with arguments
arg1 andarg2 .

The formal definition of the syntax for argument specification is as follows. The first syntax form
is a function namefname followed by the wordCOMMAND(or command) followed by a comma
and/or blank delimited argument list – WITHOUT parentheses. This form of the COMMAND
statement expectsarglist to contain only expressions, i.e. all arguments are first evaluated.
Thus all strings must be quoted.

The second form is identical to the first form except that instead of entering the word “command”,
you now enter acommand spec which is the word “command ” (note the underscore) imme-
diately followed by a type specification. This specification is a series ofs ’s, S’s, e’s, and/orE’s,
optionally followed by a parenthesized series ofs ’s, S’s, e’s, and/orE’s at the end. (This second
form also allows you to specify what delimiters you wish as defaults between arguments, and any
special delimiters between specified arguments. We will postpone the question of delimiters until
a later section.) This specification allows you to have arguments which are either unquoted strings
(s, S ) or expressions (e, E ), or a combination of both. The first letter of the specification de-
fines the type of the first item in the COMMANDarglist , the second letter, the second item,

67



etc. Thes denotes an unquoted string and ane an expression. The upper case lettersS andE also
denote unquoted strings and expressions, except that macro expansion will be suppressed; thus the
macro-suppressing brackets “{}” are not necessary in the corresponding arguments. The letters
of the specification within the ()’s (if any) are used repeatedly until the end of the command list
(i.e. (se) is sesese... ). If no ()’s are present in the specification, then the last letter is used
repeatedly until the end of the COMMANDarglist (i.e. “se ” is the same as “seee... ”).

The following example illustrates defining a new “command” called gotoit which expects a
series of expressions as arguments. A second “command” called dothis is also defined, which
expects a series of name and expression pairs.

define gotoit f COMMAND
define dothis g command_(se)
gotoit a,4+5,c
dothis x 6+1 y 9+3

The above example is equivalent to

call f(a,9,c)
call g("x", 7, "y", 12)

This is accomplished in two stages. First, “gotoit a,4+5,c ” is expanded to “f COMMAND
a,4+5,c ”. The COMMAND statement then evaluates expressionsa, 4+5 , andc and calls
function f with the resulting values. In the next example, “dothis x 6+1 y 9+3 ” is ex-
panded to “g command (se) x 6+1 y 9+3 ”. The “command (se) ” statement treatsx
andy as strings and evaluates expressions6+1 and9+3 . Then functiong is called with the result-
ing values. It should be noted thatf andg can be any type of function such as a Basis function,
built-in function, or compiled function or subroutine.

The above examples show that macros and COMMANDS can interact to provide a powerful tool.
Besides being able to use a COMMAND in a macro, you can also use macros in a COMMAND
arglist . If the arguments are specified by lower casee or s , then macros used in an argument
are expanded, unless they are protected by curly brackets{ }’s (or are enclosed in quotation
marks). Macros are not expanded in arguments specified by upper caseS and E, so it is not
necessary to use the somewhat clumsy bracket notation to suppress macro evaluation.

Some examples follow which show two things – different ways to delimit a COMMAND
arglist , and the usage of macros in anarglist .

define expr (6+2)
define x str1
mdef y = str2 mend
mdef z = str3 mend
echo COMMAND a, (6+2)/2, c # comma delimited
echo COMMAND a expr/2 c # blank delimited
echo COMMAND a expr/2, # mixed delimited

68 Chapter 14. Defining Your Own Commands



c # continuation of arglist
echo COMMAND a {expr}/2 c # one way to suppress macro
echo COMMAND_eEe a expr/2 c # another way to do it
echo command_s str1, str2, str3 # comma delimited
echo command_s x y z # blank delimited
echo command_s x y, # mixed delimited

z # continuation of arglist

The first set of COMMAND statements is equivalent tocall echo(a,4,c) , the second to
call echo(a,expr/2,c) (one hopes that there is a variable namedexpr which is defined
and has a value), and the third set tocall echo ("str1", "str2", "str3") . Note
that in the third and eighth COMMAND statements that both commas and blanks were used as
delimiters in a single statement. A comma at the end of any COMMAND line signifies that the
COMMAND arglist continues on the next line.

WARNING: It should be noted that

define expr 6+2
define exprnew 7 +1
mdef mystring = this is a string mend
echo COMMAND a, expr/2, c
echo COMMAND a, exprnew, c
echo COMMAND a, 7 +1, c
echo command_s this is a string
echo command_s mystring

is equivalent to

call echo(a, 7, c)
call echo(a, 7, +1, c)
call echo(a, 7, +1, c)
call echo("this", "is", "a", "string")
call echo("this", "is", "a", "string")

The expression “expr/2 ” is equal to seven since this expression expands to “6+2/2 ”. Macro
writers should remember to enclose any expressions in parentheses, such as “(expr)/2 ”, if they
wish their expression to be evaluated before any other operations are performed.

The rest of the preceding examples deal with delimiting issues. Blanks and commas are the default
delimiters betweencommand arguments. Thus the blanks between the “7” and the “+1” and
between the words in “this is a string ” are considered delimiters, even if these blanks
appear in the middle of a macro definition. If you have an expression with blanks that you wish
to be considered one expression, then enclose the expression in parentheses ()’s. If you have an
unquoted string with blanks (or commas) that you wish to be considered one string then enclose
the entire string (or just the blanks or commas) in quotation marks (" ) or protection brackets{
}’s. (The other method of specifying delimiters other than the defaults is discussed in a future
subsection). Thus

14.1. The COMMAND Statement 69



define expr (6+2)
define exprnew (7 +1)
mdef mystring = {this is a string} mend
echo COMMAND a, expr/2, c
echo COMMAND a, exprnew, c
echo COMMAND a (7 + 1) c
echo command_s "this is a string"
echo command_s mystring{ and here is some more}

is equivalent to

call echo(a, 4, c)
call echo(a, 8, c)
call echo(a, 8, c)
call echo("this is a string")
call echo("this is a string and here is some more")

14.2 Changing the Default Type of a COMMAND Argument

Suppose you define a new “command” helpme which expects a series of unquoted strings. Now
what if someone using your “command” helpme wants to use an expression to calculate the
value of a string? This user can override your default type specification of “command” helpme
by typing a caret “̂ ” (the user can have blanks following the caret) in front of the arguments whose
type she wants to change. The caret will change strings to expressions and expressions to strings
(it will not change the case, i. e.,s becomese andS becomesE).

EXAMPLES:

define helpme g command_s
define exprs f command
character*5 root = "mynam"; integer i=5
helpme x y z
helpme x ˆ root//format(i,0) z
helpme x ˆ (root // format(i,0)) z
exprs 1+2 3+4
exprs ˆ abc ˆ 3+4

The above examples are equivalent to

call g("x", "y", "z")
call g("x", "mynam5", "z")
call g("x", "mynam5", "z")
call f(3, 7)
call f("abc", "3+4")

70 Chapter 14. Defining Your Own Commands



Blanks are considered delimiters. The only difference between the second and thirdhelpme
commands in the above example is the spaces surrounding the // operator and the parentheses
surrounding the expressions. Because of these blanks the parentheses are needed.

14.3 Specifying Other Delimiters in a COMMAND Statement

There is an additional COMMAND syntax which allows one to specify default delimiters (other
than blanks and commas) for the entire command and to vary these delimiters between individ-
ual pairs of arguments; it also allows users to define their own delimiters and to specify those.
Users can define their own delimiters by means of the new builtin functionutype . One calls this
function with a list of from one to ten strings, which are then entered into a table in order. For
example

call utype("=","with","?","by")

will define user delimiter number 1 as"=" , number 2 as"with" , and number 3 as"?" . There
are no other user delimiters. (Each subsequent call toutype redefines the user delimiter list
to whatever its arguments are.) When specifying user delimiters, the number of the delimiter (1
through 9, with 0 representing the tenth) is used.

Delimiters available from the system are blank and comma (which are always the defaults if noth-
ing else is specified), theat symbol , and the equal sign=. These are denoted (respectively) by
W(for “whitespace”)C, A, andQ. The lower case lettersw, c , a, andq are used to denote the
suppression of a particular delimiter.

The syntax is thatcommand is followed by a string including one or more of the delimiter char-
acters and ’s’/’S’, ’e’/’E’ characters, with an optional set of parentheses, as follows:

command_<string1><string2>(<string3>)

where at least one of<string1 >, <string2 >, and( <string3 >) must be present, and
<string2 > and(string3 >) (if present) must begin with one of the argument designators
e, E, s, or S, and:

<string1 > (if present) is a string of delimiter characters and specifies the default delimiters
between the arguments of this command. This may consist of up to four of the letters W/w
(white space is/is not a default delimiter), C/c (comma is/is not a default delimiter), A/a
(“at” is/is not a default delimiter), or Q/q (“equals” is/is not a default delimiter); and any
combination of digits standing for user delimiters. The order is unimportant. If<string1>
is absent it defaults to ’WC’.

<string2 > (if present) consists of a list of the letters s (S) and/or e (E), each optionally followed
by delimiter characters as enumerated above. Delimiter characters in between argument
characters are used to modify the default delimiters between those two arguments only. They
may be used either to specify additional delimiters or to enable (or suppress) one of the four
standard ones.

14.3. Specifying Other Delimiters in a COMMAND Statement 71



( <string3 >) (if present) consists of a parenthesized list of argument and delimiter designators
as in<string2 >. The parentheses mean to repeat<string3 > as often as necessary to
include the rest of the arguments. If( <string3 >) is not present, then the last argument
designator in<string2 > will be applied repeatedly, if necessary, to cover all specified
arguments. If<string2 > is absent as well, then all arguments will default to expressions
with macro expansion enabled (e). Note that( <string3 >) , if present, is required to
contain at least one argument designator, and it must be the first character after the “(”.

Here are some examples. We shall assume in what follows thatutype has been called to set up
user delimiters"?", "with", "%", "by", in that order.

f command_wse the first argument, ( 6 + 8) * 43 ,88

is equivalent to

call f(" the first argument",(6+8)*43,88)

Note that the initialw suppresses the use of white space as delimiter, so the only default delimiter
left is the comma. White space is gathered as part of the string argument, but has no significance
in the expression arguments.

define name sam
define macpak specialvar
g command_s2SQe1(e1) name with macpak = 4 ? 3 ? 2 ? 1.56

is equivalent to

call g("sam","macpak",4,3,2,1.56)

Here the first string,name, is expanded as a macro, while the second,macpak , is not, because
it was specified with a capitalS. The number 2 user delimiterwith was used between the first
two arguments, then= as specified byQ, and then the rest of the delimiters are number 1 (?)
as specified by the repeated designatione1 in parentheses. Although white space is a default
delimiter throughout this command, note that white space which surrounds non-blank delimiters is
ignored. Indeed, white space is necessary surroundingwith because it would not be recognized
as a separate token otherwise.

h COMMAND_SQe2e4e name = 6 with 18 by 2

is equivalent to

call h("name",6,18,2)

This timename is not expanded because it was specified by upper caseS. Equal (Q) and user
delimiterswith (2) andby (4) were specified as additional delimiters between the second and
third, and third and fourth, arguments, respectively. The occurrence of2 and4 only ALLOWS the
with andby to be used as delimiters. Comma and white space are still valid delimiters unless
specifically suppressed by lower casewandc .

72 Chapter 14. Defining Your Own Commands



14.4 No Delimiters at All: the COMMAND L

The COMMAND L is a special construct not previously mentioned. It allows the entire line fol-
lowing the ’commandl’ to be gathered as one argument; nothing is accepted in any way as special
except the end of the line. Thus in effect ’commandl’ grafts quotes onto the beginning and end of
the rest of the line. For example,

parsestr command_l integer x = shape(iota(27),9,3); x #define x

is the same as

call parsestr(" integer x = shape(iota(27),9,3); x #define x")

whereas

parsestr command_wcs integer x = shape(iota(27),9,3); x #define x

is equivalent to

call parsestr(" integer x = shape(iota(27),9,3)"); x #define x

The action is quite different; in the first case, the entire rest of the line is picked up and enclosed
in quotes; in the second case, argument gathering stops with the semicolon. (This is intended to
illustrate that either a semicolon or a pound sign will normally cause the gathering of COMMAND
arguments to cease. COMMANDL is intended to be a way of getting around this.) In the second
case,x may be an unknown variable, globally, or if known, will almost certainly be different from
the array defined locally byparsestr and then lost upon return. To illustrate this, here is a
sample Basis run:

Basis> character*4 x = "abcd"
Basis\> parsestr command_l integer x = shape(iota(27),9,3); x
x shape: (9,3)

row col = 1 2 3
1: - 1 10 19
2: - 2 11 20
3: - 3 12 21
4: - 4 13 22
5: - 5 14 23
6: - 6 15 24
7: - 7 16 25
8: - 8 17 26
9: - 9 18 27

Basis> x
x = "abcd"
Basis\> parsestr command_wcs integer x = shape(iota(27),9,3); x
x = "abcd"

14.4. No Delimiters at All: the COMMAND L 73



Notice how neither command destroys the global value ofx ; but the first command prints out the
local value (thus showing that its entire argument has been enclosed in quotes), while the second
prints out the global one (showing that the semicolon has been recognized as a statement separator,
and hence as the end of the command argument).

