

U.S. Department of Energy

Oakland Operations Office, Oakland, California 94612

Lawrence Livermore National Laboratory University of California Livermore, California 94551

UCRL-AR-126020

LLNL Ground Water Project

1996 Annual Report

Technical Editors:

J. Hoffman* P. McKereghan* B. Qualheim R. Bainer E. Folsom M. Dresen*

Contributing Authors:

S. Bahowick	G. Howard
R. Blake	G. Kumamoto
Z. Demir*	K. Lee
L. Berg*	M. Maley*
K. Folks	C. Noyes*
R. Gelinas	T. Pico
A. Happel	M. Ridley
F. Hoffman	S. Shukla

*Weiss Associates, Emeryville, California

Environmental Protection Department Environmental Restoration Program and Division

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

UCRL-AR-126020

LLNL Ground Water Project

1996 Annual Report

Technical Editors:

J. Hoffman* P. McKereghan* B. Qualheim R. Bainer E. Folsom M. Dresen*

Contributing Authors:

S. Bahowick	G. Howard
R. Blake	G. Kumamoto
Z. Demir*	K. Lee
L. Berg*	M. Maley*
K. Folks	C. Noyes*
R. Gelinas	T. Pico
A. Happel	M. Ridley
F. Hoffman	S. Shukla

*Weiss Associates, Emeryville, California

Acknowledgments

The Lawrence Livermore National Laboratory (LLNL) Ground Water Project is supported by a number of people who contribute significantly to the project. The editors and authors are pleased to recognize their efforts.

- W. McConachie, LLNL Environmental Restoration Program/Division Leader, provided overall direction and technical guidance.
- A. Copeland, LLNL Environmental Restoration Deputy Program/Division Leader, provided quality assurance and technical guidance.
- A. Lamarre, LLNL Livermore Site Project Leader, provided overall guidance and directed the Livermore Site activities.
- D. Bishop of LLNL directed program development.
- G. Aarons, K. Barber, T. Carson, E. Nielsen, and L. Rodriguez of Weiss Associates supervised drilling, monitor well installation, well development, and borehole logging.
- P. Anderson and S. Kawaguchi of LLNL maintained Treatment Facility A and B, and provided technical support.
- California Laboratory Services, GTEL Environmental Laboratories, FGL Environmental, and Lockheed Analytical Services provided analytical chemistry services to the project.
- T. Canales, C. Grant, and D. Lager of LLNL provided computer programming support.
- M. Chiarappa of LLNL worked on ground water and sediment chemistry investigations.
- J. Chiu of Weiss Associates oversaw and performed well development, initial sampling, hydraulic tests; measured ground water levels; and provided preliminary interpretation of hydraulic data.
- D. Coufal of LLNL maintained Treatment Facility East and provided technical support.
- R. Depue of LLNL performed report composition, editing, proofreading, compilation.
- G. Duarte, J. Greci, L. Kita, and P. Lyra of LLNL coordinated field activities.
- A. Elsholz of LLNL provided technical support for Accelerated Cleanup Initiative field activities.
- K. Fitzgerald and R. Quakenbush of LLNL coordinated computer resources.
- S. Fleming and P. Ries of PC Exploration operated the mud-rotary drill rigs.
- B. Heffner, LLNL provided community relations support.
- K. Heyward and J. Orloff of LLNL prepared the graphics.
- B. Johnson of LLNL assisted with activities at Treatment Facility 406 (TF406), and at the Vapor Extraction Facility 518.
- C. Justin and B. Staley of LLNL provided publication services.
- B. Kidd of LLNL maintained Treatment Facility G and provided technical support.
- C. Kuks of LLNL provided administrative support.

Table of Contents

Su	mmary	-1
1.	Introduction	.1
2.	Regulatory Compliance	.1
	2.1. CERCLA Documents	.1
	2.2. Milestones and Activities	.1
	2.3. Community Relations	.2
3.	Field Investigations	.3
	3.1. Ground Water Sampling	.3
	3.2. Source Investigations	.3
4.	Flow and Transport Modeling	.6
	4.1. Unsaturated Zone Modeling	.6
	4.1.1. Building 518	.6
	4.1.2. Building 292	.6
	4.2. Saturated Zone Modeling	.7
5.	Annual Summary of Remedial Action Program	.8
	5.1. Treatment Facility A	.8
	5.1.1. Performance Summary	.8
	5.1.2. Field Activities	.9
	5.1.3. Hydraulic Tests	.9
	5.2. Treatment Facility B	.9
	5.2.1. Performance Summary	10
	5.2.2. Field Activities 1	10
	5.2.3. Hydraulic Tests	10
	5.3. Treatment Facility C	10
	5.3.1. Performance Summary	11

5.3.2. Activities
5.3.3. Hydraulic Tests
5.4. Treatment Facility D 11
5.4.1. Performance Summary 12
5.4.2. Field Activities
5.4.3. Hydraulic Tests
5.5. Treatment Facility E
5.5.1. Performance Summary
5.5.2. Field Activities
5.5.3. Hydraulic Tests
5.6. Treatment Facility F
5.6.1. Performance Summary
5.6.2. Hydraulic Tests
5.7. Treatment Facility 406
5.7.1. Performance Summary
5.7.2. Field Activities
5.7.3. Hydraulic Tests
5.8. Treatment Facility G
5.8.1. Performance Summary
5.8.2. Field Activities
5.8.3. Hydraulic Tests
5.9. Vapor Treatment Facility 518 15
5.9.1. Performance Summary
5.9.2. Field Activities
5.9.3. Hydraulic Tests
5.10. Treatment Facility 5475
5.10.1. Field Activities

5.10.2. Hydraulic Tests	
5.10.3. Soil Vapor Extraction Treatability Test	
5.10.4. Ground Water Treatability Test	
Trends in Ground Water Analytical Results	

References

6.

List of Figures

- Figure 1. Locations of Livermore Site monitor wells, piezometers, extraction wells, and treatment facilities, December 1996.
- Figure 2. Comparison of measured (top) and simulated (bottom) aqueous PCE concentrations in HSU 1B for October 1995.
- Figure 3. Comparison of measured (top) and simulated (bottom) aqueous PCE concentrations in HSU 2 for October 1995.
- Figure 4. Total VOCs removed from the Livermore Site subsurface at treatment facilities.
- Figure 5. Ground water elevation contour map based on water levels collected from 121 of the wells completed within HSU 1B showing estimated HSU1B hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.
- Figure 6. Ground water elevation contour map based on water levels collected from 145 of the wells completed within HSU 2 showing estimated HSU 2 hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.
- Figure 7. Ground water elevation contour map based on water levels collected from 52 of the wells completed within HSU 3A showing estimated HSU 3A hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.
- Figure 8. Isoconcentration contour map of total VOCs for 107 wells completed within HSU 1B based on samples collected in the fourth quarter of 1996 (or the next most recent data).
- Figure 9. Isoconcentration contour map of total VOCs for 154 wells completed within HSU 2 based on samples collected in the fourth quarter of 1996 (or the next most recent data).
- Figure 10. Isoconcentration contour map of total VOCs for 64 wells completed within HSU 3A based on samples collected in the fourth quarter of 1996 (or the next most recent data).
- Figure 11. 1996 TFA extraction wells, pipelines, and discharge location.
- Figure 12. 1996 TFB extraction wells, pipelines, and discharge location.
- Figure 13. 1996 TFC extraction wells, pipelines, and discharge location.
- Figure 14. 1996 TFD extraction wells, pipelines, and discharge location.

Figure 15. 1996 TFE East extraction wells, pipelines, and discharge location.

- Figure 16. 1996 TF406 extraction wells, pipelines, and discharge location.
- Figure 17. 1996 TFG-1 extraction wells, pipelines, and discharge location.

List of Tables

- Table 1.
 1996 Livermore Site RAIP milestones.
- Table 2.
 1996 Livermore Site source investigation drilling.
- Table 3. Summary of 1996 VOC remediation.
- Table 4.
 Summary of cumulative VOC remediation.

Appendices

Appendix A—Well Construction and Closure Data	A-1
Appendix B—Hydraulic Test Results	. B- 1
Appendix C—1997 Ground Water Sampling Schedule	.C-1
Appendix D—1996 Drainage Retention Basin Annual Monitoring Program Summary	D-1

Summary

The major Livermore Site Ground Water Project (GWP) restoration activities conducted in 1996 are:

