METADATA AND NUMERICAL DATA CAPTURE: Upper Consolute Compostion (2 - Components)

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for 2-components

Upper Consolute Composition

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

1036

J. Chem. Eng. Data 2000, 45, 1036-1039

Thermodynamic Properties of *n*-Alkoxyethanols + Organic Solvent Mixtures. XIV. Liquid—Liquid Equilibria of Systems Containing 2-(2-Ethoxyethoxy)ethanol and Selected Alkanes

Rubén Martínez, Juan Antonio Gonzalez,* Isaias Garcia de la Fuente, and Jose Carlos Cobos

G.E.T.E.F. Departamento de Termodinámica y Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain

Liquid—liquid equilibria (LLEs) data are reported for 2-(2-ethoxyethoxy)ethanol + hexane, heptane, octane, decane, dodecane, and hexadecane mixtures between 274.5 K and the upper critical solution temperatures (UCSTs). The coexistence curves were determined visually. They have a rather horizontal top, and their symmetry depends on the size of the alkane. For systems with dodecane or hexadecane, they are skewed to the region of higher mole fractions of 2-(2-ethoxyethoxy)ethanol. An opposite behavior is observed when hexane or heptane is involved. The (x_1, T) data were fitted to the equation $T = T_c + k|y - y_c|^m$, where $y = \alpha x_1/[1 + x_1(\alpha - 1)]$ and $y_c = \alpha x_1/[1 + x_1c(\alpha - 1)]$. T_c and T_c are the coordinates of the critical points fitted together with T_c and T_c are briefly discussed on the basis of the existence of inter- and intramolecular H-bonds as well as of dipole interactions, which occur in solutions containing hydroxyethers.

Upper Consolute Composition

(2 ñ Components)

2-(2-ethoxyethoxy)ethanol + heptane

Table 9. Coordinates of the Critical Points for Several Alkoxyethanol + Alkane Mixtures

system	T_c/K	x_{1c}
2-methoxyethanol + heptane	319.74^{x}	0.556
	320.15^{b}	
	321.15^{c}	
2-methoxyethanol $+$ octane	327.94^{d}	0.590
2-methoxyethanol $+$ dodecane	356.52	0.717
2-methoxyethanol + methylcyclohexane	297.34^{x}	0.485
	299.15€	
2-methoxyethanol $+$ 2,2,4-trimethylpentane	319.25^{x}	0.581
	319.55^{b}	
	319.15°	
2-ethoxyethanol $+$ heptane	261.15^{c}	
2-ethoxyethanol $+$ dodecane	289.62	0.625
2-ethoxyethanol $+$ 2 , 2 , 4 -trimethylpentane	258.15¢	
2-(2-methoxyethoxy)ethanol + heptane	აი1.15¢	
2-(2-methoxyethoxy)ethanol +	314.04^{x}	0.386
methylcyclohexane		
	241 146	
2-(2-ethoxyethoxy)ethanol $+$ heptane	286.98^{f}	0.354
4-رک-ethoxyethoxyJethanol +	Z90.Z0*	0.389
2,2,4-trimethylpentane		
	301.15^{c}	

 s Carmona et al., 1999. b Dolch et al., 1986. c Francis, 1961. d Rubio et al., 1998a. s Rubio et al., 1998b. f This work.

This data set is considered here.

Experimental Method Info:

The coexistence curves of the binary mixtures were determined visually (Loven and Rice, 1955; Young, 1969; Snyder and Eckert; 1973).

Uncertainties:

The precision of the equilibrum composition is expected to be better than 0.0005 mole fraction. The weighing technique gives a precision better than 0.0001 in mole fraction, but this is reduced slightly due to partial evaporation of the more volatile component to the free volume of the ampule ($\simeq 1.17$ cm³).

The temperature was measured with a precision of ± 0.01 K and an estimated accuracy of ± 0.1 K

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

NOTE: Most phases filled automatically by the GDC program.

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.