With some care, thel argument specifier may be used in combination with other arguments, ob-
serving the following constraints:l (or L, which has exactly the same meaning) must be the last
letter present in<string2 >, and (<string3 >) can not be present. This ought to be obvious
after a moment’s thought, because ifl/L suppresses the recognition of all delimiters, then there is
no way to collect an argument following the one it specifies.

For example,

f command_eel 6+8*4 5-3*7+2 string ; x # argument

is equivalent to

call f(6+8*4,5-3*7+2,"string ; x # argument")

74 Chapter 14. Defining Your Own Commands



CHAPTER

FIFTEEN

The Search Stack

Basis designates one package as the “current” package; this allows the user to specify one package
to be searched first during display of values or listing of variables. The parser itself is a package
named “par”. Basis begins with “par” as the current package, but the user can designate a new
current package by entering PACKAGE pkgname. If desired, the user can specify several packages
in order to create a “search stack”. The commands POP and PACKAGE pkgname can be used to
manipulate the search stack. The current package is the package at the top of the stack. “par” is
always present at the bottom.

The search stack is initialized by the program author. The commandlist packages can be
used to see the current search stack. Consult the documentation for your particular program.

In searching for a variable or function name, Basis searches in the following order: first, the
local variables and formal parameters of the currently executing function; second, the user-defined
variables and functions; next, the packages on the search stack are examined in order. This stack
always ends with the variables of the parser itself, the package called “par”. The searching is done
at execution time, not compile time.

75



76



CHAPTER

SIXTEEN

Package Control Statements

package pkgname

placespkgname at the top of the search stack, making it the current package. Ifpkgname was
already in the search stack, it is moved to the top.

The routineparpop removes the top element of the search stack, making the next element the
current package. If the stack has been reduced topar there is no effect.

77



78



CHAPTER

SEVENTEEN

The CTL Package

Some Basis programs use a special package namedctl to control the execution of physics pack-
ages. You can check ifctl is present in a program with the commandlist packages . If
it is, commands namedrun , generate , step , and finish will be defined for you. These
commands are in chapter?? in The Basis Package Librarydocument.

79



80



CHAPTER

EIGHTEEN

Removing Functions and Variables

Users may sometimes want to delete one or more user-defined functions or variables that are no
longer needed. The FORGET statement allows this to be done. A simple

FORGET

wipes out all user-defined functions and variables, and releases the space occupied by them so that
it can be reused.

FORGET name1, name2, ...

where name1, name2, are the names of a user-defined functions or variables, deletes those names
and releases the corresponding space.

If the user want to delete a macro, he should use the UNDEFINE command.

If the user wants to protect user-defined functions and variables made up to this point from future
FORGETs he can enter:

call protect

81



82



CHAPTER

NINETEEN

LIST Command

One important feature of Basis is that it knows about the variables in the different packages and
can tell the user about them. The author of a package organizes the variables into “groups”. The
command LIST is used to display information about variables, groups, and packages.

LIST [ name ]

where name is the name of a variable, group, or one of the keywords packages, macros, groups,
variables, or functions.

LIST LIST (with no argument) displays a help package for the LIST command.

LIST macros LIST macros displays a list of the macros that have been defined.

LIST packages LIST packages displays a list of the packages in Basis, giving the name of the
package, a short description, and its current status.

LIST pkg.variables displays a list of the variables (and functions) in that have been declared in
packagepkg , sorted by group. Ifpkg is omitted it defaults to the user-defined variables.

LIST pkg.groups LIST groups displays a list of the groups in the packagepkg with a short
description. A group is a group of variables that the author of a package has designated as
logically related to one another. Ifpkg is omitted it defaults to the user-defined variables.

LIST pkg.functions LIST FUNCTIONS displays a list of functions in the packagepkg . If pkg
is omitted it defaults to the user-defined functions.

LIST Group LIST Group displays information about all the variables in the group named Group.
Group must be entered with correct case; at least the first character will be upper case. The
name of the group may be abbreviated to any unique prefix. One special group is the group
User, which contains all the variables and functions declared by the user. When a user func-
tion is executing, there is a special group namedLocals fname where fname is the name
of the function. This group can be edited or listed while the function is executing or while any
function called by it is executing. If fname calls itself, only the most recent incarnation can
be viewed in this way.The parser package par contains two groupsBuiltin Functions

83



andCompiled Functions . LIST Builtin displays a list of the built-in functions such as
sqrt. (See Chapter11, “Built-in Functions” for a full description of the available functions.)
In general, all the Fortran intrinsics are available, in generic form. Thus for example, one
can use sqrt(x) to get the appropriate square root of x whether x is integer, real, double, or
complex. LIST Compiled displays a list of compiled parser functions.

LIST name LIST name displays information about the name, including type, length, location,
whether or not it is dynamic, its dimension, and a comment about it made by the package
writer, and its attributes. If name is the name of a function, some different information about
it is displayed. If name is the name of a macro then the definition of the macro is displayed
along with whether it was declared with or without arguments.The user may prefix the name
by a package name and a period, e.g., vf.sigcoef where vf is the package name and sigcoef is
a variable name.Variables local to a function are visible ONLY when the flow of execution
is currently in that function; such variables are NOT visible in functions that are called by it.
There is a way to see such variables, however, for debugging purposes: include the statement
Locals fname in the function.

84 Chapter 19. LIST Command



CHAPTER

TWENTY

Obtaining and Setting Scalar Values

The following functions accept an argument of type character, which should contain the name of a
variable; if the variable is a scalar of the right type, the function returns its value. If it is the wrong
type, or is not a scalar, or does not exist, thenkaboom is called. Otherwise, these functions can be
used in any expression.

ibasis(s: string) integer function
--return an integer value

rbasis(s: string) real function
--return a real value

dbasis(s: string) double function
--return a double precision value

cbasis(s: string) complex function
--return a complex value

lbasis(s: string) logical function
--return a logical value

sbasis(s: string) character*MAXSTRING function
--return a string value.

Since the value returned bysbasis is MAXSTRINGcharacters long, there may be lots of extra-
neous blanks on the end. To get rid of these, you could define a macro, which would trim trailing
blanks before returning the value. Here’s an example without the macro, usingsbasis just as
written:

Basis> character *20 s = "Short String"
Basis> sbasis("s")
sbasis = "Short String"
Basis>

85



Note the long string of unnecessary and distracting blanks. On the other hand, with the following
macro definition,

mdef sbasis() = trim({sbasis}($1)) mend

the following exchange would result:

Basis> character *20 s = "Short String"
Basis> sbasis("s")
trim = "Short String"
Basis>

These next subroutines are complementary toibasis , rbasis , etc., described above. They
accept a string and a value of the appropriate type; if the string contains the name of a scalar
variable and the type is right, then the subroutine assigns the value to the variable. The routines
are:

sibasis(s: string, v: integer) subroutine
--set an integer value

srbasis(s:string, v: real) subroutine
--set a real value

sdbasis(s: string, v: double) subroutine
--set a double precision value

scbasis(s: string, v: complex) subroutine
--set a complex value

slbasis(s: string, v: logical) subroutine
--set a logical value

ssbasis(s: string, v: string) subroutine
--set a string value.

In the case ofssbasis the assignment follows the usual FORTRAN rules: if the source string is
too long for the destination, it will be truncated from the right. If it is shorter than the destination,
then the destination will be blank-filled on the right.

86 Chapter 20. Obtaining and Setting Scalar Values



CHAPTER

TWENTYONE

Help and News

The functionnews displays information about recent changes. The files news and newslog inside
basis contain the recent and cumulative news respectively. To invoke news, just enternews at
the prompt.

The functionhelp displays information about how to get further help on Basis and/or the physics
package you are using.

Bothhelp andnews are simply compiled functions being executed by the Basis interpreter; these
no longer are keywords.

87



88



CHAPTER

TWENTYTWO

Input, Output, and External File Access

22.1 Reading Basis Code From a Text File

READ filename

shifts input from the current source to filename, a text file created in advance by the user that
contains Basis statements. After all statements in filename have been read, parsed, and executed,
input resumes from the current source, including the rest of the line on which the READ command
occurred. READ commands can also occur in files, to a depth of up to ten files. As the commands
are read, they are displayed on the terminal unless an

echo = no

or

echo = logonly

command has been given. It may be desirable to put comments in the input files; this can be done
by prefixing them with a pound sign (#). Everything on a line after a pound sign is taken as a
comment. Ifecho = no , the user can still use the REMARK “message” command to display
progress reports on the terminal.

If filename is not in the current working directory, then Basis looks for filename in the following
default directories in the order specified:

1. The directory from which the Basis source is being executed.

2. The directory specified by the environment variable WRK (if defined).

3. The directory specified by the environment variable HOME (if defined).

4. The directory $BASISROOT/include (if environment variable BASISROOT is defined.)

89



The Basis functions pathadd and pathrm may be used at runtime to add or remove other directories
to and from the search path. pathadd (”directory-name”) adds ”directory-name” to the top of the
list and pathrm (”directory-name”) removes ”directory-name” from the list.

In addition, the Configure file has keywords codefile and path, which allow the user to specify at
compile time additional search paths. The reader is referred toWriting Basis Programs: A Manual
For Authors, page??, for a discussion of these keywords.

Basis displays an error message if it fails to find the specified file.

IMPORTANT: The READ command should not normally be used in combination with Basis com-
pound statements such as DO loops, IF-THEN statements, FUNCTION’s, and so on. A READ in
the middle of a compound statement is not executed until the compound statement has finished.1

If more than one READ occurs inside a structured statement, they will be executed after that state-
ment completes, but in the reverse order of their occurrence. For example, the following code
sequence:

if (x == 3) then
read a3
read a4
<< "I just finished reading a3 and a4."

endif

is executed in the order as if it were written:

if (x == 3) then
<< "I just finished reading a3 and a4."
read a4
read a3

endif

Thus, while it is not illegal to put READ statements inside compound Basis statements, it is almost
never correct.

If you wish to skip the first n records of the file, enter:

nskipr = n

before your READ command. Basis will automatically resetnskipr to 0.

1 More precisely,executionof a READ statement simply opens the file and pushes its descriptor onto the stack of
files from which Basis will read next. Processing new text from the next file does not actually begin until the (largest)
enclosing, compound, statement has finished.

90 Chapter 22. Input, Output, and External File Access



22.2 Resuming Reading

RESUME [n] [filename]

RESUME resumes reading a file after a crash has occurred while reading some file. If filename
is entered Basis resumes reading from filename, otherwise it resumes in the file where the crash
occurred. If n is entered reading starts at line n, rather than with the line where the crash occurred.

22.3 Printing Messages on the Terminal

REMARK "message"

displays message on the terminal. This can document progress in executing the file when the
variable echo equals no. If v is a character variable or expression, REMARK v prints the contents
of v to the terminal.

22.4 Changing the Destination of Basis Output

OUTPUT TO filename

causes most subsequent output to go to the file filename. OUTPUT TO TTY closes the output file
and returns Basis to writing output on the terminal. OUTPUT TO GRAPHICS sends the output to
the plot file.

22.2. Resuming Reading 91



92



CHAPTER

TWENTYTHREE

The Stream I/O Facility

23.1 Introduction to Stream I/O

Stream input and output features are available in Basis. The user may read input from an existing
file. The user may create an output file, or send output to a plot or terminal. This section discusses
how each of these tasks may be accomplished. First we show how to use the functionbasopen
to open an input file or create an output file. Then we introduce the Basis input operator>>
and show how it can be used to read data from an input file. Next we introduce the Basis output
operator<<, illustrating how to send output to an output file, to a terminal or to a plot. We then
discuss how the user can format output by using the function format. Lastly, we show how to use
the subroutinebasclose to close files that have been opened usingbasopen .

23.2 Opening and Creating Files

To read input from an existing file or create an output file, the user must first open the file by calling
the functionbasopen . Any attempt to read input from a file or send output to a file without first
using basopen to open that file will result in an a semantic error. It is not necessary to call
basopen when sending output to a terminal or plot.

The functionbasopen is an integer function that accepts two arguments: a filename and a specifi-
cation. It returns a unit specifier which is used to direct output to and retrieve input from a specific
file.

The general form of the function call is:

unit = basopen(filename, filespec)

where:

unit is a unique unit specifier whose value is set bybasopen . The unit specifier is used in the
input and output commands to specify the file being used. Once the unit specifier has been
assigned a value bybasopen , it should not be altered.

93



filename is the name of the file being opened. Its length can be up to 128 characters.

filespec filespec should be ”r” or ”w” or ”i”.A sequential formatted file is created, opened or in-
quired about.kaboom is called if anything goes wrong.When rw = ”r”:basopen searches
for the file in the current directory and then in any lib libraries specified in the variable path
(or in directories on Unix systems).If a file must be found in a lib library on NLTSS a copy
is made to a temporary file with a different name. This file is destroyed when the program
terminates.No copies are made when opening files in UNICOS or SUNOS directories.When
rw = ”w”: if an error occurs, this file will be closed.When rw = ”i” the file is not opened;
instead, OK or ERR is returned, indicating whether or not filename could be opened for
reading.