- The Lawrence Livermore National Laboratory (LLNL) Livermore Site GWP produced two major Comprehensive Environmental Response, Compensation, and Liability Act documents in 1996: The Compliance Monitoring Plan, issued January 25, 1996; and the Contingency Plan (CP), issued November 15, 1996. Eleven additional documents or letter reports were submitted to the regulatory agencies in 1996, consisting of 10 Remedial Project Managers Meeting Summaries and the GWP 1995 Annual Report. All seven Department of Energy (DOE)/LLNL milestones in 1996 were met ahead of schedule.
- 2. The Community Work Group met twice in 1996 to discuss topics including: cleanup progress; DOE budget updates; evaluation of new technologies; the Priority List/Consensus Statement; and the CP.
- 3. Eighteen source investigation boreholes were drilled during 1996 in the following areas: Treatment Facility A (TFA); Treatment Facility B (TFB); Treatment Facility D (TFD); Treatment Facility E (TFE); Treatment Facility 406 (TF406); Treatment Facility G (TFG); Building 419; and Trailer 5475 (T-5475). Nine were completed as piezometers, four were completed as monitor wells, two were completed as soil vapor extraction/injection wells, and two were completed as soil vapor instrumented boreholes.
- 4. A technical report describing computer simulations to determine 1) the potential impacts of the volatile organic compound (VOC) source in the vadose zone and 2) the potential effectiveness of various soil vapor extraction design alternatives at Building 518 was completed in 1996.
- 5. An investigation using numerical modeling and geostatistical techniques to study the migration of tritium in unsaturated heterogeneous sediments beneath the Building 292 area was completed in 1996. Modeling results indicate that the subsurface tritium poses no serious long-term threat to ground water quality.
- 6. A three-dimensional (3-D) ground water flow and contaminant transport model was developed, and a description of the 3-D model calibration and a summary of the preliminary results for the TFA area was completed in 1996.
- 7. The 1996 extraction wells, extraction rates, and estimated VOC mass removed at TFA, TFB, Treatment Facility C (TFC), TFD, TFE, TF406, TFG, and Vapor Treatment Facility 518 (VTF518) are summarized in Table Summ-1. Vapor Treatment Facility 518 is designated VTF518 to distinguish it from future ground water treatment (TF518) in the Building 518 area.
- 8. 1996 construction activities included:
 - Construction of the TFC North Pipeline connecting wells W-1015, W-1102, W-1103, W-1104, and W-1116;

- Construction of PTU stations at TFE East, TF406, and TFG-1;
- Modifying TFA to increase facility flow capacity to 350 gpm and at TFB to add hexavalent chromium treatment capability; and
- 9. Thirty wells installed in 1996 are shown in Table Summ-2.
- 10. In 1996, hydraulic tests were conducted as presented in Table Summ-3.
- 11. During 1996, TFA, TFB, TFC, TFD, TFE East, TF406, TFG-1, and VTF518 were operational. To date, about 338 million gal of ground water and almost 2 million cubic ft of vapor have been processed, removing more than 186 kg of VOCs.
- 12. During 1996, a passive bioremediation approach was initiated in the TFF area and treatment of residual dissolved-fuel hydrocarbons in ground water extracted from hydrostratigraphic units 3A and 3B was discontinued with regulatory approval.

Table Summ-1. 1996 extraction wells, extraction rates, and estimated VOC mass removed.

Treatment facility area	Extraction wells	Extraction rate	Estimated total VOC mass removed (kg)
TFA	W-109, W-262, W-408, W-415, W-457, W-518, W-520, W-522, W-601, W-602, W-603, W-609, W-614, W-712, W-903, W-904, W-1004, W-1009	175-310 gpm	16.8
TFB	W-357, W-610, W-620, W-621, W-655, W-704	50 gpm	7.7
TFC	W-701, W-1015, W-1102, W-1103, W-1104, W-1116	15-50 gpm	2.4
TFD	W-351, W-906, W-907	8.5-40 gpm	12.1
TFE	W-566, W-1109	20 gpm	0.8
TF406	W-1114	10-16 gpm	0.2
TFG	W-1111	8 gpm	0.2
VTF518	SIP-518-201	18 scfm	42.0
1996 Total			82.2

Notes:

kg = Kilograms.

gpm = Gallons per minute.

scfm = Standard cubic feet per minute.

Treatment	facility area	Well(s)
TFA		W-1214, W-1217
TFB		W-1226
TFC		W-1212, W-1213, W-1224
TFD		W-1208, W-1215, W-1216, W-1218, W-1220, W-1221, W-1223, W-1250, W-1251, W-1252, W-1253, W-1254, W-1255, W-1301
TFE		W-1210, W-1211, W-1219, W-1225
TF406		W-1209
T-5475		W-1222, SVI-ETS-504, SVI-ETS-505, SEA-ETS-506, SEA-ETS-507

Table Summ-2. 1996 well installations.

Table Summ-3. Hydraulic tests.

Treatment facility area	Well(s)
TFA	W-254
TFC	W-1014, W-1102, W-1106, W-1110, W-1116,
	W-1212, W-1213
TFD	W-1205, W-1207, W-1215, W-1216, W-1218, W-1220 W-1221, W-1254
TFE	W-911, W-1109, W-1203, W-1204, W-1210, W-1211,
	W-1202
TFF/TF406	W-1112, W-1113, W-1209
TFG	W-1111
TF518	W-112
T-5475	W-356, W-1108, W-1117, W-1118, W-1201, W-1222

Notes:

TF518 = Ground Water Treatment Facility 518.

TFF = **Treatment Facility F**.

1. Introduction

This report summarizes the 1996 Lawrence Livermore National Laboratory (LLNL) Livermore Site Ground Water Project (GWP) activities in five sections: Regulatory Compliance; Field Investigations; Flow and Transport Modeling; Annual Summary of Remedial Action Program, including discussions of treatment facility activities; and Trends in Ground Water Analytical Results. The 1996 GWP quarterly self-monitoring reports (McConachie and Brown, 1996a; Ko and Lamarre, 1996; Littlejohn and Lamarre, 1996; 1997) were issued separately.

Figure 1 shows the locations of monitor wells, piezometers, extraction wells, and treatment facilities at the Livermore Site and vicinity as well as other areas referenced in this report. Wells and boreholes drilled in 1996 are shown in bold typeface.

Appendices A through D show Well Construction and Closure Data, Hydraulic Test Results, the 1997 Ground Water Sampling Schedule, and the 1996 Drainage Retention Basin Annual Monitoring Program Summary. The data on ground water volatile organic compound (VOC) analyses, water level elevations, and the Treatment Facility F/Treatment Facility 406 (TFF/TF406) area ground water VOC and fuel hydrocarbon (FHC) analyses are available on request.

2. Regulatory Compliance

In 1996, the U.S. Department of Energy (DOE)/LLNL submitted documents required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Livermore Site Federal Facility Agreement (FFA). In addition, DOE/LLNL continued the environmental restoration and community activities discussed below.

2.1. CERCLA Documents

During 1996, DOE/LLNL issued two final CERCLA documents for the Livermore Site according to the amended schedule in the Remedial Action Implementation Plan (RAIP) (Dresen et al., 1993). The Compliance Monitoring Plan (CMP) (Nichols et al., 1996) was issued on January 25, 1996, and the Contingency Plan (CP) (McKereghan et al., 1996) was issued on November 15, 1996.

As required by the FFA, DOE/LLNL issued the 1995 GWP Annual Report (Hoffman et al., 1996). DOE/LLNL also submitted 10 Remedial Project Managers' Meeting Summaries; the March (McConachie and Brown, 1996), July (Ko and Lamarre, 1996), September and December (Littlejohn and Lamarre, 1996; 1997, respectively) summaries included quarterly self-monitoring data.

2.2. Milestones and Activities

Table 1 presents the amended 1996 RAIP DOE/LLNL milestones (Dresen et al., 1993) for the Livermore Site. All seven of the milestones were completed ahead of schedule.

In addition to RAIP milestones, DOE/LLNL completed the following tasks on the revised LLNL Livermore Site priority list (Dresen et al., 1993):

- Conducted source investigations at Treatment Facility G (TFG).
- Completed and activated the Treatment Facility C (TFC) North Pipeline on September 26, 1996.

Environmental Restoration activities in 1996 also included the following:

- Negotiated the Bay Area Air Quality Management District permit conditions for Portable Treatment Units (PTUs).
- Revised LLNL's GWP Standard Operating Procedures (Dibley and Depue, 1996).
- Received regulatory approval to modify treatment facility effluent discharge limits for metals and sampling frequencies (Bessette Rochette, 1996). See Sections 5.2, 5.3.1, and 5.4 for further discussion.
- Received regulatory approval on an outline for the Five-Year Review, due August 5, 1997 (Littlejohn and Lamarre, 1996).
- Submitted Application for Containment Zone for the Livermore Site Hydrocarbon Impacted Zone at Treatment Facility F (Happel et al., 1996) on July 17, 1996, and received regulatory approval for "no further action" for the fuel hydrocarbons on October 30, 1996 (CRWQCB-SF, 1996). See Section 5.6.1 for further discussion.
- Issued the report *Simulation of Soil Vapor Extraction at Building 518* (Vogele et al., 1996a) to the regulatory agencies. See Section 4.1.1 for additional information.
- Agreed to a revised Livermore Site Consensus Statement/Priority List and the RAIP schedule on September 19, 1996 (Ko et al., 1996).

In addition, DOE/LLNL have started to prepare two Explanation of Significant Differences reports for changes to the remedial action plan described in the Record of Decision (U.S. DOE, 1992). One is for a change to air stripping only at Treatment Facilities A and B (TFA and TFB), and the other is for changes in the metals discharge limits. A revised Site Safety Plan is also in preparation.

2.3. Community Relations

The Community Work Group (CWG) met twice in 1996 to discuss cleanup progress, DOE budget issues, evaluation of new technologies, the Priority List/Consensus Statement, and the CP. There was ongoing correspondence and communication with CWG members throughout the year.

Other Livermore Site community relations activities in 1996 included communications and meetings with a local interest group and other community organizations; public presentations including those to local realtors and international student and business groups; producing and distributing the *Environmental Community Letter*; maintaining the Information Repositories and the Administrative Record; conducting tours of the site environmental activities; organizing a Treatment Facility G-1 (TFG-1) ribbon cutting ceremony; and responding to public and news media inquiries. DOE/LLNL also began meeting with members of Tri-Valley Citizens Against a

Radioactive Environment and their technical advisor prior to the renewal of their U.S. Environmental Protection Agency Technical Assistance Grant.

