METADATA AND NUMERICAL DATA CAPTURE: Heat Capacity: C_{sat,m} (1 - Component)

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for 1-component

HEAT CAPACITIES: C_{sat,m}

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 2000, 45, 661-664

661

Measurement of Heat Capacities for Nine Organic Substances by Tian–Calvet Calorimetry

Lars Becker, Oliver Aufderhaar, and Jürgen Gmehling*

University Oldenburg, Technische Chemie, Fachbereich 9, Postfach 2503, 26111 Oldenburg, Federal Republic of Germany

Heat capacities for n-heptane, 2-methyl-1-propanol, toluene, and 1-propanol were measured with the "step by step" method and those for 2-methyl-1-propanol, 1-propanol, methylcyclohexane, toluene, 2,4-pentanedione, 1-bromooctane, dibenzyl ether, and benzoic acid with the "three-step" method using a Tian—Calvet batch calorimeter. The measurements of saturated liquid heat capacity have an approximate uncertainty of $\pm 0.5\%$ and cover temperatures within the range 288 K to 363 K.

Heat Capacity (C_{sat,m}) for 1 component **2-Methyl-1-propanol**

Table 2. Experimental Saturated Liquid Heat Capacity Data c⁸ for 2-Methyl-1-propanol, 1-Propanol, Toluene, Methylcyclohexane, 2,4-Pentadione, 1-Bromooctane, and Dibenzyl Ether and Experimental Saturated Solid Heat Capacity Data for Benzoic Acid Measured Using the Three-Step Method

77K	<i>c</i> 5/J mol⁻¹ K⁻¹	T/K	$c^{s}/J \text{ mol}^{-1} \text{ K}^{-1}$	T/K	$c^{\mathrm{s}}/\mathrm{J}\;\mathrm{mol^{-1}}\;\mathrm{K^{-1}}$	T/K	$c^{\mathrm{s}}/\mathrm{J}\;\mathrm{mol^{-1}}\;\mathrm{K^{-1}}$	
2-Methyl-1-propanol		1-Propanol		Т	Toluene		Methylcyclohexane	
323.16	202.72	330.06	163.73	288.13	154.41	288.21	180.41	
328.15	207.89	335.05	167.60	293.15	155.96	293.16	182.76	
333.15	213.07	340.13	171.45	298.21	157.42	298.14	184.87	
338.15	217.69	345.04	175.37	303.16	158.84	303.17	187.00	
343.22	223.04	350.03	179.10	308.20	160.40	308.21	189.18	
348.12	227.62	354.92	182.85	313.17	161.92	313.19	191.31	
353.20	232.57			318.16	163.49	318.18	193.51	
358.19	237.36			323.16	165.07	323.17	195.73	
363.18	242.00			328.15	166.42	328.16	197.75	
				333.15	168.14	333.16	199.99	
				338.14	169.60	338.15	201.97	
				343.13	171.06	343.23	204.74	
				348.21	172.50	348.13	206.65	
				353.20	174.13	353.21	208.98	

This data set is considered here.

Experimental Method Info:

2. Experimental Section

The measurements reported here were performed using a Tian—Calvet heat flow batch calorimeter from SET-ARAM, France (model BT2.15), with a temperature range from 77.15 K to 473.15 K.

Uncertainty estimate:

Calvet batch calorimeter. The measurements of saturated liquid heat capacity have an approximate uncertainty of $\pm 0.5\%$ and cover temperatures within the range 288 K to 363 K.

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.