It is possible to have several files open at once, provided each file has its own unit specifier. This
means the user should use a different integer each time he or she opens a new file. Here are a few
examples of how to create output files and open existing input files:

Creating output files:

outunit = basopen("newfile", "w")
number = basopen("one", "write")
junk = basopen("asdf","WRITE")
mine = basopen("myfile", "W")

Opening input files:

infile = basopen("mydata", "r")
myin = basopen("data1","read")
x = basopen("input", "R")
in = basopen("test", "READ")

Note that abbreviations may be used for"read" and"write" . The two most important things
to remember are that the unit specifier is an integer and must not be modified by the user once it
has been set by Basis inbasopen .

basclose(unit) should be used to close files opened withbasopen .

23.3 The Input Operator >>

Basis stream input must be read from an existing file or from the terminal. If input is from a file,
then the file must have already been opened using the functionbasopen (as described above)
before any input can be read. Once this has been done, the input command may be used to retrieve
input from the open file.

As a general rule, Basis stream input can read files created by Basis stream output (see See “The
Output Operator<<” on page??.) There is one important exception to this rule. Double precision

94 Chapter 23. The Stream I/O Facility



numbers with three-digit exponents are sent out without a “D” preceding the exponent, regardless
of formatting (FORTRAN does the same thing). The stream input lexical analyzer will therefore
see the double precision number as a real (the mantissa) followed by an integer (the exponent).
Although this may seem at first glance undesirable, this is precisely the behavior of FORTRAN on
unformatted input.

Stream input from files may be done in two modes, noisy and non-noisy. Non-noisy mode might
be used to read real, integer, and double precision numbers (complex numbers are not presently
supported) from a text file which was produced as output by a FORTRAN program. This file may
contain the numbers in tabular form and might include explanatory text and other non-numeric
information. In non-noisy mode, all non-numeric items in the file are considered to be “noise” and
are ignored. In noisy mode, the so-called “noise” is not ignored, but will be read in as character
strings. WARNING: character string stream I/O will only work if the strings contain no imbedded
blank characters except for trailing blanks. Even trailing blanks can’t appear if character arrays are
being processed. Noisy mode will be explained in more detail below.

The Basis input statement consists of a unit specifier and one or more input variables or arrays.
The general form of this command is:

unit >> var1 >> array1 >> var2 >> var3 ...

where

unit indicates the file from which the input is coming. It is the unit specifier which was returned
by basopen when the file was opened. If the unit specifier is omitted, the terminal is
assumed, and an input prompt will appear there.

var1, etc. indicates the variables and arrays to which the input values are being assigned.
The user may input array elements or entire arrays.

Exactly how the input is assigned to the variables depends on the setting of the built-in variable
“noisy ” (whose default value is “no .”) This value may be set to “yes ” or “ no” by assignment,
thus:

noisy = yes

When “noisy” is “no,” then numerical tokens (i. e., legal FORTRAN integers , reals, and doubles)
are extracted from the input in the order that they occur and are assigned to the variables (“var1”,
“var2”, etc.) also in the order of occurrence. All other characters in the input, which are either
delimiters (currently, spaces and commas) or are not FORTRAN integers, reals, or doubles are
treated as “noise” and ignored. The input command extracts the next available numbers from the
input file, even if it must go to subsequent lines of the input file to do so.

In this mode all input variables and arrays must be numeric (integer, real, double). If an attempt is
made to read to a non-numeric variable or array, then an error diagnostic occurs and the input file
is closed (assuming it is not the terminal). If an attempt is made to read past an end-of-file, then

23.3. The Input Operator >> 95



the built-in variable “eof ” is set to “yes ”, but the unit is not closed unless a second attempt is
made. (see ”Detecting End-of-File” on page98 for more details.)

The following is an example of “non-noisy” operation (so-called because “noise” is ignored, i. e.,
filtered out):

i1 = basopen("test","read")
integer i
real x, d(2,2)
i1 >> i >> x >> d

Let us suppose that input file “test ” consists of the three lines:

c special input file
first = 2.56 , second = 13.51e-2
d = 1.2 2.3 3.4 4.5

Then after the execution of the above sequence of instructions, i will be 2 (the real value 2.56
having been coerced to integer), x will be .1351, d(1,1) will = 1.2, d(2,1) = 2.3, d(1,2) = 3.4, and
d(2,2) = 4.5. The remaining characters in the file (the “noise”) will have been ignored.

To understand noisy mode operation (noisy = yes , i. e., “noise” is no longer ignored), it is
first necessary to understand how the stream inputparserinterprets the incoming text. The parser
divides the input stream into what we shall call “tokens”, based upon the principle that it will build
the longest legal token possible at each step. These tokens are as follows:

names begin with ‘%’, ‘ $’, or a lower-case letter and may consist of zero or more additional ‘%’,
‘$’, ‘ ’, digits, or letters of either case.

group names begin with a capital letter and may consist of zero or more additional ‘%’, ‘ $’, ‘ ’,
digits, or letters of either case.

integers an optional sign followed by one or more contiguous digits.

reals an optional sign followed by one or more contiguous digits either containing a decimal point,
or followed by ‘e’ or ‘E’ followed by an integer, or both.

doubles an optional sign followed by one or more contiguous digits either containing a decimal
point, or followed by ‘d’ or ‘D’ followed by an integer, or both. Note that a double with a
three digit exponent that has been written out by the stream output operator will not contain
the ‘d’ or ‘D’ in its representation, so that only the first part of the number will be accepted.

strings contiguous non-delimiters which are not one of the previous five types of token.

Tokens are separated from one another by delimiters (currently spaces and commas). However,
sometimes delimiters are not needed to separate tokens; e. g., “123abc” will be recognized as

96 Chapter 23. The Stream I/O Facility



“123” followed by “abc”; “abc.123” will be split into “abc” and “.123”; but “abc123” is a single
token. For a more complicated example, “JosephQ. Jones” is three tokens, namely “JosephQ,”
“. ,” and “Jones.”

In non-noisy mode, as noted previously, all tokens are ignored except for integers, reals, and dou-
bles. In noisy mode, however, all tokens are significant, and there must be a variable in the input
stream corresponding to each token. Furthermore, those variables corresponding to non-numeric
tokens must be of character type or else chameleons. Use built-in functiontype to determine
what has been read into the chameleon.

Consider, for example, the file “test” used in the preceding example. The following code will give
i the value 2 and x the value .1351, as before, but will in addition assign toname1 the string
“ first ” and toname2 the string “second ”:

i1 = basopen("test", "read")
integer i
real x
character*12 name1, name2
i1 >> $a >> $a >> $a >> $a #skip tokens on first line
i1 >> name1 >> $a >> i >> name2 >> $a >> x

There are a number of important points to note from this example:

1. $a , a chameleon, is used as a “sink” to receive unwanted portions of the input. Each un-
wanted token must be read to$a ; it takes four such assignments, for instance, to discard the
first line.

2. Note that blanks and commasseparatetokens but are not themselves tokens. Thus the “...i
>> name2...” in the second line of stream input automatically reads over the blanks and
comma separating “2.56” from “second.”

3. The value of$a after all of this is “=”.

4. The first line of stream input could be replaced by i1>> return

5. See section “Skipping Input Data” on page99 for details.

We will now show three equivalent ways of retrieving input from a sample file called “data”. “data”
is a very short file consisting of six integer values, as shown below. Assume that i, j, k, l, m, n, and
o are integers. “data” looks like this:

21 453 1
56,34 98765454

Method 1:

23.3. The Input Operator >> 97



i=basopen("data", "read")
i >> j >> k >> l >> m >> n >> o

Method 2:

i=basopen("data", "read")
i >> j >> k >> l
i >> m >> n >> o

Method 3:

i=basopen("data", "read")
i >> j >> k
i >> l >> m
i >> n >> o

Each of the above methods opens the file “data” and reads the contents of “data” into the variables
j, k, l, m, n, and o.

The user is allowed to have more than one input file open at once, up to a maximum (currently) of
five, not including the terminal. If Basis is in the middle of an input line in one file when the user
asks it to read input from a different file, it will keep its place in the unfinished line and resume
from there if subsequently requested again to read from that file. If an error occurs in the read
(either because of an incorrect assignment such as number to character, or because of an input
error), then all open files will be closed.

23.3.1 Detecting End-of-File

It is the user’s responsibility to determine whether the end of a file has been reached. For this
reason an end-of-file flag (eof ) has been provided.eof is an integer which contains the valueno
if the last read attempt was successful, andyes if the last read attempt was unsuccessful. The user
should test ifeof is yes when performing input, so as not to attempt to read past the end of a file.

When the end of a file is encountered, the variables that cannot be assigned new values because of
lack of input retain their original values. Onceeof is yes for a specific file, the user should make
no further attempt to read input from that file.

Suppose, for example, we have an input file called “data”. Assume there are a variable number of
inputs on each line, and an unknown number of lines. Once again i and j are integers. The user
may read the input file as follows:

integer i,j
i=basopen("data","read")
i >> j # read first value

98 Chapter 23. The Stream I/O Facility



while (eof <> yes) # if last read was successful
call dostuff(j) # process the value
i >> j # get next value

endwhile

Remember thateof indicates whether the last read was successful, and if the last read was not
successful, j will retain its last value. Note also thateof is set byany unsuccessful read; if the
read failed because of some kind of error, then the file will be closed. However, it will still be open
if an actualeof was detected, and it is the user’s responsibility in this case to detect theeof and
close the file.

A couple of further words to the wise are in order. Ifeof becomesyes during a read operation
involving several variables, even in the middle of a loop or if there are further variables to be read
beforeeof is next tested, no error will result, and the subsequent variables simply will not be read.
Finally, there is only oneeof variable. If you happen to be doing alternate input from two or more
different files, theneof could be set toyes by one file, and then reset tono by reading from the
next. Thus one must be careful to test foreof before switching files.

23.3.2 Skipping Input Data

Basis provides a mechanism that allows users to skip certain portions of an input file. The word
“return”, used in an input command, tells Basis to ignore the remainder of the current input line,
and to retrieve the next input from the following line.

As an example, consider the input file “junk” shown below. It is a file of integers:

23 45 56
98 76 54
12 34 78
89 21 43
67 90 87

Suppose the user only wants to read the first inputs on the second, fourth and fifth lines. This could
be done as follows:

integer i,j,k,l
i=basopen("junk","read")
i >> return >> j >> return >> return
i >> k >> return >> l

The use of “return” depends upon where the parser is in the input line, and on the contents of
the unread portion of the line. If there are non-null tokens yet to be read from the line, then a
“return” causes parsing to skip to the start of the very next line. However, if the parser has fetched
the last token in the line, there may be no characters at all left in the line, or the line might still

23.3. The Input Operator >> 99



have characters on it which are only delimiters (and thus, possibly, invisible). In either case the
“return” causes the parser to skip the next line and resume at the beginning of the second line
following. This feature makes it unnecessary for the user to have to know whether input lines are
blank-terminated before deciding how many “returns” to use to skip subsequent lines. Consider
the following code (applied to the same file “junk”):

integer u,i,j,k,l
u = basopen("junk","read")
u >> i >> j >> k
u >> return >> l

After this sequence of instructions, i, j, k, and l will have the values 23, 45, 56, and 12, respectively.
The “return” caused the second line to be skipped, even though the parser may still have been
positioned before the end of the first line (because of the presence of blanks at the end of the line).

A user reading input from two or more files can use “return” as above to position the parser in
the files. Basis always remembers its position in each of the opened stream input files. Thus
interleaved “reads” and “returns” addressed to different files will always work properly.

23.4 The Output Operator <<

The user may direct Basis output to a terminal, to a plot, or to a file. For output to the terminal or
a plot, invoke the output command as described below. For output to a file, first open the file using
the functionbasopen , as described above.

We will now discuss the default Basis output command. The form of this command differs slightly
depending on whether the output is being sent to a terminal, to a plot, or to an output file. The
three forms of the Basis output command are:

<< output1 << output2... # output to a terminal
plot << output1 << output2... # output to a plot
unit << output1 << output2... # output to a file

where:

output1, etc. are the outputs. These may be integers, reals, doubles, or character strings.
They can be scalars or arrays. Character arrays will presently only work if they do not
contain any imbedded blanks.

unit is the unit specifier of the file to which the output is being sent (the result of the call to
functionbasopen ).

By default, each use of the output command produces one or more lines of output. If there is
more output specified in the output command than will fit on one line, Basis will continue the

100 Chapter 23. The Stream I/O Facility



output onto extra lines. The exceptions to this are single strings that are longer than the maximum
output line length of 80, and output commands using carriage control (see section on CARRIAGE
CONTROL, below). If a string is longer than 80 characters, the first 80 characters of the string will
be sent to the output unit. The remainder is discarded.