3. Field Investigations

3.1. Ground Water Sampling

In 1996, the GWP submitted 1,582 samples for analyses. These samples were collected during 990 individual sampling events from 385 sampling locations. These locations consisted of 303 monitor wells, 59 source investigation piezometers, 15 TFF area wells and eight Alameda County Flood Control and Conservation District (Zone 7) or domestic wells. The samples were analyzed for VOCs, FHCs, metals, tritium and gamma-emitting radionuclides, or a combination of analyses depending on the compounds of concern.

Livermore Site ground water sampling frequency recommendations are updated quarterly by a cost-effective sampling algorithm that evaluates trends in contaminant levels in each well over an 18-month period. The algorithm aids in evaluating chemical trends. The sampling frequency is determined by the treatment facility Task Leaders based on algorithm results and other data. The main features of the algorithm that help to determine the sampling frequencies are based on the following criteria:

- Wells exhibiting little change [< 10 parts per billion (ppb) per year] are sampled annually or biennially.
- Wells exhibiting moderate change (10 ppb but < 30 ppb per year) are sampled semiannually.
- Wells showing large change (30 ppb) are sampled quarterly.
- Wells with less than 18 months of analytical history are sampled quarterly for the first 18 months, then the algorithm logic, and input from the Task Leaders for each treatment facility area, determines the sampling frequency.

Wells located at the leading edge of VOC plumes are sampled quarterly. The sampling schedule for 1997 is presented in Appendix C.

3.2. Source Investigations

Drilling activities for source investigations conducted in 1996 are summarized in Table 2 and drilling locations are shown in Figure 1.

The 1996 source investigation activities are briefly summarized below by area.

• <u>Building 419</u>. Two boreholes were drilled west of Building 419, downgradient of piezometer SIP-419-101. These boreholes were drilled to evaluate elevated levels of tritium detected in the unsaturated zone in SIP-419-101. Both of these boreholes were completed as piezometers (SIP-419-201 and SIP-419-202) and screened in hydrostratigraphic unit (HSU) 3A and HSU 3A/3B (Blake et al., 1995), respectively from 97 to 107 ft below ground surface (bgs).

- <u>Trailer 5475 (T-5475)</u>. Five boreholes were drilled in the T-5475 area. Four boreholes were drilled in the vicinity of the T-5475 source area for a soil vapor treatability test for Remedial Design Report No. 4 (RD4). Two of the boreholes were completed as soil vapor installations SVI-ETS-504 and SVI-ETS-505 screened in the unsaturated portion of HSU 2. SVI-ETS-504 was completed as a vapor extraction well, and SVI-ETS-505 was completed as a vapor extraction/injection well. The other two boreholes, SEA-ETS-506 and SEA-ETS-507 were each completed with <u>Flexible Liner Underground Technologies</u>, Ltd. (FLUTe; formerly called SEAMIST) liners. The FLUTe liners were equipped with vapor ports, temperature sensors and soil-moisture sensors distributed at eight different depths within HSU 1B and HSU 2, between 7 and 61 ft bgs.
- <u>Treatment Facility 406 (TF406)</u>. Two boreholes were drilled upgradient of TF406 to investigate potential sources of the TF406 VOC plume. Both boreholes were drilled near Building 511 and completed as piezometers SIP-511-101 and SIP-511-102.
- <u>Treatment Facility A (TFA)</u>. Two boreholes (W-1214 and W-1217) were drilled in the TFA area to further characterize the unsaturated zone VOC distribution and to provide better source area ground water monitoring locations. Both wells are screened in HSU 1B, between 78 and 100 ft bgs.
- <u>Treatment Facility B (TFB)</u>. Three boreholes were drilled in the TFB area to follow up on drilling conducted in 1989 and 1990 in the vicinity of Building 141. All three boreholes were completed as piezometers (SIP-141-201, SIP-141-202, and SIP-141-203) and were screened in HSU 1B, between 57 to 83 ft bgs.
- <u>Treatment Facility D (TFD)</u>. One borehole was drilled in the southern portion of the TFD area to investigate increasing VOC concentrations south of the Drainage Retention Basin. This borehole was completed as piezometer SIP-ETC-201and was screened in HSU 2 from 80 to 100 ft bgs.
- <u>Treatment Facility D (TFD)/Accelerated Cleanup Initiative (ACI)</u>. One borehole was drilled in the TFD area as part of the ACI characterization. This borehole was completed as piezometer SIP-HPA-201 and was screened in HSU 2 from 71 to 76 ft bgs.
- <u>Treatment Facility E (TFE)</u>. Two boreholes were drilled to further characterize the extent of VOCs in the unsaturated zone in the TFE area. One borehole was drilled and completed as well W-1219 and was screened in HSU 3A from 138 to 142 ft bgs. The other borehole was completed as well W-1225 and was screened in HSU 3A from 113 to 121 ft bgs.
- <u>Treatment Facility G (TFG)</u>. One borehole was drilled south of Building 212 to investigate a release of tritiated water. This borehole was completed as piezometer SIP-212-101 and was screened in HSU 2 from 87 to 90 ft bgs.

Significant highlights of 1996 source investigation studies include:

• <u>Building 419</u>. Trichloroethylene (TCE), in concentrations generally below 100 ppb, was detected in most unsaturated sediment samples collected from the boreholes for both piezometers SIP-419-201 and SIP-419-202. Bailed ground water samples collected following development of both piezometers detected total VOCs around 1 part per million (ppm). The chemical constituents detected in the ground water samples were

similar to those detected in the sediment samples, indicating this area was a probable old source area. Elevated tritium detected in the unsaturated zone of SIP-419-101 diminishes laterally and is confined to the upper 30 ft.

- <u>T-5475</u>. Analytical results from sediment samples collected from the five boreholes drilled in the T-5475 area indicate that the highest unsaturated zone VOC and tritium concentrations were detected in sediment samples collected from the boreholes for wells SVI-ETS-504 and SEA-ETS-507. Both of these boreholes are adjacent to the largest of the former T-5475 area disposal pits. A full discussion of T-5475 area source investigation results will be presented in RD4.
- <u>**TF406**</u>. Sediment samples collected from the borehole for piezometer SIP-511-101 contained total VOCs up to 21 ppb from the lower part of the unsaturated zone. A ground water sample collected from this piezometer in November 1996 contained just under 400 ppb total VOCs.
- <u>TFA</u>. Unsaturated sediment samples collected from the borehole for well W-1214 contained PCE throughout the unsaturated zone in concentrations up to 32 ppb, indicating this location is near the source area of the TFA plume. Unsaturated sediment samples collected from the borehole for well W-1217 detected PCE sporadically through the unsaturated zone at concentrations less than 2 ppb, indicating this location is near the northern extent of the TFA source area.
- <u>**TFB**</u>. Total VOCs between about 4 and 420 ppb were detected throughout the unsaturated zone just north of Building 141 in the borehole for piezometer SIP-141-202, indicating that this location is near a probable old source.
- <u>**TFD**</u>. Unsaturated sediment samples collected from the borehole for piezometer SIP-ETC-201 contained up to 100 ppb total VOCs, primarily tetrachloroethylene (PCE) at most depths. This area is a probable past contributing source of the ground water VOC plume in the southern portion of the TFD area.
- <u>TFE</u>. Low concentrations of tritium, up to 2,040 picocuries per liter of soil moisture (pCi/L_{sm}) were detected in most unsaturated sediment samples collected from the borehole for well W-1225. Tritium concentrations in saturated HSU 2 sediment samples were generally less than 1,000 pCi/L_{sm}. Tritium was detected at a concentration of 3,390 pCi/L in a ground water sample bailed from the well following development. The source of the tritium in the T-5475 area will be more fully discussed in RD4.
- <u>**TFG**</u>. Sediment samples collected from the borehole for piezometer SIP-212-101 contained tritium in concentrations that increased with depth. The maximum concentration of 9,900 pCi/L_{sm}, was detected in the first saturated sample collected from a depth of 90 ft bgs. Three ground water samples collected from the piezometer during 1996 contained tritium in concentrations ranging from 1,180 to 1,900 pCi/L.

Source investigation drilling is ongoing, as needed to collect additional data to aid in remediation optimization, to respond to new information on past releases, and to investigate new releases.

4. Flow and Transport Modeling

Unsaturated and saturated zone contaminant transport modeling were conducted in 1996 to support the design and evaluate the performance of Livermore Site remediation systems. Modeling results were also used to support ongoing subsurface characterization.

4.1. Unsaturated Zone Modeling

The numerical, multiphase, multicomponent computer code, NUFT (<u>N</u>onisothermal <u>U</u>nsaturated-Saturated <u>F</u>low and <u>T</u>ransport; Nitao, 1996) was used to simulate contaminant transport in the unsaturated zone beneath both Building 518 (B-518) and Building 292 (B-292) (Fig. 1).

4.1.1. Building 518

In September 1996, a report was issued describing computer simulations to determine: 1) the potential impacts on ground water of VOCs in the vadose zone, and 2) the potential effectiveness of various soil vapor extraction design alternatives at B-518 (Vogele et al., 1996a). These simulations were conducted to evaluate the need for vadose zone source removal and to support the remedial design of Vapor Treatment Facility 518 (VTF518). The modeling results were used to develop site-specific cleanup goals for the B-518 area (Fig. 1).

