METADATA AND NUMERICAL DATA CAPTURE: HENRY'S LAW CONSTANTS as f(T)

(2 - Components)

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for 2-components

HENRY'S LAW CONSTANTS as f(T)

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

1140

J. Chem. Eng. Data 2002, 47, 1140-1144

Henry's Law Constant Measurements of CHClF₂, CH₂F₂, C₂HF₅, CH₂FCF₃, and CH₃CHF₂ in Ethanol and Methanol with Headspace Gas Chromatography

Ryo Kato and Hideo Nishiumi*

Chemical Engineering Laboratory, Department of Materials Chemistry, Hosei University, Koganei, Tokyo, Japan 184-8584

Henry's law constants of hydrofluorocarbons in alcohols were measured with headspace gas chromatography. Isothermal vapor—liquid equilibria for 10 fluorocarbon + alcohol systems ranging from 303 to 323 K were also measured. The experimental data of chlorodifluoromethane (CHC1F₂, HCFC22), difluoromethane (CH₂F₂, HFC32), pentafluoroethane (C₂HF₅, HFC125), 1,1,1,2-tetrafluoroethane (CH₂FCF₃, HFC134a), and 1,1-difluoroethane (CH₃CHF₂, HFC152a) in either methanol or ethanol were correlated as a function of temperature with the Valentiner equation.

HENRY'S LAW CONSTANT f(T)

(2 ñ Components)

Chlorodifluoromethane in Methanol

1	Table 2. Fractmental Vapor—Liquid Equilibrium—sta									
	<i>T</i> /K	P/kPa	liquid-phase mole fraction x ₁	vapor-phase mole fraction <i>y</i> l	Henry's law constant, H/MPa	<i>T/</i> K	P/kPa	liquid-phase mole fraction x_1	vapor-phase mole fraction <i>y</i> 1	Henry's law constant, <i>H</i> /MPa
•	Chlorodifluoromethane (HCFC22) + Methanol									
1	303.0	42.6	0.011 5	0.449	1.66	318.0	72.1	0.011 1	0.375	2.45
		37.8	0.008 80	0.383			72.9	0.011 0	0.373	
1	308.0	50.7	0.011 2	0.422	1.93	323.0	86.7	0.010 0	0.347	2.99
		50.6	0.011 1	0.423			86.5	0.010 2	0.349	
		45.6	0.008 50	0.362			79.8	0.008 10	0.305	
		44.3	0.008 00	0.353			80.8	0.008 20	0.304	
1	313.0	64.5	0.0109	0.395	2.35					
		58.6	0.008 40	0.343						
		59.0	0.008 70	0.340						

This data set is considered here.

Experimental Method Info:

Method: Headspace Gas Chromatography

Uncertainties:

The Henry's law constants listed in Table 2 have estimated uncertainties of 4%.

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

NOTE: The # of Phases in equilibrium, # of Constraints, the Phase of the Property Value(s), Phase 2, and Constraint 1 are filled automatically based upon the property definition.

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.