No spacing between outputs is provided by Basis. It must either be done explicitly or by use of the
function format (see ”The Format Function” on page102.) Here are some examples of<< output:

<< "This sends output to a terminal."
plot << "Or to a plot."
x << "Or even a file that has been opened."
ounit << "i=" << i << " " << "r=" << r

23.4.1 Carriage Control

Basis automatically provides a carriage return for each output command. Additional carriage re-
turns may be inserted by the use of the word return in the output command.return may appear
anywhere in the output command, and may appear as many times as the user wishes. For example:

<< return
<< x << return << y << return

Note that whenreturn appears as the final output, the result is actually two carriage returns
since one is still supplied automatically by Basis. A switch is available to suppress the automatic
carriage return of the output command. By default,autocr is set to yes. The user may stop
the automatic carriage return by settingautocr to no. Output is then buffered until a return is
specified or the line buffer is exceeded, at which time the line is output. To stop the suppression of
the carriage return, resetautocr to yes. For example:

autocr = no
i=4
<< "i=" << i << return
<< "j="
j=i+1
<< j << return
autocr = yes
<< "DONE"

produces the following output:

i=4
j=5
DONE

23.4. The Output Operator << 101



The user must exercise caution when output is being sent to more than one unit and the automatic
carriage return is off. If the buffer is not empty when output is sent to a different unit, the buffered
output may be sent to the wrong unit. Using RETURN at the end of an output command before
sending output to a different unit will ensure that the buffer is cleared.

23.5 The Format Function

The user can format Basis output by using the functionformat which converts a numerical value
to a character string. This string can then be used as an output in output commands, plot labels,
etc. format needs two or four arguments depending on what type of number is being converted.
Variations of the format function call are illustrated by this statement:

<< "iquad = " << format(iquad,0) << ", pi = " << \
format(pi,0,5,1) << ", deficit > " << format(2e11,0,1,0)

which printsiquad = -1234, pi = 3.14159, deficit > 2.0e+11

23.5.1 Formatting Integers

format requires two arguments to convert an integer to a string variable. It needs the integer
being converted, and the length (or field width) of the resultant string.

The general form is:

str = format(ival, fw)

where:

str is the character string returned by format. Ival is right-justified within str and str is blank-
filled to the left.

ival is the integer being converted to a string.

fw controls the field width. If> 0, fw is the length of str. If fw = 0, str is just the length needed,
without blanks. The field width must also be of type integer, and must be not be greater than
the maximum length of an output line (132).

The maximum number of digits which may be converted using format is 14. If the user attempts
to convert more than 14 digits, the resultant string will have an “r” in the right-most position.
Likewise, Basis places an asterisk (* ) in the right-most position if the field width is specified to
be too small to hold the value being converted. Here are a few examples of correct and incorrect
calls to format when the user wishes to convert an integer to a string. The resultant strings are also
shown.

102 Chapter 23. The Stream I/O Facility



CALL TO format RESULTANT STRING
str=format(784,0) ’784’
str=format(-456,0) ’-456’
str=format(784,6) ’ 784’
str=format(4.3,5) ERROR: first argument is real
str=format(6,7.2) ERROR: field width is real
str=format(78,567) ERROR: field width too large
str=format(786,2) ’ *’ – field width too small
str=format(-456,3) ’ *’ – field width too small
str=format(9876543210987654,20) ’ r’ – too many digits

23.5.2 Formatting Reals and Doubles

format requires four arguments to convert a real value to a string. The user must provide the real
number being converted, the length (or field width) of the resultant string, the number of digits to
appear after the decimal point, and the form of the resultant string.

The general calling form is:

str = format(rval, fw, nd, ts)

where:

str is the character string returned by format. rval is right-justified within str, and str is blank-
filled to the left.

rval is the real number being converted to a string.

fw controls the field width. If> 0, fw is the length of str. If fw = 0, str is just the length needed,
without blanks. The field width must also be of type integer, and must be not be greater than
the maximum length of an output line (132).

nd is the number of decimal places desired in str.

ts is the specification of the format of str. ts may be 0 to indicate D or E-format (5.467E+02
5.467D+02 or ) or 1 to indicate F-format (546.7).

Different restrictions apply to the input parameters depending on whether the user wants E (D)-
formatted output or F-formatted output. These restrictions are discussed next.

23.5.3 E (D)-format Restrictions

To obtain output in E (or D)-format, ts must be 0. The maximum allowed value for the field width
fw is 32. If fw is zero, str will be just the length needed, without blanks. If fw is nonzero, fw

23.5. The Format Function 103



must be at least seven and the difference between fw and nd must not be less than seven. (This is
because three places are required for the sign, leading digit, and decimal point, and four more for
the exponent.) Otherwise, Basis places asterisks (*) in the string. Note that since four characters
are always allotted for the exponent, in the case of doubles with a three digit exponent, the D is not
printed. Such numbers can not be read correctly by the unformatted string input operator.

Below are some examples and results of calls to format on a workstation when D-format is the
desired result.

CALL TO format FOR D-format RESULTANT STRING
str=format(-450.67,14,4,0) ’ -4.5067D+02’
str=format(-450.67,0,4,0) ’-4.5067D+02’
str=format(5.674,8,1,0) ’ 5.7D+00’
str=format(1.23D123 ’ 1.230+123’ #No D
str=format(6,15,1,0) FORMAT:conversion of integer to string re-

quires exactly two arguments
str=format(4.5,15,1,3) FORMAT:type specification must be 0 , 1,

or 2
str=format(4.5,3,1,0) ’***’ #field width too small
str=format(4.5,8,3,0) ’ ******** ’ # fw - nd< 7

(Note that on work stations, real literals default to double.)

23.5.4 F-format Restrictions

To obtain output in F-format, ts must be 1. The maximum number of digits which Basis returns is
32. If the field width fw is zero, str is just the length needed, without blanks. If fw is nonzero, fw
must be at least 3 and the difference between fw and nd must not be less than 3. Otherwise, Basis
places asterisks (* ) in the string. If the value being converted is too large to fit in the specified
field width, an “r” is placed in the rightmost position of the string. Below are some examples and
results of calls to format when F-format is the desired result.

CALL TO format FOR F-format RESULTANT STRING
str=format(-72.4,7,1,1) ’ -72.4’
str=format(-72.4,0,1,1) ’-72.4’
str=format(7654.32145,14,3,1) ’ 7654.321’
str=format(4.5,2,1,1) ’**’ # field width too small
str=format(-4.654,5,3,1) ’ ***** ’ # fw-nd< 3

23.6 Closing File

If a user wishes to close a file, s/he may call the subroutinebasclose . The form of this call is:

call basclose(unit)

104 Chapter 23. The Stream I/O Facility



whereunit is the unit specifier of the file being closed. It is only necessary for the user to
explicitly close a file usingbasclose if the file is currently open as an input or output file, and
the user wishes to read that file starting from the beginning. If the user does not want to read an
input file more than once, and does not wish to read an output file that has just been created using
Basis output commands, then no calls tobasclose are required.

23.6. Closing File 105



106



CHAPTER

TWENTYFOUR

The Macro Facility

Basis has two types of macro definitions. The DEFINE statement is a small abbreviation facility
whereas the MDEF-MEND statement is a full fledge macro facility. For either type of macro, a
name can be defined as some body of text. Later, when that name is encountered as a token in the
input, the body of text is substituted for it and rescanned for tokens. This means that substitution
will NOT take place if the word name is inside a quoted string, occurs as part of another name, etc.
Another way to keep a macro name from being expanded is to enclose the name within protection
brackets{ }’s.

24.1 Protection Brackets

The curly brackets{ }’s will protect any macro name from being expanded. These brackets can
also be used to protect the delimiters in macro calls and COMMAND statements. Protected de-
limiters will be treated as text and not as delimiters. However, any delimiters not in macro calls or
COMMAND statments (such as the commas in a function call) can not be protected.

EXAMPLE:

integer x=5
DEFINE x 3
DEFINE title abc
MDEF name = fgh MEND
x
{x} ## protect a macro; don’t expand it
g command_s {title name} ## protect macros title and name
g command_s title{ }name ## protect delimiting blanks in

## COMMAND statement
MDEF macargs() = some body MEND
macarg({a,b}, c) ## protect delimiting comma in

## macro call

The results of the above examples will be to

107



1. print 3# macro x is expanded to 3

2. print 5# {x} references the integer x, not the macro

3. call function g with argument “title name”

4. call function g with argument “abc fgh”

5. call macro macarg with two arguments: a,b and c

24.2 DEFINE Statement

DEFINE name text

defines name to be an abbreviation for the text following up to the end of the line. It should be
noted that a semicolon does NOT terminate the DEFINE definition. Rather it is included as part
of the definition. This allows you to enter a semicolon delimited statement list in one DEFINE
statement.

EXAMPLE

DEFINE X y;z
X

The above macro will cause both y and z to be printed.

Quotation marks around the definition of the macro are not required, but are allowed. If you wish
the definition to be an actual string containing quotation marks, then you would need to double up
the quotation marks. Thus the following two lines are equivalent.

DEFINE mymacro PLOT y,x
DEFINE mymacro PLOT "y,x"

The following example could help you balance your checkbook:

DEFINE check "$-"
DEFINE deposit "$+"
355.66 #opening balance
deposit 433.44
check 55.22
check 12.98

is equivalent to the statements

108 Chapter 24. The Macro Facility



355.66
$+433.44
$-55.22
$-12.98

which prints out the successive balances desired.

24.3 MDEF - MEND Statement

MDEF name = definition MEND
MDEF name () = definition MEND

By using the MDEF-MEND statement, you can define macros which allow arguments (up to nine
arguments) and can have multiple line definitions. The first form of the macro (the one without the
parentheses) is for macro which will never have a parenthesized argument list. The second form
must be used if you ever wish to give the macro any arguments. Note: in the MDEF definition, the
()’s must not contain any argument names.

The words MDEF, the macro name, the ()’s if present, and the equals sign (=) must all appear on
the same line. The rest of the definition can be spread over as many lines as you like. For example:

mdef mymacro =
y
plot y,x

mend

To reference a macro argument, use the notation$n where n, a digit from 1 to 9, is the number of
the argument you wish to reference. If an argument is not present then the value of the argument
is a 0 length string.

Besides the$n notation, there are two other macro argument notations:$* and$- . The notation
$* refers to the entire argument list—separated by commas, but without parentheses—that the
macro was called with. The notation$- refers to the entire argument list minus the first argument.

EXAMPLES:

mdef addargs() = integer $1 = $2+$3 mend
mdef allargs() = g($*) mend
mdef lessargs() = g($-) mend
mdef someargs() = $1;$2 mend
mdef noargs = plot y,x mend

## note macro declared without ()’s
addargs(x,5,7)
allargs(arg1, arg2, arg3)

24.3. MDEF - MEND Statement 109



lessargs(arg1, arg2, arg3)
someargs(arg1, arg2)
someargs(arg1)
someargs
noargs(arg1,arg2)
noargs

The above examples will expand to

integer x = 5+7 ## addargs(x,5,7)
g(arg1,arg2,arg3) ## allargs(arg1, arg2, arg3)
g(arg2,arg3) ## lessargs(arg1, arg2, arg3)
arg1;arg2 ## someargs(arg1, arg2)
arg1; ## someargs(arg1)
; ## someargs
plot y,x(arg1,arg2) ## noargs(arg1,arg2)
plot y,x ## noargs

The expansions of the macros addargs, allargs, and lessargs are straightforward given the defini-
tions of$n, $* , and$- . The expansions of someargs and noargs are a little more complicated.

The expansions of macro someargs shows you what happens when not all the referenced arguments
are present. The first expansion of someargs is straightforward. The notation “$1” is replaced
by the text “arg1” and “$2” is replaced by “arg2”. In the next expansion no second argument
is present. Thus “$2” is replaced by a null string, and the resulting body is “arg1;”. In the next
example no arguments are present. Thus both “$1” and “$2” are replaced by null strings, resulting
in a body of “;”.

The expansions of macro noargs show you what happens when a macro is declared without ar-
guments. Remember that this macro was declared without parentheses ()’s. Thus a parenthe-
sized list following the macro name is NOT ever considered part of the macro call. Therefore the
word “noargs” is expanded to “plot y,x” and the words “noargs(xarg1,arg2)” is expanded to “plot
y,x(arg1, arg2)”, i.e. the word “noargs” is expanded and the words “(arg1, arg2)” are left as they
were found.

24.4 IFELSE Statement

IFELSE (arg1, arg2) (arg3, arg4)
IFELSE (arg1, arg2) (arg3)

The IFELSE statement takes two argument lists. The first list contains the arguments of the if test.
The second list contains the arguments of the if selection. The IFELSE macro is replaced by the
text of one of the arguments in the if selection, depending upon the result of the if test.

110 Chapter 24. The Macro Facility



The two arguments in the if test are first expanded of all macros and then the resulting text of
each argument is compared against each other. Ifarg1 is identical toarg2 , then the IFELSE
statement is replaced by the text ofarg3 . Otherwise the IFELSE statement is replaced byarg4
if it is present. Ifarg4 isn’t present (andarg1 andarg2 aren’t identical), then the IFELSE
statement is replaced by a zero length string, i.e. it expands to nothing.