4.1.2. Building 292

Source investigation results indicate that tritiated water was released from leaking underground storage tank (R1U1) beneath the B-292 area (Fig. 1). An investigation using numerical modeling and geostatistical techniques to study the migration of tritium in unsaturated heterogeneous sediments beneath the B-292 area was completed in December 1996. The primary objective of the study was to use available site characterization and monitoring data to predict the impact of the release on future ground water quality. Major findings of the study are:

- Modeling results indicate that the release poses no serious long-term threat to ground water quality.
- Elevated concentrations of tritium in sediment, over $1.0 \times 10^7 \text{ pCi/L}_{\text{sm}}$, are expected to persist in the vadose zone for about 50 years. Because fluid velocities are very low in the vadose zone, tritium activity is more strongly controlled by radioactive decay than by transport.
- Based on a concentration field generated by ordinary kriging of analytical data, the total tritium activity in the subsurface was estimated to be about five curies in 1990. Approximately 91% of this activity existed north of Tank R1U1.
- The impact of the tritium release on ground water quality is substantially reduced by an asphalt cap that partially covers the underground storage tank, thereby limiting surface water infiltration.
- Vapor diffusion has a negligible effect on ground water tritium concentrations and a very small effect on vadose zone concentrations.

• Numerical simulations based on soil permeability fields derived by kriging yield substantially lower ground water tritium concentrations compared to simulations based on fields derived by conditional simulation. Conditional simulations provide better results because they are more representative of real heterogeneities present in the subsurface away from the actual data points.

Although modeling results indicate that the tritium release poses no long-term threat to ground water quality beneath the Livermore Site, the ground water and vadose zone tritium concentration will continue to be monitored.

If the tritium concentration rises above the Maximum Contaminant Level (MCL) of 20,000 pCi/L for two consecutive quarters, a re-evaluation of the sampling frequency will be warranted.

4.2. Saturated Zone Modeling

As part of the effort to forecast, monitor, and interpret the progress of remediation at the Livermore Site, a three-dimensional (3-D) ground water flow and contaminant transport model was developed using the CFEST (Coupled Flow, Energy and Solute Transport) computer code (Gupta, 1987). The 3-D model builds vertical resolution into the two-dimensional model previously developed for the Livermore Site (Tompson et al., 1995) and focuses on the transport of the dissolved PCE plume in HSUs 1B and 2 in the TFA area. A technical note containing a description of the 3-D model calibration and a summary of the preliminary results was completed in August 1996 (Vogele et al., 1996b).

As described in Vogele et al. (1996b), the 3-D flow model was calibrated to measured ground water elevation data collected from the Livermore Site monitoring wells. The contaminant transport portion of the model was calibrated to PCE ground water concentrations observed in the TFA area from 1988 through 1995. These simulations were comprised of a series of remedial-pumping time steps that were constructed to reflect changes in extraction well flow rates.

Results from these preliminary simulations were within the uncertainty limits of the model and will be further improved after lower HSUs (e.g., 3A, 3B, 4, etc.) are incorporated into the 3-D model (Figs. 2 and 3). In addition, the simulated mass removal rate was consistent with actual measurements at TFA. Results also indicate that the current and planned TFA wellfield should hydraulically control and clean up the PCE plumes.

In late 1996, the model was further improved by including the pumping history and flow rate data for other Livermore Site treatment facility extraction wells. The pumping schedules in the model were refined to reflect these additional data. Surface recharge from rainfall was also converted to a time-dependent boundary condition to account for the general increase in ground water elevations observed since the end of the drought period. In addition, the computer code CFEST was optimized by the model's author in 1996, and modified to more accurately simulate potential dewatering of Livermore Site sediments. The current model will be used to evaluate and improve the effectiveness of individual treatment facilities cleanup of specific contaminant plumes.

Preliminary simulations of the TCE plume beneath the TFB area should be completed in early 1997. Time-history isoconcentration contour maps of other VOC plumes beneath the Livermore Site are currently being constructed. The 3-D model will be compared and normalized to these plume maps. Transport of the individual plumes will be simulated with the aid of the MapIt interface tool, which was improved in 1996 to streamline CFEST input and output, and reduce the effort needed to prepare, execute, and interpret simulations (Canales and Grant, 1996).

5. Annual Summary of Remedial Action Program

This section summarizes activities performed during 1996 to support the Remedial Action Program at the Livermore Site, and includes treatment facility performance, well installations, hydraulic and treatability tests, and treatment facility design, construction and modifications performed during 1996. The volume of ground water and soil vapor treated at the facilities and the estimated VOC mass removed from the subsurface during 1996 and historically are presented in Tables 3 and 4, respectively. The VOC mass removed from beneath the site is also shown graphically in Figure 4. Figures 5, 6, and 7 show the capture areas, based on November ground water elevation data, in the vicinity of the pumping wells for HSUs 1B, 2, and 3A, respectively. Figures 8, 9, and 10 show fourth quarter isoconcentrations in the same three HSUs. Figures 11 through 17 show treatment facility extraction wells, pipelines, discharge locations, and selfmonitoring program sampling stations.

5.1. Treatment Facility A

TFA is located in the southwestern quadrant of the Livermore Site near Vasco Road (Fig. 1). TFA processes ground water using a combination of ultraviolet light/hydrogen peroxide (UV/H_2O_2) treatment and air stripping. Beginning in December 1995, LLNL modified TFA to increase the maximum flow rate from 200 gallons per minute (gpm) to the regulatory limit of 350 gpm. Operation of TFA resumed in February 1996; due to higher ground water extraction rates, VOC plumes in HSUs 1B, 2, and 3A were fully captured (Figs. 5, 6, 8, 9, and 10).

As shown in Figure 11, 18 extraction wells now contribute ground water to TFA via four pipelines, for a total flow rate of about 310 gpm. The wells are: W-415 (TFA East Pipeline); W-262, W-518, W-520, W-522, W-601, W-602, W-603, and W-609 (TFA South Pipeline); W-614, W-712, W-1004, and W-1009 (TFA North Pipeline); and W-109, W-408, W-457, W-903, and W-904 (TFA Arroyo Pipeline). Six HSU 1B extraction wells contribute a flow of approximately 105 gpm, 11 HSU 2 extraction wells contribute an average flow of 195 gpm, and one HSU 3A extraction well contributes about 10 gpm. Water levels were measured in this area at startup to evaluate the capture area of the TFA remedial wellfield, and to more accurately define hydraulic communication both within and between HSUs 1B, 2, and 3A.

5.1.1. Performance Summary

During 1996, TFA treated more than 92 million gal of ground water containing an estimated 16.8 kg of VOCs (Table 3). This treated ground water was discharged to the Recharge Basin, located about 2,000 ft southeast of TFA on Sandia National Laboratory property (Figs. 1 and 11).

Since system startup in 1989, TFA has treated nearly 262 million gal of ground water and removed about 75 kg of VOC mass from the subsurface (Table 4).

5.1.2. Field Activities

Two wells, W-1214 and W-1217 (Fig. 1), were installed during 1996 to further define the extent of the suspected HSU 1B PCE source in the southeast portion of the TFA area. These wells were discussed in Section 3.2, and construction details are presented in Appendix A.

5.1.3. Hydraulic Tests

Results of one-hour drawdown tests conducted on wells W-913, W-1001, W-1007, and W-1105 (Fig. 1) in 1995 are presented in Appendix B. A two-week long-term hydraulic test of proposed HSU 1B PCE source area extraction well W-254 was conducted in late December 1996. Analysis of this test is in progress and the results will be included in the next annual report.

5.2. Treatment Facility B

TFB is located east of Vasco Road and north of Mesquite Way (Fig. 1). Similar to TFA, ground water is processed at TFB using a combination of UV/H₂O₂ treatment and air stripping.

From 1991 through 1995, TFB treated ground water extracted primarily from wells W-357 and W-704 (Figs. 1 and 12). The TFB North Pipeline was activated in September 1995, which connected four additional extraction wells (W-610, W-620, W-621, and W-655) to TFB. During 1996, the average combined flow rate of these six TFB extraction wells was about 50 gpm. Wells W-704, W-610, and W-620 extract a total of about 18 gpm of ground water from HSU 1B. Wells W-357, W-621, and W-655 extract a total of about 32 gpm of ground water from HSU 2. These wells hydraulically capture offsite VOC plumes in both HSUs 1B and 2 in the west-central portion of the Livermore Site (Figs. 5, 6, 8, and 9).

TFB was modified during 1996 to more effectively treat ground water containing hexavalent chromium. Results from treatability tests confirmed that hexavalent chromium in low pH water can be reduced to trivalent chromium by adding hydrogen peroxide. To lower the pH of the influent at TFB, carbon dioxide is added to ground water after it has passed through the UV/H₂O₂ system. A 5,000-gal tank was added to TFB immediately prior to the air stripper to allow sufficient time for the injected hydrogen peroxide to reduce the hexavalent chromium. Subsequent air stripping removes excess carbon dioxide, thereby raising the pH. As a result of these modifications, the average TFB hexavalent chromium influent concentration of 25 ppb has been reduced to less than 15 ppb.

Subsequent to these modifications, the Livermore Site metals discharge limits were revised (Bessette Rochette, 1996). Under the new discharge limit, the wet-season (December 1 through March 31) hexavalent chromium limit is 22 ppb. During the dry season (April 1 through November 30), there is no specific hexavalent chromium limit, and the total chromium limit is 50 ppb. The treatment method described above is only used during the wet season when it is necessary to reduce hexavalent chromium concentrations below the 22 ppb discharge limit.

5.2.1. Performance Summary

During 1996, TFB processed almost 15 million gal of ground water containing an estimated 7.7 kg of VOCs (Table 3). Since system startup in 1990, TFB has processed more than 48 million gal of ground water and removed an estimated 20.1 kg of VOC mass from the subsurface (Table 4). Treated water is discharged to a drainage ditch that flows north along Vasco Road and ultimately flows into Arroyo Las Positas near the northwest corner of the Livermore Site (Figs. 1 and 12).

5.2.2. Field Activities

One well, W-1226, was installed in the TFB area during 1996 (Fig. 1). This well was screened in HSU 2 to better define the southern portion of the TFB VOC plume, and to monitor the impact of TFA ground water extraction, if any, on the TFB plume. Construction details for well W-1226 are presented in Appendix A.

To gain additional information from the TFB source areas and to provide additional monitoring points for evaluating the effectiveness of TFB source area remediation, three source investigation piezometers (SIP-141-201, SIP-141-202, and SIP-141-203) were installed in HSU 1B in the vicinity of Building 141 (Fig. 1).

5.2.3. Hydraulic Tests

Results of one-hour drawdown tests conducted on wells W-1010, W-1011, W-1012, and W-1013 (Fig. 1) in 1995 are presented in Appendix B. No hydraulic tests were performed in the TFB area during 1996.

5.3. Treatment Facility C

TFC is located in the northwest quadrant of the Livermore Site (Fig. 1) and utilizes air stripping and ion exchange to treat ground water.

TFC began operation in 1993 and currently treats ground water extracted from HSU 1B wells W-701, W-1015, W-1102, W-1103, W-1104, and W-1116 (Fig. 13). The TFC North Pipeline was constructed during 1996 and connects wells W-1015, W-1102, W-1103, W-1104, and W-1116 to TFC. The TFC North Pipeline was activated on September 26, 1996.

From January through September 1996, the average flow from TFC extraction well W-701 was about 15 gpm. In September, LLNL began extracting ground water from the five TFC North pipeline wells at a rate of about 45 gpm for a 6-hour period each working day (Monday through Friday). TFC began 24-hour operation in early 1997. The average combined flow for the six TFC extraction wells is about 50 gpm. These wells hydraulically capture plumes located beneath the northwestern portion of the Livermore Site (Fig. 8). Hydraulic capture in the TFC area is not shown on Figure 5 because the treatment facility was not operating when the November water levels were measured.

5.3.1. Performance Summary

During 1996, TFC processed about 4.4 million gal of ground water containing an estimated 2.4 kg of VOCs (Table 3). Since system startup in 1993, TFC has processed nearly 13 million gal of ground water and removed over 6 kg of VOC mass from the subsurface (Table 4). Treated water at TFC is discharged into Arroyo Las Positas near the northwest corner of the Livermore Site (Fig. 13).

As described in Section 5.2, the discharge limits for chromium were changed during 1996 to vary seasonally. Because influent total chromium concentrations are consistently less than 50 ppb, ion-exchange treatment is now only required during the wet season.

5.3.2. Field Activities

Wells W-1212, W-1213, and W-1224 were installed in HSU 1B in the TFC area during 1996 (Fig. 1; Appendix A). Well W-1213 will be used as an HSU 1B extraction well for the TFC Southeast PTU to meet the RAIP milestone startup date of January 31, 1997. Well W-1212 will be used to monitor ground water VOC concentrations near the TFC Southeast source area. Well W-1224 will be used to more accurately define the hydraulic capture in this area.

5.3.3. Hydraulic Tests

One-hour drawdown tests were performed on TFC area wells W-1014, W-1102, W-1106, W-1110, W-1116, W-1212, and W-1213 during 1996 (Fig. 1). In addition, 72-hour pumping tests were performed on wells W-1212 and W-1213. These long-term tests were performed to evaluate the effectiveness of these HSU 1B wells as TFC Southeast extraction wells. Well W-1212 was unable to sustain a flow rate greater than 1 gpm and is therefore unsuitable as an extraction well despite its location within the source area. Well W-1213 sustained a flow rate of about 7 gpm during testing. Results of these tests and of 1995 one-hour drawdown tests on wells W-1101 and W-1103 are provided in Appendix B.

5.4. Treatment Facility D

TFD is located in the northeast quadrant of the Livermore Site (Fig. 1) and uses air stripping and ion exchange to treat ground water. TFD remediation performance is summarized in Section 5.4.1.

TFD began operation in September 1994 and treats ground water extracted from wells W-351, W-906, and W-907. Prior to 1996, the NPDES discharge limit of 7.1 ppb nickel constrained LLNL from using well W-907 as an extraction well. Subsequently, the discharge limit for nickel was increased to 100 ppb during the dry season (April 1 to November 30) and to 320 ppb during the wet season (December 1–March 31) (Bessette Rochette, 1996). As a result, LLNL resumed using W-907 as a full-time extraction well in August 1996.

From January through July 1996, the average combined flow rate of the two TFD extraction wells, W-351 and W-906, was about 8.5 gpm. With the addition of well W-907 in August, the average combined flow rate of these three wells increased to about 40 gpm. Well W-906 produces about 7 gpm of ground water from HSUs 2 and 3A. Wells W-351 and W-907 extract ground water at a combined rate of about 33 gpm from HSU 4. These wells hydraulically

capture VOCs associated with the northern portion of the East Traffic Circle and Helipad source areas (Figs. 6, 7, 9, and 10).

5.4.1. Performance Summary

During 1996, TFD processed about 10.7 million gal of ground water containing an estimated 12.1 kg of VOCs (Table 3). Since system startup in 1994, TFD has processed nearly 13 million gal of ground water and removed about 18 kg of VOC mass from the subsurface (Table 4). Treated water at TFD flows through an underground pipe which discharges into Arroyo Las Positas (Fig. 14).

5.4.2. Field Activities

Fourteen wells and two piezometers were installed in the TFD area during 1996. Extraction well W-1208 was installed near TFD (Fig. 1) and is screened in HSUs 3A and 3B. Wells W-1215 and W-1216 were installed in the western portion of the TFD area (Fig. 1) and are planned HSU 2 extraction wells for the TFD West PTU. Monitor wells W-1218, W-1220, and W-1221 were installed south of the Drainage Retention Basin in HSU 3A, HSU 2, and HSU 4, respectively (Fig. 1). Monitor wells W-1223 and W-1301 were installed east of the Drainage Retention Basin (Fig. 1) in HSU 2 and HSU 3A, respectively. These five monitor wells improve our definition of plumes related to the East Traffic Circle source areas and are potential extraction locations.

Six wells (W-1250, W-1251, W-1252, W-1253, W-1254, and W-1255) were installed east of TFD, near the Helipad, to provide detailed characterization data for the proposed ACI test site (Fig. 1). These wells were all completed within HSU 4. Construction details of these TFD wells are presented in Appendix A, and their locations are shown in Figure 1.

As discussed in Section 3.2, source investigation piezometer SIP-ETC-201 was installed south of the East Traffic Circle to further characterize the VOC plume. Source investigation piezometer SIP-HPA-201 was installed near the Helipad as part of the ACI characterization.

5.4.3. Hydraulic Tests

One-hour drawdown tests were performed on TFD area wells W-1215, W-1216, W-1218, W-1220, and W-1221 during 1996. Slug tests were also performed on wells W-1205 and W-1207. In addition, 72-hour pumping tests were performed on HSU 2 wells W-1215, W-1216 individually, and wells W-1215 and W-1216 simultaneously. These tests were performed to evaluate the effectiveness of these wells to extract ground water for the TFD West PTU. Both wells were able to sustain flow rates of about 14 gpm, and good hydraulic communication was observed in nearby HSU 2 monitor wells W-369 and W-411.

A 72-hour hydraulic test was performed on HSU 4 well W-1254 to evaluate the hydraulic conditions in the area of the proposed ACI project. Well W-1254 sustained a flow rate of about 20 gpm and good hydraulic communication was observed in HSU 4 monitor wells over a wide area up to 1,000 ft from the pumping well. In addition, an area of vertical leakage between HSUs 4 and 5 was identified when two HSU 5 wells in the vicinity also showed hydraulic communication. The limited number of HSU 5 wells in the area precludes delineating the full

extent of leakage. Results of these tests are provided in Appendix B, and the well locations are shown on Figure 1.

5.5. Treatment Facility E

The TFE area is located in the southeast quadrant of the Livermore Site and will consist of multiple PTUs that utilize air stripping to treat ground water (Fig. 1). The TFE East PTU was activated on November 25, 1996, ahead of the RAIP milestone date of November 27, 1996 (Dresen et al., 1993). Wells W-566 and W-1109 supplied 20 gpm of ground water to the treatment facility, which operated for six hours each working day (Monday through Friday) during the first two weeks. From that point on, TFE East began operating 24 hours a day. Wells W-1109 and W-566 produce about 5 and 15 gpm ground water from HSUs 2 and 5, respectively.

5.5.1. Performance Summary

TFE East PTU processed about 0.5 million gal of ground water through the end of the year, and removed an estimated 0.8 kg of VOC mass from the subsurface (Tables 3 and 4). Water treated at TFE East is discharged to a north-flowing drainage ditch that empties into the Drainage Retention Basin (Fig. 15).