For example:

mdef Dim() = real $1 ifelse ($2, ) ( , ($2)) mend
Dim(x)
Dim(y,100)

The above example expands to

real x
real y (100)

Remember that if an argument is not present, the$n notation for that argument expands to nothing.
Thus the if test($2, ) of the above IFELSE statement will determine if the Dim macro was
called with a second argument. If a second argument is present then the if test($2, ) will be
false, causing the IFELSE statement to expand to($2) . Otherwise the IFELSE statement will
expand to nothing.

24.5 UNDEFINE Statement

UNDEFINE namelist

namelist is a blank and/or comma delimited list of names to be removed from the table of macro
definitions. For each name in namelist, the UNDEFINE statement will remove the definition,
regardless of whether the macro was originally defined with the DEFINE or MDEF-MEND state-
ments. For worriers: when the words DEFINE, MDEF, or UNDEFINE are seen, macro expansion
is turned off so that name is not expanded, thus giving us the chance to see the name so that we
can re-DEFINE or UNDEFINE it!).

24.5. UNDEFINE Statement 111



112



CHAPTER

TWENTYFIVE

Executing System Commands from the
Parser

The user can execute any system or shell command easily from the parser. To do this simply enter
as in unix:

! commandline

Example: To give a long list on the Sun of files ending in ’src’:

! ls -l *src

113



114



CHAPTER

TWENTYSIX

Timing

TIMER ON | OFF

TIMER ON starts a clock running. TIMER OFF prints out the timing statistics since the last
TIMER ON. For something fancier, see “TIM: Interrupt Timing” on page??of The Basis Package
Library document. Here is the *OFFICIAL* interface to the system timing routines:

The Fortlib routine timeused has a different number of arguments depending on your system:
NLTSS, Sun, UNICOS, ... We hereby publish an *official* interface to the system timing routines:

subroutine ostime(cpu,io,sys,mem) real cpu, io, sys, mem

subroutine glbwrtim(iunit,cpu,io,sys,mem) integer iunit real cpu, io, sys, mem

The glbwrtim routine will print out and label correctly the quantities obtained by ostime. cpu and
sys are guaranteed to be in seconds, and represent cpu and system time, respectively. On any
system, io is some measure of the io effort, and mem is some measure of the amount of memory
resource consumed. The numbers returned by ostime increase monotonically with time. A bigger
number is more. That’s all we officially know.

115



116



CHAPTER

TWENTYSEVEN

Ending Basis

END
quit
quit(1)

END terminates the execution of the program. Currently, END must not occur inside a structured
statement. The function quit has the same result but may be called from anywhere. If an argument
is given for quit, it is used as the exit status.

117



118



CHAPTER

TWENTYEIGHT

Error Recovery

In an interpreted language, it is often possible to recover from errors. When an error occurs Basis
does its best to help the user understand the nature of the problem. A user variabledebug governs
the error message that goes to the terminal and logfile. The variabledebug can be assigned the
valuesyes or no . The default value is no, and error messages will be brief. Ifdebug = yes ,
a much more thorough error message goes to the terminal and logfile. If Basis was executing,
information is given about the location where the error occurred; a complete trace of all the local
variables and arguments to any functions is given, and some symbolic information about the error
is given. Whetherdebug = yes or no , a file is produced that contains the debug information.
The filename is first the contents of the variableprobname , then a numerical extenstion, then the
file type appended.

Here is an example. The call to functionboom fails when it attempts to add two arrays that are
not the same length. The error message, “Operands not compatible in size for +” is followed by a
more detailed error analysis becausedebug = yes .

Basis> function boom(a,b)
Basis> chameleon temp
Basis> temp= (a+b)/2
Basis> return [temp,temp**2]
Basis> endf
Basis> debug=yes;boom([2,2],[2,3,4])
parcnfm: Operands not compatible in size for +
Writing traceback info to file problem.001
Returned to user input level.

The relevant contents of the file problem.001 are:

Here is the information I have on where you were:
A call to boom containing
the problem.

The error occurred in the assignment or append statement:
temp = expression

The following lines contain clues(not facts) about the r. h. s.

119



b
+
a+b
temp
Parser’s action number = 115(ADD), program counter = 45.
Group: Locals_boom Num Vars: 3
a(2)

1: - 2 2
b(3)

1: - 2 3 4
temp = 0

If the parser functionerrortrp("off") has been called, no error recovery is attempted.

A compiled routinekaboom(iflag) can be called from the parser to force a return to the parser.
If iflag is greater or equal to 0 Basis acts as if an error has taken place, and produces a trace file. If
iflag is set negative, Basis returns to the parser without any error messages.

function subt(a,b)
if( a < b) then

remark "Error: subt called with a < b"
call kaboom(-1)

endif
return a-b
endf

In interpreting the information printed out whendebug = yes , you should begin with the error
message itself, examine the description of the nesting levels to find out where you were generally,
and examine the symbols listed for some hints about the parts of the expressions involved in the
error. As a last resort, the pc counter can be used in conjunction with the list command. The
value of the pc counter is given in thetrace file. Do a list on the function in which the error
occurred, and when asked answer ‘y’ to the question about viewing the intermediate code. The
listing which results shows the operations being performed and using the pc you should be able to
pinpoint which instructions caused the error. For example, in the example above, boom reported
that the error occurred at pc = 45.

Basis> list boom
boom(a,b)

user-defined function
Minimum number of arguments: 2
Maximum number of arguments: 2
User-defined function, begins at absolute address 3967064
Function consists of 104 words of intermediate code.

NAME TYPE
boom varies

120 Chapter 28. Error Recovery



a varies
b varies

Dump intermediate code? (y|n)
y

pc opcode stack operation
1: 16 Enter function, set up actual parameters.
3: 421 7 REGULAR_SCOPE
5: 404 9 CHAMELEON
7: -100 10 TOKEN = ’temp’ (name).

12: 412 10 SCALAR DECLARE
14: 415 10 NO INITIAL VALUE
16: 410 11 CREATE VARIABLE
18: -100 8 TOKEN = ’temp’ (name).
23: 1 8 ID->LHS
25: 10 9 BEGIN RHS
27: -100 11 TOKEN = ’a’ (name).
32: 1 11 ID->LHS
34: 136 11 <LHS>-><FACTOR>
36: -100 13 TOKEN = ’b’ (name).
41: 1 13 ID->LHS
43: 136 13 <LHS>-><FACTOR>
45: 115 13 ADD
47: 130 12 MOVE-1
49: 136 10 <LHS>-><FACTOR>
51: -101 12 TOKEN = ’2’ (integer constant). value = 2.
56: 11 12 PUSH VALUE

58: 121 12 DIVIDE
60: 3 10 ASSIGN
62: -100 10 TOKEN = ’temp’ (name).
67: 1 10 ID->LHS
69: 136 10 <LHS>-><FACTOR>
71: 8 10 FETCH VARIABLE
73: -100 12 TOKEN = ’temp’ (name).
78: 1 12 ID->LHS
80: 136 12 <LHS>-><FACTOR>
82: -101 14 TOKEN = ’2’ (integer constant). value = 2.
87: 11 14 PUSH VALUE
89: 126 14 POWER
91: 101 12 EXPLIST
93: 129 11 [EXPLIST]
95: 136 9 <LHS>-><FACTOR>
97: 19 9 FETCH COPY
99: 17 9 RET

121



101: 18 8 NULLRET
103: 17 9 RET

***************************

122 Chapter 28. Error Recovery



CHAPTER

TWENTYNINE

Interrupting Basis

Basis can be usually interrupted by typing control-C. The terminal interactions of the operating
system sometimes make it hard to do this if a lot of output is being displayed and several tries may
be required. Basis checks for this message before each step of intermediate code and before most
lines of output. The routineruthere looks for the control-C message. If you are executing in a
compiled routine the interrupt may not work unless the author has inserted “call ruthere ” in
the program at strategic points. Annoy your author until he or she does so. However, if thectl
packagerun command or its relatives are controlling the operation of a physics package, a check
is made after each step and authors need not includeruthere calls in that case.

123



124



CHAPTER

THIRTY

List of Reserved Words

Basis reserved words are written in upper case throughout this manual for purposes of emphasis,
but are recognized by Basis if they are entered entirely in lower case. These words cannot be used
as identifiers:

BREAK, CALL, CHARACTER, COMMAND, COMPLEX, DEFINE, DO,
DOUBLE, ELSE, ELSEIF, END, ENDDO, ENDF, ENDFOR,
ENDIF, ENDWHILE, FOR, FORGET, FUNCTION, IF, IFELSE,
INDIRECT, INTEGER, LINLIN, LINLOG, LIST, LOGICAL,
LOGLIN, LOGLOG, MDEF, MEND, NEXT, OUTPUT, PLOT,
PLOTM, RANGE, READ, REAL, RETURN, THEN,
UNDEFINE, UNTIL, WHILE.

125



126



CHAPTER

THIRTYONE

List of Non-Alphanumeric Tokens

! + < [
% , <= ]
& - <> —
’ . = ˜
( / == ˜=
) /! > (space)
* // >= (return)
*! { ? ‘
** } @ :
; ˆ —= &=
+= -= *= /=
**=

Here is a list of the non-alphanumeric tokens used in basis. Any input character other than one of
these, which is not alphanumeric, will cause an “illegal character in input” error (unless, of course,
it is part of a comment).

127



128



CHAPTER

THIRTYTWO

List of Parser Variables

32.1 Variables

asgnchek controls whether or not the limiting string of a variable is used in determining the
bounds of an array which is the target of an assignment statement. The default value isyes .
Useasgnchek=no to allow storage to array elements outside the currentsetlimit ’ed
values.

autocr If = yes , then each output command,<<, will automatically supply a carriage return.
If autocr = no , then no carriage return is automatically supplied by Basis. Output is
buffered until either a RETURN is included in an output command or the buffer is exceeded.
Default =yes .

autodyn whenautodyn = yes any attempt to access a dynamic array will cause storage to be
allocated for it if it does not already have it. There are two auxiliary variables which are used
when this occurs:autodynp is an integer containing an amount of padding to be added to
such arrays, andautodyna , if set to a non-blank string, will give that attribute to any array
allocated in this way. These two variables default to 0 and blank, respectively. The default
value ofautodyn is no .

autohist Controls the handling of display statements. If it is set to 0, each displayed quantity is
assigned to the variable$ and then displayed. This is the default.Ifautohist < > 0, the
displayed quantity will be assigned to one of the 26 variables$a , $b , ...,$z depending on
mod(autohist,26) , with $a corresponding toautohist = 1 , $b to autohist
= 2, etc. Thenautohist will be incremented. So, if you setautohist = 1 to begin
with, the results printed will be saved in$a , $b , etc., and after$z back to$a . Thus a
“history buffer” of 26 previous results will be maintained.

autovar when autovar = yes undeclared and unsubscripted variables are automatically de-
clared. Default isno .

compress if yes , compress on output repeated array elements; ifno , list each element of an array
separately. For more extensive control see “The Stream I/O Facility” on page93.

cprompt can be set to any character string up to length 16 to change the basic prompt.

129



debug is set toyes or no to control the amount of detail in the error printout.debug = yes
causes extensive printouts;debug = no does not, but the program executes much faster.
The default value isno .

dec toggle the output to occur in decimal form. The default.

debuga used to control detailed debugging printouts

debugc If yes , print stack dump before and after each action.

echo is set toyes (1),no (0), orlogonly (2) to control echoing of lines from input files. Default
is yes . If echo is logonly then lines are echoed into the log but not to the terminal.

eof an integer which contains the valueno if the last read attempt was successful, andyes if the
last read attempt was unsuccessful.

fuzz number of digits after decimal point in prints. Default = 5. For more extensive control see
“The Stream I/O Facility” on page93.

hex toggle the output to occur in hexadecimal form. Decimal (dec ) is the default.

coredump if yes , dump core when exiting if the exit status is not 0. Default value isno .
An obsolete but still working alias forcoredump is keepdrop .To disable the sys-
tem’s error recovery, type: callerrortrp (“off”). To restore error recovery type: call
errortrp (“on”).Exit status is set non-zero when exiting because error recovery is off or if
routinequit is called with a non-zero argument.

lcprompt should be set to the number of characters incprompt that are to be used.

lsprompt should be set to the number of characters insprompt that are to be used.

noisy If set tono , ignore all non-numeric tokens (“noise”) in stream input. If set toyes , all tokens
are significant and are to be assigned to a corresponding input stream variable. Default is
no .

notty If yes , terminate the run after processing the macfiles. Otherwise go on to the Basis prompt.
Default isno .

nskipr n If n > 0 skip the first n records on the next file read. Basis automatically resetsnskipr
to 0.

oct toggle the output to occur in octal form. Decimal (dec ) is the default.

padding Each call toallot or change allocates a certain number of elements. To this amount,
padding extra elements will be added. The extra space is not used by Basis in any way.

sprompt can be set to any character string up to length 16 to change the secondary prompt.

switches An array of 100 real switches. Defaults to 0.

verbose If set to yes , print out all the system messages to the TTY and the log file. Default is
yes .

130 Chapter 32. List of Parser Variables



32.2 Constants

blank is a 80-character variable full of blanks

false contains the logical constant .false.

off contains “off”; many packages expect “on” or “off” as the setting for devices or plot options.

on contains “on”; many packages expect “on” or “off” as the setting for devices or plot options.

no contains an integer 0; many packages expectyes or no as values for switches, such asecho
above.

pi contains the real value of pi (3.14159...).

stdin contains the unit number for reading from the terminal.

stdout contains the unit number for writing to the terminal.

stdplot contains the unit number for writing to the plot file.

true contains the logical constant .true.

yes contains an integer 1; many packages expectyes or no as values for switches, such asecho
above.

32.2. Constants 131



132



CHAPTER

THIRTYTHREE

List of Compiled Functions

This section describes functions that are callable from the Basis Language. These routines are all
ordinary compiled Fortran and you can pass them arguments by value (the default) or by address
(using the form&x). (see “Built-in Functions” on page51.)

33.1 Working With Attributes

Each named entity (variables, functions, and macros) can have zero or more “attribute” words
associated with it. These words are then available as keys to select names on which special func-
tions called “attribute servers” can operate. Normally attributes are given to variables by program
authors. Users may give or remove attributes using the function rtcattr:

call rtcattr("name","attributes")

Here attributes is a space delimited list of attribute words (up to 24 characters). A word can be
prefixed with a minus sign to remove an attribute from a word.

The existence of an attribute can be tested with the function rtattr:

iflag = rtattr("name", "attribute")

iflag will be TRUEif the attribute exists andFALSEotherwise.

Writing attribute servers is explained in the document Writing Basis Programs: A Manual For
Program Authors. See “Writing Attribute Services” on page??. There are two servers built in to
Basis:

call attrlist(aexp,iunit)
call attredit(aexp,iunit)

Here iunit is a unit number, andaexp is a quoted string containing a logical attribute expres-
sion. A logical attribute expression is built up from attribute names, parentheses, and the operators

133



& (and),| (or), and˜ (not). Plus and minus can be used as synonyms for| and- . The routines
respectively list, or edit the variables whose attributes satisfyaexp , to the unit iunit.

If a user wants to print the values of certain variables, for example, she might
call rtcattr("name","mylist") for each variable name desired. Then
attredit("mylist",stdout) will print all such variables to the terminal.

33.2 Help and News

Subroutineshelp and news supply information about the help package and the most recent
changes, respectively.

33.3 Memory Management of Dynamic Arrays

The following routines are more thoroughly documented in Writing Basis Programs: A Manual
For Program Authors. See “Writing Basis Packages” on page??.

call allot("array",length) allocates an array of length elements. The quotes around
the name are required. If array is a multidimensional array, length is the length of the desired
last dimension of array. The database manager knows the type and other dimensions of
array. The package to which array belongs is determined by the current context. Each
element would contain 2 words if array is complex.It is not an error if array has already been
allocated space that has not been released by a call to basfree.

call basfree("array") Releases space for array previously obtained by a call toallot .
The quotes around the name are required.

call change("array",newlength) changes the length of array tonewlength . The
quotes around the name are required. The comments above about multidimensional arrays
apply here as well.

call gallot("name",n) allots all the dynamic arrays in group, name.

call gchange("name",n) changes the allocation of all the dynamic arrays in group,
name.

call gfree("name") frees all the dynamic arrays in group, name.

33.4 Opening and Closing Files

integer basopen

134 Chapter 33. List of Compiled Functions



iunit = basopen(name, access) This routine is used for opening input files and for
creating output files.If access is “r”, opens filename, returning the unit number to use in
subsequent operations. If the file is not present, it is searched for (using the list in variable
path , which can be added to with the variable codefile in config, or by the routine pathadd).
Error recovery is invoked if the file cannot be found at all.If access is “i”,basopen returns
OK or ERR (0 or -1) to indicate whether or not the file can be opened in “r” mode.If access
is “w”, the file is created, returning the unit number to use in subsequent operations. Er-
ror recover is invoked if the file cannot be created.Any file opened withbasopen will be
CLOSED whenever error recover takes place.

call outfile(&j,comment) opens a text output file and places the value of the unit spec-
ifier into the integer variablej . Note that sincej is an output quantity it must be passed by
address.comment is a character string that is used to comment the file. When Basis ter-
minates, ifverbose is yes, the files created byoutfile will be listed along with the
comments supplied. Basis generates the name of the file from a combination of the value of
probname , and a counter. Files created with outfile are NOT closed when an error occurs.
If comment = “*temporary*”, the file is deleted when the program terminates.basclose
(unit) should be used to close files opened with outfile.

call basnxtsq(f,g) (Fortran)

g = basnxtsq(f) (Basis) given a filename f sets g to the next name in the sequence
when called from Fortran, or returns the next name in the sequence when called from
Basis. In Fortran, f and g may be the same variable. Some of the sequence types
handled by basnxtsq, using an algorithm of Dave Munro’s, are: prob01fa prob01fb
prob01fc prob01fd ... prob02q00 prob02q01 prob02q02 prob02q03 ... prob02q43
... prob03q00.pdb prob03q01.pdb prob03q02.pdb prob03q03.pdb ... prob03q00.cdf
prob03q01.cdf prob03q02.cdf prob03q03.cdf ...

33.5 Executing User Functions

You can execute a user functionf by

call execuser("f") The functionf must have no arguments and cannot return a value.
This function is usually called from compiled code.

33.6 Adding Comments to Variables and Functions

call comment("name","comm") adds a comment to any variable or function in the
database including those defined by the user.

33.5. Executing User Functions 135



33.7 Checking for the Existence of Variables and Functions

You can check whether a variable or function has been defined by typing:

if(exists("name"))

33.8 Flushing the LogFile

call flushlog flushes the log file. This can be useful after an error recovery if some vital
information has scrolled off your screen.

33.9 Using the Switches Array

You can set switches(i) = x if you type:

call swset(i,x)

You can get the value of switches(i) by invoking the function switch:

switch(i)

33.10 Protecting User-Defined Variables and Functions

You can protect user-defined functions and variables made up to this point from future FORGETs
by typing:

call protect

33.11 Setting Variable Dimension Limits

setlimit("name", "( dimension )" ) allows you to restrict the portion of an array
that will be used. The function setlimit can be called from user or compiled code. Setlimit
uses the usual search to determine the meaning of name. The parentheses in the second ar-
gument are required. The restrictions on dimension are the same as for regular dimensioning
strings: the contents of the string must consist of constants, operators, and names which can
be evaluated. The allowed operators are+, -, *, / . In evaluating names in this string,
the database for name is searched first; only if this fails is the usual search made.Subsequent
accesses to this array cause a reevaluation of the limiting string so that changing variables

136 Chapter 33. List of Compiled Functions



which appear in the limiting string will change the amount of the variable used.The limiting
string must define the correct number of dimensions and the values for the limits must be
within the storage dimension values. Exception: the upper limit for any dimension may be
set to one less than the lower index of the array, thus declaring that no part of the array is
currently in use.

setlast("name", n)

rtadddim("name") The routinesetlast("name", n) limits the LAST dimension
(only) of the variable name to a high subscript of n. If n is greater than the current high-
est (unlimited) last subscript of name, then an attempt is made to expand storage so that
n will be a legal subscript. The size of the last subscript is increased to the maximum
of n and its current value times 1.5 with a minimum of 16.setlast can be used on
static arrays as long as no attempt is made to exceed the actual storage available.The routine
rtadddim("name") adds a dimension to the variable name, which is sometimes useful
in conjunction with setlast and the append statement.

33.12 Specifying Assignment Actions

For each variable, the user may specify a string containing Basis language statements called its
assignment-action string. This string will be parsed and executed after each assignment statement
in which the corresponding variable name appears on the left-hand side of the assignment state-
ment. To set the string do:

call setact("name", "action" ) Any subsequent assignment statement which changes
the variablenamewill cause the action string to be parsed and executed. Restrictions are: the
action string must consist of complete statements (e.g., compound statements like do loops
are fine but must be complete); the action string must be 72 characters or less; the action
should not induce an infinite recursion (such asreal w;setaction("w","if(w<0)
w=-1.") ). Examples:real x; call setact("x","x") will cause the value of
x to be printed whenever it is changed with an assignment statement. (Useful for debug-
ging!). If y is a parameter which is supposed to contain a value between 0. and 1., an
author might do something like:call setact("y", "if(˜ (y ? [0.,1.]))
then; remark ""Bad y"";kaboom(0);endif") to prevent the user from as-
signing a bad value.Since the action may include a call to any function, the restriction on
the length of the string can be easily finessed.

33.13 Redefining Array Shapes

setshape("name", "( dimension )" ) allows you to reset the dimension statement
of a variable. It does not change the storage allocated, merely the perceived shape of the
array. If the number of items in the new dimension does not equal the current number of

33.12. Specifying Assignment Actions 137



items an error is issued. Seesetlimit above. The functionsetshape can be called
from user or compiled code.setshape uses the usual search to determine the meaning of
name. The parentheses in the second argument are required. The restrictions on dimension
are the same as for regular dimensioning strings: the contents of the string must consist of
constants, operators, and names which can be evaluated. The allowed operators are+, - , * ,
/ . In evaluating names in this string, the database for name is searched first; only if this fails
is the usual search made.

useshape("name") evaluates the existing symbolic dimensions and assigns the shape to the
variable. This is useful when a variable already has a symbolic shape that is assigned by
rtvare but the memory is allocated by the client code. This call has the effect of causing
Basis to use the current shape of the memory. The functionuseshape can be called from
user or compiled code.useshape uses the usual search to determine the meaning of name.

33.14 Functions With Variable Numbers of Arguments

If the parameter list of a user-defined or compiled function contains a semicolon at the beginning
or in place of one of the normal commas, the arguments which follow the semicolon are optional.
The function can be called with none, some, or all of its optional arguments.

Additionally, you can use the functionsetmnarg to declare optional arguments for both user and
compiled functions.

setmnarg("name",n) sets the minimum number of arguments to the functionname to be
n. The function must be a user or compiled function that has at leastn arguments.

When a user calls the function without all of its arguments, what happens depends on whether the
function is user-defined or compiled.

For user-defined functions, the local variables corresponding to the arguments which were not
supplied are simply not created, which will cause an error if an attempt is made to access that
nameunlessa variable with the same name as the formal parameter exists in the search path. This
can be used to set default arguments. For example, if I have a physics variable named gamma
which is the usual third argument to a function f, then I can write f as follows:

function f(a,b;gamma)
.....
endf

after which f(1.,3.) results in the physics variable gamma being used as the third argument, while
f(1.,3.,5.) uses 5. as the third argument. This works because when the call f(1.,3.) occurs, no
variable named gamma gets created in the local variables for f, and so references to gamma in f
become references to the gamma in the search stack.

A macrodefault is built in to Basis which makes it easy to supply default values locally. The
usage is:

138 Chapter 33. List of Compiled Functions



default(name) = value

If the = value portion is omitted, name will be created as an integer scalar with value 0 if the
argument name is not supplied. If the= value portion is given, and the argument name is not
supplied, name is created as a chameleon variable and value is assigned to it.

For compiled functions, Basis will fill in the missing arguments by passing one of the following
values, depending on the type of the argument:

type default value
integer DEFAULT
real float(DEFAULT)
complex (float(DEFAULT), float(DEFAULT))
logical FALSE
character rone blank

The constant DEFAULT is supplied by MPPL for authors to use to decide if an optional argument
was omitted or not.

33.15 Creating Pauses

call paws which causes Basis to pause and request a carriage return to continue. If the user
sends any other message an error exit is taken throughkaboom.

33.16 Returning to the Parser

You can force a return to the prompt with the statement:

call kaboom(iflag)

If iflag <> 0 & debug=yes , this can create a long very useful printout.

33.17 Recursive Parsing

You can compile and execute a statement in the Basis Language with the subroutinesparsestr ,
parselng , andparse :

character*(n) s # n a number <=500
character t(m)
character*(n) u

33.15. Creating Pauses 139



call parsestr(s) #or,
call parselng(t,m) #or,
call parse(u,n)

Restriction: the string to be parsed cannot contain a READ statement.

These routines can be called from anywhere within the Basis environment: from the interpreter,
from a compiled routine (for instance, in a physics package), from a built-in routine, or even
through some“hook” in a graphics library. It may be called recursively to any depth; for instance,
it may be asked to parse a string which itself contains a parsestr call. Each time it is called, it saves
sensitive portions of its environment on a stack, thus making this flexibility possible.

Thus,

call parsestr("global real x = 3.")

will execute the statement “global real x=3.”, creating a real variable x whose value is 3.

Any variables created without the “global” scope are created in the stack frame of the parsestr
function itself, and will therefore disappear on return. Any user-defined functions declared will be
defined after return. If the string does not represent a series of complete statements those statements
not yet completed are discarded without execution. If a syntax error or semantic error occurs, error
recovery occurs as usual and one is returned to the bottom level parser.

The maximum length of strings is a system-dependent limit (about 500 on Crays).

The routineparselng allows you to exceed this by using a character array. And the routine
parse allows you to pass an array of strings which you wish treated as a sequence of lines;
parse will insert semicolons between the array elements and pass the result toparselng .