5.5.2. Field Activities

Four wells, W-1210, W-1211, W-1219, and W-1225 were installed in the TFE area during 1996. As shown in Figure 1, well W-1210 is located west of TFE East and provides a downgradient HSU 5 monitoring location. Well W-1211 provides an HSU 4 monitoring location in the central part of the Livermore Site. Well W-1219 is located in the south-central part of the Livermore Site and well W-1225 is located north of TFE East. Both of these wells provide HSU 3A monitor locations. Source investigation data were also collected during the drilling of W-1219 and W-1225 as described in Section 3.2. Construction details for these wells are presented in Appendix A.

5.5.3. Hydraulic Tests

One-hour drawdown tests were performed on TFE area wells W-911, W-1203, W-1204, W-1210, and W-1211 during 1996. A slug test was also performed on well W-1202, but because of poor data quality, hydraulic parameters could not be calculated. In addition, a 72-hour pumping test was performed on HSU 2 well W-1109 to evaluate its effectiveness as a potential extraction well for TFE East. During the test, well W-1109 sustained a flow rate of about 7 gpm. Good hydraulic communication was observed in surrounding HSU 2 monitor wells W-257, W-909, W-911, and SIP-543-101. A secondary objective of the test was to determine if pumping W-1109 would impact the HSU 3A tritium plume beneath T-5475. No response was observed in any of the HSU 3A wells monitored. Results of these tests, and a 1995 one-hour drawdown test on well W-1109, are provided in Appendix B.

5.6. Treatment Facility F

TFF was located in the southeastern part of the Livermore Site in the TF406 area, where HSUs 2, 3A, and 3B had been impacted by a FHC spill (Dresen et al., 1986) (Fig. 1). Prior to remediation, significant FHC concentrations existed in both the unsaturated and saturated zones. Currently, low concentrations of VOCs exist in the FHC ground water plume beneath the TF406 area. This VOC plume is discussed further in Section 5.7.

5.6.1. Performance Summary

During 1996, passive bioremediation was implemented in the TFF area, which permanently discontinued ground water extraction and treatment for residual dissolved FHCs from HSUs 3A and 3B. Prior to its permanent shutdown, TFF operation was interrupted for 194 days as a result of storm damage that occurred on December 8, 1995. During June 1996, ground water was extracted and treated at TFF for a total of six hours to evaluate FHC concentrations in ground water extracted from HSU 3B well GEW-816. No rebound of FHC concentrations was observed in ground water from GEW-816. Following submittal of *Application for Containment Zone for the Livermore Site Hydrocarbon Impacted Zone at Treatment Facility F* (Happel et al., 1996), "No Further Action" status was granted by the regulatory agencies on October 30, 1996 (CRWQCB-SF, 1996). As part of the terms of this agreement, HSU 3 wells in this area will be sampled and analyzed for FHCs on a semiannual basis.

5.6.2. Hydraulic Tests

During June 1996, a six-hour pumping test was conducted on HSU 3A/3B wells GEW-808 and GEW-816 using a PTU (Fig. 1). The test demonstrated that the integrity of the annular seal in well GSW-445, a proposed HSU 4 extraction well for TF406, was not compromised during electrical-resistance heating and steaming associated with the Dynamic Underground Stripping Project (Newmark, 1994). The test also showed that HSU 3B is well connected with higher permeability sediments to the northwest, near the proposed PTU extraction well GSW-215. Well GSW-215 will be used to extract ground water containing VOCs from HSUs 3A and 3B. No hydraulic tests were performed on individual TFF wells during 1996.

5.7. Treatment Facility 406

TF406 is located in the southeastern part of the Livermore Site and consists of a PTU that utilizes air stripping to treat ground water (Fig. 1). TF406 is designed to treat VOCs extracted from HSUs 4 and 5 beneath the former TFF area.

TF406 began operating on August 27, 1996 ahead of the August 30, 1996 milestone date. As shown in Figure 16, TF406 processes ground water extracted from well W-1114, which is positioned to clean up and hydraulically control a TCE plume in HSU 5. In the spring of 1997, we plan to start treating ground water from HSU 4 extraction well GSW-445.

5.7.1. Performance Summary

During 1996, TF406 processed about 0.4 million gal of ground water from well W-1114 (Table 3) at flow rates between 10 and 16 gpm. The total VOC mass removed during 1996 was

about 0.2 kg. All treated ground water was discharged to a storm drain that leads to Arroyo Las Positas (Fig. 16).

5.7.2. Field Activities

Well W-1209 was installed in the western portion of the TF406 area during 1996 (Fig. 1). Well W-1209 will be used to monitor hydraulic capture and ground water cleanup in HSU 4 while ground water is extracted from well GSW-445. Construction details for well W-1209 are presented in Appendix A.

5.7.3. Hydraulic Tests

No long-term hydraulic tests were conducted at TF406 during 1996. The results of one 1995 long-term test (W-1114) and three 1996 one-hour drawdown tests (W-1112, W-1113, and W-1209) are presented in Appendix B.

5.8. Treatment Facility G

Treatment Facility G-1 (TFG-1) is located about 300 ft north of East Avenue in the southcentral part of the Livermore Site (Fig. 1). TFG-1 consists of a PTU that utilizes air stripping and ion exchange to treat ground water from HSU 2 extraction well W-1111.

5.8.1. Performance Summary

During 1996, TFG-1 processed about 0.9 million gal of ground water at an average flow rate of 8 gpm. TFG-1 has removed an estimated 0.2 kg of VOCs since operation began on April 11, 1996 (Table 3). All treated ground water has been discharged to a storm drain located about 50 ft north of TFG-1 (Fig. 17), which empties into Arroyo Seco.

5.8.2. Field Activities

One source investigation piezometer (SIP-212-101) was installed south of Building 212 (Fig. 1).

5.8.3. Hydraulic Tests

During December 1996, a week-long hydraulic test was conducted on extraction well W-1111 to evaluate the hydraulic influence of this HSU 2 well. The test results suggest that some hydraulic communication may exist between HSU 1B and HSU 2 in the vicinity of well W-1111. A one-hour drawdown test was also conducted on well W-1111 during 1996. The results of these tests are presented in Appendix B.

5.9. Vapor Treatment Facility 518

VTF518 is located in the southeast quadrant of the Livermore Site near East Avenue (Fig. 1). Soil vapor is extracted from vadose zone well SIP-518-201 using a vapor extraction system (VES). VOCs are removed from the vapor at VTF518 using granular activated carbon canisters.

5.9.1. Performance Summary

The VES operated at an average vacuum of 18 standard cubic feet per minute (scfm). From January 1 through December 27, 1996, VTF518 processed approximately 1,550,000 cubic feet (ft³) of soil vapor removing an estimated 42 kg of VOCs (Table 3). Since VTF518 began operating on September 25, 1995, about 66 kg of VOC mass has been removed from approximately 1,870,000 ft³ of soil vapor (Table 4).

5.9.2. Field Activities

Two SEAMIST instrumented/sampling wells, SIB-518-301 and SIB-518-304, are used to monitor vadose zone remediation in the VTF518 area. The SEAMIST system is an impermeable, everted membrane that carries soil vapor sampling instrumentation down an unlined borehole (Keller and Lowry, 1991). The SEAMIST system is used to collect vapor pressure, soil temperature, soil moisture, and soil vapor VOC concentration data from various discrete depths. VOC vapor concentrations at SIB-518-301, the SEAMIST system borehole nearest the VTF518 vapor extraction well, have declined from an average of 111 parts per million by volume (ppmv) in September 1995 to an average of 59 ppmv in November 1996.

5.9.3. Hydraulic Tests

During November 1996, a 72-hour long-term hydraulic test was conducted on HSU 5 well W-112, which is the planned ground water extraction well for Treatment Facility 518 when the facility becomes operational in October 1997. The hydraulic test results indicate that ground water extraction at well W-112 will hydraulically control ground water flow in the vicinity of B-518 (Fig. 1). Results of this test are presented in Appendix B.

5.10. Treatment Facility 5475

Treatment Facility 5475 (TF5475) is located in the southeast quadrant of the Livermore Site (Fig. 1). As agreed to by the regulatory agencies, the operation of TF5475 has been postponed until September 1998. However, field activities supporting HSU analysis of this area will continue in 1997 and is described in RD4.

5.10.1. Field Activities

Well W-1222 was installed in the T-5475 area during 1996. This well was screened in HSU 3A (as was downgradient TFE well W-1225, discussed in Section 5.5.2) to define the extent of VOCs and tritium downgradient from the T-5475 source area. Construction details for this well are presented in Appendix A, and its location is shown on Figure 1.

As discussed in Section 3.2 and shown in Figure 1, five source investigation boreholes were drilled in 1996. SIB-ETS-503 was drilled downgradient (west) of the T-5475 source area to obtain unsaturated sediment lithologic and chemistry data. Two soil vapor installations, SVI-ETS-504 and SVI-ETS-505, were drilled near the T-5475 source area. Boreholes SEA-ETS-506 and SEA-ETS-507 were drilled in the vicinity of vapor extraction well SVI-ETS-504. FLUTe instrumented sampling systems were installed in these boreholes to monitor the effectiveness of vapor extraction.

5.10.2. Hydraulic Tests

During 1996, one-hour drawdown tests were performed in the T-5475 area on wells W-1117, W-1118, W-1201, and W-1222. Results of these tests are presented in Appendix B, and the well locations are shown on Figure 1. In addition, slug tests were performed on piezometers SIP-ETS-201, SIP-ETS-204, and SIP-ETS-207.