33.18 RANF and Its Supporting Routines

Ranf is a 48 bit multiplicative congruential method RNG which produces 64 bit floating point
numbers in the open interval (0,1). More precisely, it produces a sequence of uniform variatesUi

based on the following formulas:

Ui =
Si

248
(33.1)

Si+1 = aSi mod 248 (33.2)

where the (integer) multipliera = 0x2875a2e7b1751 and the (integer) default seedS0 =
0x948253fc9cd1. Note that the minimum value forUi is 1/248 ∼= 10−15 and the maximum value
is 1− 1/248. 2

1The multiplier’s inverse isa′ = 0x5ceeb894d6dd, withaa′ ≡ 1 mod 248.
2If stored in an IEEE 754 Standard single precision (32 bit) floating point format, the minimum is distinct from 0;

however, the maximum (and many other values near it) are not distinct from 1.

140 Chapter 33. List of Compiled Functions



On the Cray,ranf is loaded from theMathlib library. The workstation version is based on the
drand48suite of library functions. Although these two libraries implement the same basic arith-
metic, there is a subtle difference in thatdrand48computes the next seed and returns that value
divided by248, whereasranf saves the old seed, computes the next, and then returns the old seed
divided by248. The result is that the sequence fromdrand48is ”one ahead” of that fromranf.
This problem may be solved by decrementing or incrementing the seed by one as part of setting or
retrieving it, respectively, and this logic is built into the workstation versions ofsetranfandgetranf
routines below. Thus sequences generated by the Basisranf are identical on Cray or workstation,
and seed values may be carried between the two architectures without a break in the sequence.

The examples below are written as they would appear in source to be preprocessed byMppl. In
Fortran terms,ranf will return double precisionon a 32 bit workstation, andreal on a 64 bit
architecture.

33.18.1 Ranf

real(Size8) ranf,x
x = ranf(0)

Ranf may also be called from the Basis interpreter as a built-in function.

33.18.2 Getranf

integer iseed48(2)
call getranf(iseed48)

Getranf reads the current 48 bit seed, placing the lower 32 bits iniseed48(1)and the upper 16 bits
in iseed48(2). It may be called from the Basis interpreter, but be careful to pass its argument ”by
reference” in that case:call getranf(&iseed48).

33.18.3 Setranf

integer iseed48(2)
call setranf(iseed48)

Setranfrestores a 48 bit seed (presumably stored iniseed48by an earlier call togetranf). If both
elements of the array are zero, the default seed is reset.Setranf may be called from the Basis
interpreter as a compiled function.

33.18.4 Seedranf

integer iseed
call seedranf(iseed)

33.18. RANF and Its Supporting Routines 141



The semantics ofseedranfare similar to Cray Mathlib’sranset, with some restrictions. Ifiseed=0,
the default seed value is restored. Otherwise, the given value (or the next odd integer ifiseedis
even) is set as the current seed. If you’re setting an arbitrary seed, be aware that integers on the
workstation are usually limited to 32 bits, and that the upper 16 bits of the 48 bit seed are set to
zero by this call. Thus, the first value returned byranf will be quite small (

).Seedranfis provided primarily as a convenient way to reset the default seed - e.g., “call see-
dranf(0)” This function is also available within the Basis interpreter.

33.18.5 Mixranf

integer iseed, iseed48(2)
call mixranf(iseed,iseed48)

Mixranf provides functionality similar to Mathlib’srnfmix: If iseed¡0, the default seed is set. If
iseed=0, then a “random” seed is created from the system clock plus 10 calls onranf. If iseed>0,
then the value is set directly as perseedranf, with similar wordsize restrictions.Mixranf can be
called from the Basis interpreter.

33.19 Manipulating the External Environment

These functions do some (simple) things that are otherwise hard to accomplish inside Basis pro-
grams. Here’s what’s currently available:

33.19.1 basisexe()

NAME

basisexe() - execute a shell command

SYNOPSIS

integer status
status = basisexe("ls ˜/wrk")

DESCRIPTION

Thebasisexe function may be executed either from FORTRAN code or directly from the com-
mand line at runtime (although use of the shell escape ’!’ requires less typing). The argument
should be a quoted string containing a legal shell command (or commands, separated by semi-
colons). This function returns the status code of the command (normally zero unless there was
some error).

142 Chapter 33. List of Compiled Functions



33.19.2 cd, chdir()

NAME

cd, chdir() - change working directory

SYNOPSIS

cd /foo/bar
logical chdir("/foo/bar")

DESCRIPTION

The cd command works almost exactly like its counterpart in the UNIX shells. It accepts the
standard shorthand meaning for the tilde ”˜” character.cd with no arguments changes to your
HOMEdirectory. For use in scripts, thechdir() function is provided. It returns logical true or
false depending on whether the command succeeded or failed. Typical use:

if(chdir("/foo/bar")) then
remark "it worked!"

else
remark "try something else"

endif

33.19.3 setenv, getenv

NAME

setenv, getenv() - set or read environment variables

SYNOPSIS

setenv foo bar
character *64 homedir = getenv("HOME")

DESCRIPTION

setenv works just like its counterpart in the C shell, and is occasionally convenient for resetting,
say,NCARGROOTfrom within a running Basis program. Thegetenv() function (which for-
mally returns ”character *(500)”) is provided for symmetry, and to make it easier to set a Basis
variable to the value of a given environment variable. For example,

chdir(getenv("PWD"))

will usually set the working directory to the value it had when you started a Basis session.

33.19. Manipulating the External Environment 143



33.19.4 diskspace

NAME

diskspace() - find the remaining free space in your file store

SYNOPSIS

real xxx = diskspace("/foo/bar")

DESCRIPTION

The diskspace() function returns the number of megabytes of space available to you in the
filesystem containing its pathname argument. If no argument is given, the current working di-
rectory is assumed. Diskspace attempts first to determine if you have a quota assigned on the
filesystem in question. If you do, it returns the amount of free space available before you hit your
hard limit. If you don’t have a quota, it simply returns the available free space on the disk, just like
the ”df” command. It returns -1 on error. Typical usage:

cd ˜/wrk
if(diskspace() < 20.0) then # Quit if less than 20MB free

fin
else

remark "Running another cycle"
endif

144 Chapter 33. List of Compiled Functions



INDEX

Symbols
\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
*

operator . . . . . . . . . . . . . . . . . . . . . . . . . . .27
.dot. operator . . . . . . . . . . . . . . . . . . . . . . .27, 28
/

operator . . . . . . . . . . . . . . . . . . . . . . . . . . .27
// operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

=, append. . . . . . . . . . . . . . . . . . . . . . . . . .34
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13, 31
$a,$b,... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

. . . . . . . . . . . . . . . . . . . . . . . . . . .12, 26

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

A
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
acos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Actual parameters . . . . . . . . . . . . . . . . . . . . . .62
aimag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
aint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
allot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
alog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
alog10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
anint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
apostrophes,names with . . . . . . . . . . . . . . . . . .8
append statement . . . . . . . . . . . . . . . . . . . . . . .34
argument delimiters

command . . . . . . . . . . . . . . . . . . . . . .71, 74
default . . . . . . . . . . . . . . . . . . . . . . . . . .69

user . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
arguments

optional . . . . . . . . . . . . . . . . . . . . . . . . . .138
variable number of . . . . . . . . . . . . . . . .136

array
determining bounds . . . . . . . . . . . . . . .129

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
assignment to . . . . . . . . . . . . . . . . . . . . . .32
building with

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
comparisons . . . . . . . . . . . . . . . . . . . . . . .28
concatenation . . . . . . . . . . . . . . . . . . . . . .29
dot product . . . . . . . . . . . . . . . . . . . . . . . .28
dynamic . . . . . . . . . . . . . . . . . . . . . . . . . .134
history . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
logical operators on. . . . . . . . . . . . . . . . .28
matrix operators . . . . . . . . . . . . . . . .27, 55
operations on . . . . . . . . . . . . . . .25, 27, 55
partially full . . . . . . . . . . . . . . . . . . . . . .136
shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

changing . . . . . . . . . . . . . . . . . . . . . . .137
subscripts. . . . . . . . . . . . . . . . . . . . . . . . . .24

asin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
assignment

actions . . . . . . . . . . . . . . . . . . . . . . . .33, 137
atan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
atan2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
attredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
attributes . . . . . . . . . . . . . . . . . . . . . . . . .84, 133
attrlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
autocr . . . . . . . . . . . . . . . . . . . . . . . . . . .101, 129
autodyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
autodyna . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

145



autodynp . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
autohist . . . . . . . . . . . . . . . . . . . . . . . . . . .31, 129
automatic

variable allocation . . . . . . . . . . . . . . . . .129
variable declaration. . . . . . . . . . . . . . . .129

autovar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
ave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

B
backslash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
basclose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
basfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Basis

data types. . . . . . . . . . . . . . . . . . . . . . . . . . .2
documentation . . . . . . . . . . . . . . . . . . . . . .2
overview . . . . . . . . . . . . . . . . . . . . . . . . . . .1
parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

basnxtsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
basopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
blank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
BREAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
broadcast . . . . . . . . . . . . . . . . . . . . . . . . . .25, 32
buffer

history . . . . . . . . . . . . . . . . . . . . . . . . . . .129
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

C
call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
carriage control . . . . . . . . . . . . . . . . . . . . . . .101
case

significance in basis . . . . . . . . . . . . . . . . .8
significance in manual . . . . . . . . . . . . . . .5

cbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
cd, see also chdir . . . . . . . . . . . . . . . . .142, 143
chameleon . . . . . . . . . . . . . . . . . . .8, 13, 14, 32
change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
characters

special . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
cmplx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
colon

real arguments . . . . . . . . . . . . . . . . . . . . .16
COMMAND . . . . . . . . . . . . . . . . . . . . . . . . . .67

delimiting concerns . . . . . . . . . . . . . . . . .69
macros used in arguments . . . . . . . . . . .68

user control of argument types . . . . . . .70
command argument delimiters . . . . . . .71, 74

default . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

command¡sc . . . . . . . . . . . . . . . . . . . . . . . . . . .74
COMMAND L . . . . . . . . . . . . . . . . . . . . . . . .73
commands

defining your own . . . . . . . . . . . . . . . . . .67
comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
comments

Basis Language . . . . . . . . . . . . . . . . . . . . .8
user-defined entities . . . . . . . . . . . . . . .135

complex(8) . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
concatenation

of arrays . . . . . . . . . . . . . . . . . . . . . . . . . . .29
of characters . . . . . . . . . . . . . . . . . . . . . . .29
operator // . . . . . . . . . . . . . . . . . . . . . . . . .29

conjg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

built-in . . . . . . . . . . . . . . . . . . . . . . . . .9, 131
logical . . . . . . . . . . . . . . . . . . . . . . . . . . .131
quoted strings . . . . . . . . . . . . . . . . . . . . . . .9

continuation
of line in Basis Language. . . . . . . . . . . . .8

controlling
accuracy . . . . . . . . . . . . . . . . . . . . . . . . .130
carriage returns . . . . . . . . . . . . . . . . . . .129
display history . . . . . . . . . . . . . . . . . . . .129
end of file . . . . . . . . . . . . . . . . . . . . . . . .130
error recovery . . . . . . . . . . . . . . . . . . . . .130
messages to the tty . . . . . . . . . . . . . . . .130
output format . . . . . . . . . . . . . . . .129, 130
prompt . . . . . . . . . . . . . . . . . . . . . .129, 130
statement echo . . . . . . . . . . . . . . . . . . . .130
stream input mode. . . . . . . . . . . . . . . . .130

conversion
double to real . . . . . . . . . . . . . . . . . . . . . .58
integer or real to double . . . . . . . . . . . . .52
integer to real . . . . . . . . . . . . . . . . . . . . . .53

coredump . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
cosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
cot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
cprompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

146 Index



cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
cumaddin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

D
dbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
dble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
dcmplx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
debuga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
debugc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
decimal output . . . . . . . . . . . . . . . . . . . . . . . .130
default

macro . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
subscripts. . . . . . . . . . . . . . . . . . . . . . . . . .24

default delimiters
command argument. . . . . . . . . . . . . . . . .69

DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

command argument . . . . . . . . . . . . .71, 74
default . . . . . . . . . . . . . . . . . . . . . . . . . .69
user . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
din or disk in

see READ . . . . . . . . . . . . . . . . . . . . . . . . .89
diskspace . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
DO loops . . . . . . . . . . . . . . . . . . . . . . . . . .45, 47
documentation commands . . . . . . . . . . . . . .83
dot product, . . . . . . . . . . . . . . . . . . . . . . . . . . .28
drand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

E
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
end-of-file . . . . . . . . . . . . . . . . . . . . . . . .98, 130
ending Basis . . . . . . . . . . . . . . . . . . . . . . . . . .117
ending run after reading macfiles . . . . . . .130
environment variables . . . . . . . . . . . . . . . . . . .1

BASIS ROOT. . . . . . . . . . . . . . . . . . . . . . .1
DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . .1
MANPATH . . . . . . . . . . . . . . . . . . . . . . . . .1
NCARG ROOT . . . . . . . . . . . . . . . . . . . . .1

eof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98, 130

error
recovery. . . . . . . . . . . . . . . . .119, 122, 130

errortrp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Ex1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
execuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
Executing System Commands from the

Parser . . . . . . . . . . . . . . . . . . . . . . . .113
execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .19
expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
EZN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

F
false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
ffti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
files

creating . . . . . . . . . . . . . . . . . . . . . . . . . . .93
external . . . . . . . . . . . . . . . . . . . . . . .89, 134
opening . . . . . . . . . . . . . . . . . . . . . . . . . . .93
READ input from . . . . . . . . . . . . . . . . . .89

fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
flushlog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
FOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43, 44
FORGET

see UNDEFINE . . . . . . . . . . . . . . . . . . . .81
format . . . . . . . . . . . . . . . . . . . . . . .53, 102, 104
fromone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
functions

arguments
optional . . . . . . . . . . . . . . . . . . . . . . . .138
pass¡Marker ¡MType 2 . . . . . . . . . . . .17

built-in . . . . . . . . . . . . . . . . . . . . .49, 51, 60
list of . . . . . . . . . . . . . . . . . . . . . . . . . . .50

call by address . . . . . . . . . . . . . . . . . . . . .66
compiled . . . . . . . . . .49, 65, 66, 133, 140
list of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
user-defined . . . . . . . . . . . . . . . . . . . .61, 64

examples . . . . . . . . . . . . . . . . . . . . . . . .63
executing . . . . . . . . . . . . . . . . . . . . . . .135
removing . . . . . . . . . . . . . . . . . . . . . . . .81

fuzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Index 147



G
gallot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
gather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
gchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
getranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
gfree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
glbwrtim . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . .13, 62
global variables

see variables, global . . . . . . . . . . . . . . . .62

H
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87, 134
hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
hexadecimal constants . . . . . . . . . . . . . . . . . . .9
hexadecimal output . . . . . . . . . . . . . . . . . . .130
history

of displayed results . . . . . . . . . . . . . . . .129

I
ibasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
IF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35, 36, 38
IFELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
increment, subscript . . . . . . . . . .14, 15, 24, 56
index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
INDIRECT . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
inf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
input . . . . . . . . . . . . . . . . . . . . . .5, 89, 105, 135

echoing . . . . . . . . . . . . . . . . . . . . . . . . . .130
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
iota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

K
kaboom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
keepdrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

L
land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
lbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
lcprompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
len trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
log

function . . . . . . . . . . . . . . . . . . . . . . . . . . .54
terminal . . . . . . . . . . . . . . . . . . . . . . . . . .136

log10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
logical

constants . . . . . . . . . . . . . . . . . . . . . . . . .131
logonly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
loops

do . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45, 47
for . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43, 44
while . . . . . . . . . . . . . . . . . . . . . . . . . .39, 41

lor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
lsprompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

M
macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
matrix

see arrays. . . . . . . . . . . . . . . . . . . . . . . . . .27
matrix multiply operator . . . . . . . . . . . . . . . .27
matrix transpose operator . . . . . . . . . . . . . . .28
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
MDEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
MEND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
mixranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
mnx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
mxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

N
naming output files . . . . . . . . . . . . . . . . . . . .119
news . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87, 134
NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
nint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
no . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
noisy. . . . . . . . . . . . . . . . . . . . . . . . . .95, 96, 130
noisy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
non-noisy mode . . . . . . . . . . . . . . . . . . . . . . . .95
notty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
nskipr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

148 Index



O
obtaining scalar values . . . . . . . . . . . . . . . . . .85
oct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
octal constants . . . . . . . . . . . . . . . . . . . . . . . . . .9
octal output . . . . . . . . . . . . . . . . . . . . . . . . . .130
off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
operators. . . . . . . . . . . . . . . . . . . . . . . . . . .20, 22

*
, matrix multiply . . . . . . . . . . . . . . . . .27

/
, matrix divide . . . . . . . . . . . . . . . . . . .27

=, append . . . . . . . . . . . . . . . . . . . . . . . .34
array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
input>> . . . . . . . . . . . . . . . . . . . . . . . . . .94
outer product . . . . . . . . . . . . . . . . . . . . . .55
output ¡¡ . . . . . . . . . . . . . . . . . . . . . . . . . .100
transpose . . . . . . . . . . . . . . . . . . . . . . . . . .27

ostime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
outer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
outfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
output . . . . . . . . . . . . . . . . . . .89, 105, 131, 135

compressed . . . . . . . . . . . . . . . . . . . . . . .129
decimal . . . . . . . . . . . . . . . . . . . . . . . . . .130
file naming . . . . . . . . . . . . . . . . . . . . . . .119
hexadecimal . . . . . . . . . . . . . . . . . . . . . .130
octal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

output to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

P
package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

search stack . . . . . . . . . . . . . . . . . . . . . . . . .8
specifying a variable’s . . . . . . . . . . . . . . .8

padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
parpop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
parselng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
parser, calling the . . . . . . . . . . . . . . . . . . . . .139
parsestr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
passed by value . . . . . . . . . . . . . . . . . . . . . . . .62
pauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

paws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
plot

labels . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
writing text on . . . . . . . . . . . . . . . . . . . .131

portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
printing

see statements,display . . . . . . . . . . . . . .31
prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

secondary . . . . . . . . . . . . . . . . . . . .129, 130
setting your own . . . . . . . . . . . . . .129, 130

protect . . . . . . . . . . . . . . . . . . . . . . . . . . . .81, 136
protection brackets . . . . . . . . . . . . . . . . . . . .107
psum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
ptp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Q
quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
quota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

R
Ranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
ranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55, 141
RANGE . . . . . . . . . . . . . . . . .14, 16, 24, 55, 57

increment . . . . . . . . . . . . . . . . . . . . . .14, 15
rangex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
ranset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
rbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

echo during . . . . . . . . . . . . . . . . . . . . . . .130
real(8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
recursive parsing . . . . . . . . . . . . . . . . . . . . . .139
relational operators;operators, relational . .21
release

see FORGET . . . . . . . . . . . . . . . . . . . . . .81
REMARK. . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
removing

functions . . . . . . . . . . . . . . . . . . . . . . . . . .81
variables . . . . . . . . . . . . . . . . . . . . . . . . . .81

reserved words . . . . . . . . . . . . . . . . . . . . . . .125
RESUME . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
return, in input . . . . . . . . . . . . . . . . . . . .99, 100

Index 149



rmsdv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
rnfmix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
rngbeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
rngend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
rnginc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
rngsetdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
rsum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
rtadddim . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
rtattr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
rtcattr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
ruthere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

S
sbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
scalar broadcast . . . . . . . . . . . . . . . . . . . .25, 32
scalar values

obtaining . . . . . . . . . . . . . . . . . . . . . . . . . .85
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

scbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
sdbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
search stack . . . . . . . . . . . . . . . . . . . . . . . . . . .75
seed, ranf . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
seedranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
setact . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33, 137
setenv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
setlast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
setlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
setmnarg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
setranf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
setshape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
setting

scalar values . . . . . . . . . . . . . . . . . . . . . . .85
switches . . . . . . . . . . . . . . . . . . . . . . . . . .130

shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57, 137
of an array . . . . . . . . . . . . . . . . . . . . . . . . .24

Shell Commands . . . . . . . . . . . . . . . . . . . . . .113
sibasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Singular Value Decomposition;SVD;svd142
sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
skipping records at start of file. . . . . . . . . .130
slbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
sngl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
sorti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

spanl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
sprompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
square bracket operator . . . . . . . . . . . . . . . . .26
squeeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
srbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
ssbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
statements

append . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
assignment . . . . . . . . . . . . . . . . . . . . . . . .31
display . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

stdin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
stdout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
stdplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
steerable applications . . . . . . . . . . . . . . . . . . . .2
storage allocation padding . . . . . . . . . . . . .130
strchpat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
stream I/O . . . . . . . . . . . . . . . . . . . . . . . .93, 105
stream input

mode, controlling . . . . . . . . . . . . . . . . .130
tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

stride
see increment, subscript . . . . . . . . . . . . .14

strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9, 11
strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

rules for lower . . . . . . . . . . . . . . . . . . . . .25
subscripting expressions . . . . . . . . . . . .24

substr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
sup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
svd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
swset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

T
tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
termination . . . . . . . . . . . . . . . . . . . . . . . . . . .117

150 Index



timing
TIMER . . . . . . . . . . . . . . . . . . . . . . . . . .115

tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . .7, 9, 96
alphanumeric . . . . . . . . . . . . . . . . . . . . . . .8
constant . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

tokens:non-alphanumeric . . . . . . . . . . . . . .127
tolower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
trim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
triml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
trimr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
truerange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
trueshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60, 97

U
UNDEFINE . . . . . . . . . . . . . . . . . . . . . .81, 111
uniform variate . . . . . . . . . . . . . . . . . . . . . . .140
UNTIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
user delimiters

command argument. . . . . . . . . . . . . . . . .60
User variables . . . . . . . . . . . . . . . . . . . . . . . . .62
useshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
utype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

V
variables

chameleon . . . . . . . . . . . . . . . . . . . . .13, 31
checking existence of . . . . . . . . . . . . . .136
declaring . . . . . . . . . . . . . . . . . . . . . . . . . .11
displaying . . . . . . . . . . . . . . . . . . . . . . . . .31

accuracy of . . . . . . . . . . . . . . . . . . . . .130
in decimal . . . . . . . . . . . . . . . . . . . . . .130
in hex . . . . . . . . . . . . . . . . . . . . . . . . . .130
in octal . . . . . . . . . . . . . . . . . . . . . . . . .130

global . . . . . . . . . . . . . . . . . . . . . . . . . .13, 62
indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
initializing . . . . . . . . . . . . . . . . . . . . . . . . .12
local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
package . . . . . . . . . . . . . . . . . . . . . . . . . . .13

parser . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
range . . . . . . . . . . . . . . . . . . . . . . . . . .14–16
removing . . . . . . . . . . . . . . . . . . . . . . . . . .81
with computed names . . . . . . . . . . . . . . .14
with funny names . . . . . . . . . . . . . . . . . . .8

vectors
see arrays. . . . . . . . . . . . . . . . . . . . . . . . . .27

verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
vmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
vmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

W
where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
WHILE . . . . . . . . . . . . . . . . . . . . . . . . . . . .39, 41

Y
yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Z
zcen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Index 151


	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	Basis Input
	Basis Tokens
	What Is A Token?
	Special Characters
	Alphanumeric and ConstantTokens

	Declaring and Initializing Variables
	GLOBAL declarations
	Package declarations
	Chameleon Variables
	Computed Names
	Range Variables
	The Colon Notation For Vectors
	Indirect Variables

	 Expressions
	Introduction
	Operands
	Operators
	Delimiters
	Array References and Operations
	The Concatenation Operator

	Display and Assignment Statements
	Assignment Actions
	Operator Assignments
	The Append Statement
	The Logical IF Statement
	The Structured IF Statement

	WHILE Statement
	WHILE Statement
	BREAK and NEXT Statements

	FOR Statement
	DO Statement
	 Uncontrolled DO
	DO-UNTIL
	Controlled DO

	Functions Listed by Type
	Common Mathematical
	Trigonometry
	Type Conversion and Complex Numbers
	Arrays
	Character Manipulation
	Special Purpose
	Obtain/Set Scalar Values

	Built-in Functions
	User-Defined Functions
	Defining Functions
	RETURN
	Local Variables
	CALL Is By Value
	Examples of User Functions

	Compiled Functions
	CALLing By Address

	Defining Your Own Commands
	The COMMAND Statement 
	Changing the Default Type of a COMMAND Argument
	Specifying Other Delimiters in a COMMAND Statement
	No Delimiters at All: the COMMAND_L

	 The Search Stack
	Package Control Statements
	The CTL Package
	Removing Functions and Variables
	LIST Command
	Obtaining and Setting Scalar Values
	Help and News
	Input, Output, and External File Access
	Reading Basis Code From a Text File
	Resuming Reading 
	Printing Messages on the Terminal
	Changing the Destination of Basis Output

	The Stream I/O Facility
	Introduction to Stream I/O
	Opening and Creating Files
	The Input Operator  >> 
	The Output Operator <<
	The Format Function
	Closing File

	The Macro Facility
	Protection Brackets
	DEFINE Statement 
	MDEF - MEND Statement
	IFELSE Statement 
	UNDEFINE Statement 

	Executing System Commands from the Parser
	Timing
	Ending Basis
	Error Recovery
	Interrupting Basis
	List of Reserved Words
	List of Non-Alphanumeric Tokens
	List of Parser Variables
	Variables
	Constants

	List of Compiled Functions
	Working With Attributes
	Help and News
	Memory Management of Dynamic Arrays
	Opening and Closing Files
	Executing User Functions
	Adding Comments to Variables and Functions
	Checking for the Existence of Variables and Functions
	Flushing the LogFile
	Using the Switches Array
	Protecting User-Defined Variables and Functions
	Setting Variable Dimension Limits
	Specifying Assignment Actions
	Redefining Array Shapes
	Functions With Variable Numbers of Arguments
	Creating Pauses
	Returning to the Parser
	Recursive Parsing
	 RANF and Its Supporting Routines
	Manipulating the External Environment

	Index