Seventy-two-hour hydraulic tests were performed on HSU 3B well W-356, and HSU 5 well W-1108 to determine the hydraulic characteristics of saturated sediments in the T-5475 area. The primary objective of these tests was to determine the effect of pumping these wells on the T-5475 tritium plume in HSU 3A. Well W-356 is located southwest of T-5475 and was used to test the influence of pumping from HSU 3B on the distal portion of the plume. Well W-1108 is located near T-5475 and is screened in HSU 5, which underlies the portion of HSU 3A containing the tritium plume.

Well W-1108 extracted about 12 gpm of ground water from HSU 5 during the first 24 hours. The flow rate was then reduced to eight gpm due to an observed hydraulic boundary effect. Similarly, well W-356 extracted about five gpm from HSU 3B during the first 24 hours, but the flow rate was reduced to three gpm in response to a hydraulic boundary effect. These test results are presented in Appendix B, and will be discussed in RD4.

5.10.3. Soil Vapor Extraction Treatability Test

A treatability test was conducted at T-5475 to evaluate the feasibility of soil vapor extraction. The test consisted of extracting vapor from well SVI-ETS-504 and then reinjecting the treated vapor into well SVI-ETS-505. Flow rates were varied from 12 to 30 scfm. The effects of vapor extraction were monitored in FLUTe wells SEA-ETS-506 and SEA-ETS-507. The results of these tests will be discussed in RD4.

5.10.4. Ground Water Treatability Test

A down-hole in-situ treatment technology is being developed at LLNL to clean up VOCs in ground water in the T-5475 area, thus eliminating the need to extract ground water contaminated with VOCs and tritium for aboveground treatment. This technology is based upon a catalytic reductive dehalogenation process, where hydrogen, in the presence of a suitable catalyst, is used as a reducing agent to dechlorinate and transform VOCs into environmentally-benign hydrocarbons. The rapid reaction rates characterizing this process, with removal rates greater than 95% for most VOCs, allow it to be used in a flow-through vessel. Bench-scale experiments are being conducted to optimize the vessel design.

The down-hole treatment unit will consist of a two-stage vessel. The first stage consists of an electrolyzer, which produces hydrogen from the influent water under an applied voltage. The second stage consists of a catalyst bed of palladium metal supported by beads of alumina, and is where the dechlorination reactions take place. Contaminated water extracted from a saturated permeable zone is passed through the vessel and then reinjected into an adjacent saturated permeable zone. This treatment technology is scheduled for a pilot test in a well west of T-5475 in 1997.

6. Trends in Ground Water Analytical Results

Notable results of VOC analyses of ground water received from January 1996 through December 1996 are discussed below. Figures 8, 9, and 10 show isoconcentration contours for total VOCs underlying the Livermore Site and vicinity within HSU 1, HSU 2 and HSU 3A, respectively. VOC analytical data are available upon request or can be viewed through the Environmental Restoration Division Web pages.

- 1. The chloroform concentration in well W-114 has increased. Well W-114 is located directly south of the West Traffic Circle (Fig. 1), and is screened from 51 to 63 ft bgs in HSU 1B. In July 1985, 3 ppb of chloroform was reported in the initial analysis. Chloroform was not detected again in well W-114 until January 1995 at 4.4 ppb. Since that time, the chloroform has increased to 22 ppb as of January 1996.
- 2. The PCE concentration in well W-143 has gradually decreased. Well W-143 is located about 450 ft east of TFA (Fig. 1), and is screened from 121 to 126 ft bgs in HSU 2. In May 1985, 260 ppb PCE was reported in the initial analysis. Since that time, the PCE increased up to 340 ppb in March 1986, but has since decreased to 11 ppb as of October 1996.
- 3. The TCE concentration in well W-217 has increased. Well W-217 is located about 450 ft directly north of VTF518 (Fig. 1), and is screened from 98 to 112 ft bgs in HSU 5. In June 1986, 44 ppb TCE was reported in the initial analysis. From that time through August 1991, the TCE concentration has fluctuated from the tens of ppb, up to 140 ppb. Since August 1991, TCE concentrations remained between 14 and 75 ppb until 1996. In May 1996, TCE increased from 28 to 570 ppb and was reported at 550 and 680 ppb in October 1996.
- 4. Trichlorotrifluoroethane (Freon 113) and 1,1-dichloroethylene (1,1-DCE) have been consistently reported in well W-503 for several sampling events. Well W-503 is located about 1,000 ft south of TFC (Fig. 1), and is screened from 74 to 80 ft bgs in HSU 1B. Freon 113 and 1,1-DCE were not detected in well W-503 from November 1988 until April 1993. 1,1-DCE was detected at 1.1 ppb in April 1993 and has increased to 3 ppb as of May 1996. Freon 113 was detected at 4.9 ppb in April 1995 and has increased to 11 ppb as of May 1996.
- 5. The Freon 113 concentration in well W-565 has increased. Well W-565 is located about 850 ft southeast of TFC (Fig. 1), and is screened from 75 to 82 ft bgs in HSU 1B. Freon 113 was not detected in well W-565 from April 1989 until February 1995. Freon 113 was detected at 0.99 ppb in February 1995 and has increased to 20 ppb as of October 1996.
- 6. Freon 113 has been reported in well W-607 for the last two sampling events. Well W-607 is located about 900 ft east of TFC (Fig. 1), and is screened from 49 to 55 ft bgs in HSU 1B. Freon 113 was not detected in well W-607 from February 1990 until January 1995. Freon 113 was detected at 3 ppb in January 1995 and has increased to 11 ppb as of January 1996.

References

References

- Bessette Rochette, M. (1996), Letter from the Michael Bessette Rochette, RWQCB Project Manager, to Paul Ko, DOE Project Manager, stating approval of changes to metals discharge limits and sampling frequencies, dated August 15, 1996.
- Blake, R. G., C. M. Noyes, M. P. Maley (1995), "Hydrostratigraphic Analysis-The Key to Cost-Effective Ground Water Cleanup at Lawrence Livermore National Laboratory," in *Environmental Remediation* '95, Denver, Colorado, August 13–18, 1995 (UCRL-JC-120614).
- California Regional Water Quality Control Board San Francisco Bay Region (CRWQCB-SF), 1996, October 30, Case Closure Letter from Loretta Barasmian, Executive Officer, to Mr. Paul Ko of DOE regarding Petroleum Hydrocarbon Impacted Zone at Treatment Facility F; 4 p.
- Canales, T. W. and C. W. Grant (1996), "MapIt: A New Tool to Assist in the Transition from Conceptual Model to Numeric Simulation Models" in *Spectrum '96*, Seattle, Washington, August 1996 (UCRL-JC-122298 Abs).
- Dibley, V. and R. Depue (Eds.) (1996), *Environmental Restoration Division Standard Operating Procedures (SOPs)*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-MA-109115 Rev. 2).
- Dresen, M. D., F. Hoffman, and S. Lovejoy, Jr. (1986), Subsurface Distribution of Hydrocarbons in the Building 403 Area at LLNL, Lawrence Livermore National Laboratory, Livermore, Calif. (UCID-20787).
- Dresen, M. D., J. P. Ziagos, A. J. Boegel, and E. M. Nichols (Eds.) (1993), *Remedial Action Implementation Plan for the LLNL Livermore Site*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-110532)(Page 43 revised September 2, 1993; Table 5 revised July 2, 1996).
- Gupta, S. K., C. R. Cole, C. T. Kincaid, and A. M. Monti (1987), Coupled Fluid, Energy, and Solute Transport (CFEST) Model: Formulation and User's Manual, Office of Nuclear Waste, Battelle Memorial Institute, Columbus, Ohio (Report BMI/ONWI-660).
- Happel, A. M., R. W. Bainer, L. L. Berg, M. D. Dresen, and A. L. Lamarre (Eds.) (1996), *Application for Containment Zone for the Livermore Site Hydrocarbon Impacted Zone at Treatment Facility F*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-123385).
- Hoffman, J., P. McKereghan, B. Qualheim, R. Bainer, E. Folsom, and M. Dresen (Eds.) (1996), *LLNL Ground Water Project 1995 Annual Report*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-122596).
- Keller C., and B. Lowry (1991), "A New Vadose Zone Fluid Sampling System for Uncased Holes," in Proceedings of the Fourth National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods, pp. 3–10, May 4–17,

1991, Las Vegas, Nev., presented by the Association of Ground Water Scientists and Engineers (division of the National Ground Water Association).

- Ko, P. and A. L. Lamarre (1996), Letter Report: LLNL Livermore Site July 2, 1996 Remedial Program Manager's Meeting Summary and Second Quarter Self-Monitoring Report, dated August 29, 1996.
- Ko, P., M D. Gill, B. R. Feather, and M. Bessette Rochette (1996), Consensus Statement for Environmental Restoration of Lawrence Livermore National Laboratory (LLNL) Livermore Site, dated September 19, 1996.
- Littlejohn, J. and A. L. Lamarre (1996), Letter Report: LLNL Livermore Site September 18, 1996 Remedial Program Manager's Meeting Summary and Third Quarter Self-Monitoring Report, dated November 27, 1996.
- Littlejohn, J. and A. L. Lamarre (1997), Letter Report: LLNL Livermore Site December 10, 1996 Remedial Program Manager's Meeting Summary and Fourth Quarter Self-Monitoring Report, dated February 27, 1997.
- Macdonald, J. K., M. D. Dresen, and J. P. Ziagos (Eds.) (1991), LLNL Ground Water Project Monthly Progress Report, June 1991, Lawrence Livermore National Laboratory, Livermore, Calif. (UCAR-10160-91-6).
- McConachie W. A. and M. G. Brown (1996), Letter Report: LLNL Livermore Site March 21, 1996 Remedial Program Manager's Meeting Summary and First Quarter Self-Monitoring Report, dated May 29, 1996.
- McKereghan, P. F., L. L. Berg, M. D. Dresen, R. W. Bainer, E. N. Folsom, and A. L. Lamarre (1996), *Contingency Plan for the Lawrence Livermore National Laboratory Livermore Site*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-123370).
- Newmark, R. (Ed.) (1994), Dynamic Underground Stripping Project: LLNL Gasoline Spill Demonstration Report, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-ID-116964 vols 1-4).
- Nichols, E. M., L. L. Berg, M. D. Dresen, R. J. Gelinas, R. W. Bainer, E. N. Folsom, and A. L Lamarre (Eds.) (1996), *Compliance Monitoring Plan for the Lawrence Livermore National Laboratory Livermore Site*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-120936).
- Nitao, J. (1996), *Reference Manual for the NUFT Flow and Transport Code*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-104040).
- Tompson, A. F. B., P. F. McKereghan, and E. M. Nichols (Eds.) (1995), Preliminary Simulation of Contaminant Migration in Ground Water at the Lawrence Livermore National Laboratory, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-ID-115991).
- U.S. Department of Energy (DOE) (1992), *Record of Decision for the Lawrence Livermore National Laboratory, Livermore Site*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-109105).

- Vogele, T. J., A. Kulresthra, J. J. Nitao, and K. Lee (1996a), Simulation of Soil Vapor Extraction at Building 518, Lawrence Livermore National Laboratory Livermore Site, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-124995).
- Vogele, T. J., P. F. McKereghan, R. Gelinas, and A. F. B. Tompson (1996b), Technical Note: Preliminary 3D Simulations of Contaminant Migration in and Removal from Ground Water at the LLNL's Livermore Site, Summary of First Interim Results, TFA Area, Lawrence Livermore National Laboratory, Livermore, Calif. (MI-ERD/LS/3DIR:1).

Figures

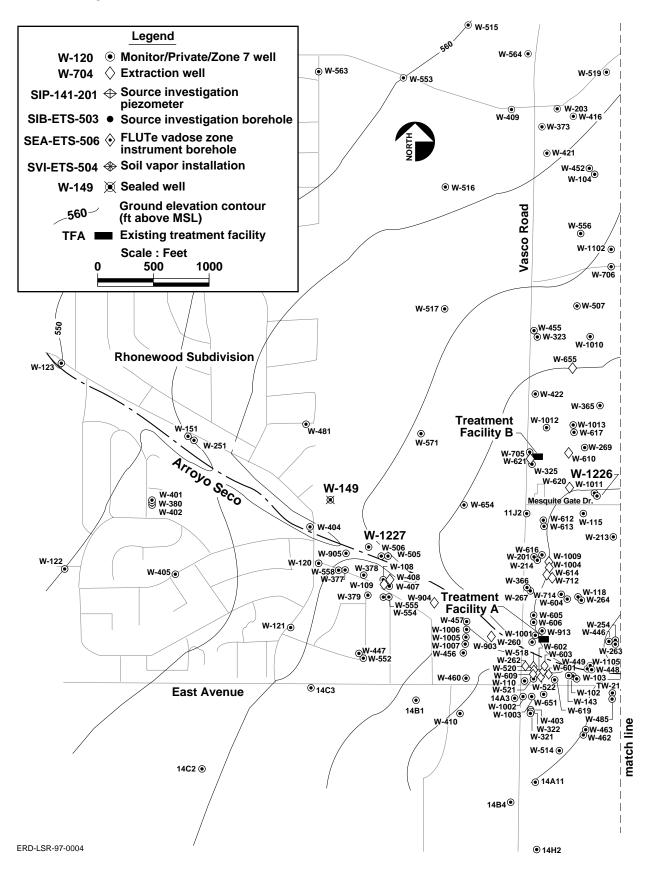


Figure 1. Locations of Livermore Site monitor wells, piezometers, extraction wells, and treatment facilities, December 1996.

1996 Annual Report

UCRL-AR-126020

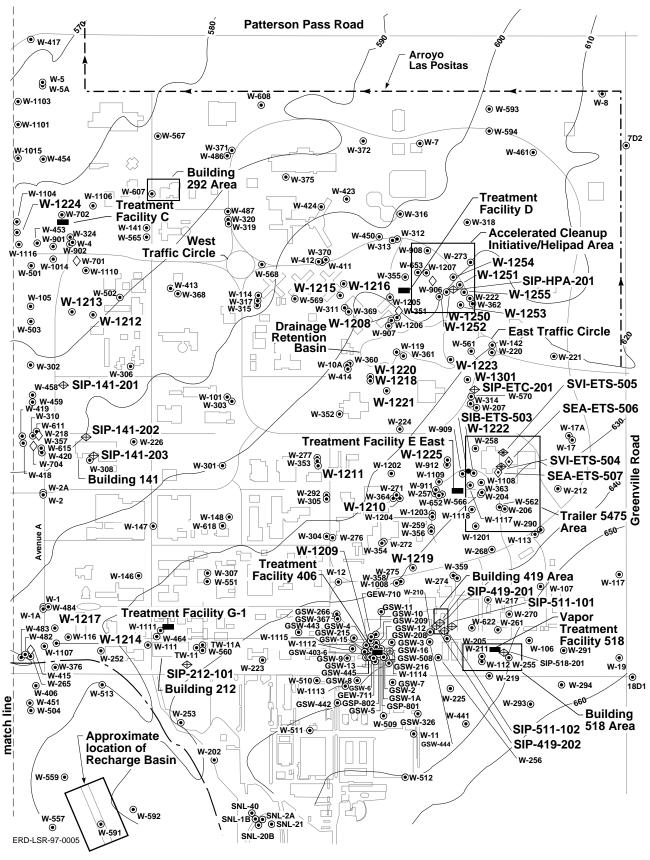
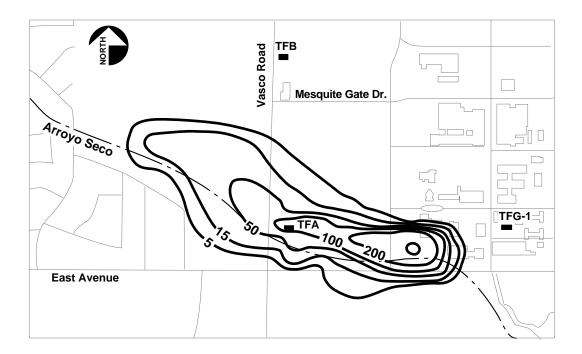
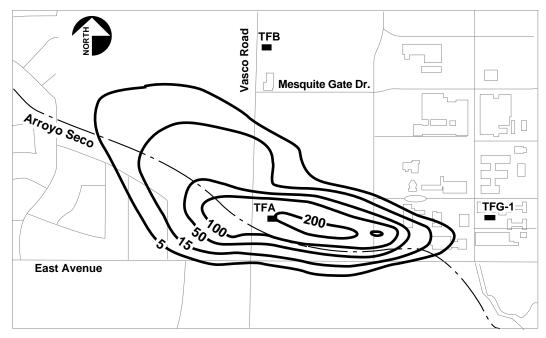




Figure 1 (continued).

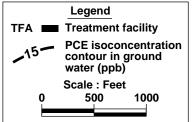
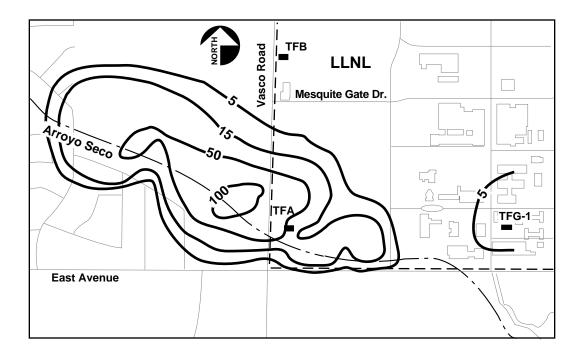
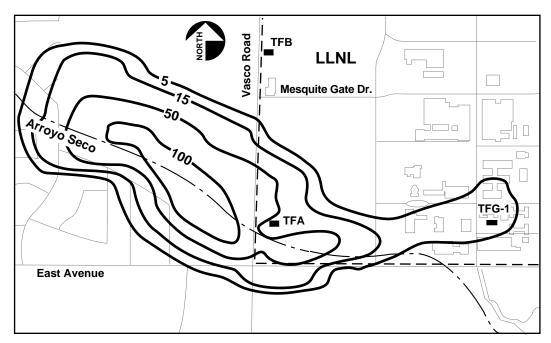




Figure 2. Comparison of measured (top) and simulated (bottom) aqueous PCE concentrations in HSU 1B for October 1995.

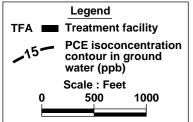


Figure 3. Comparison of measured (top) and simulated (bottom) aqueous PCE concentrations in HSU 2 for October 1995.

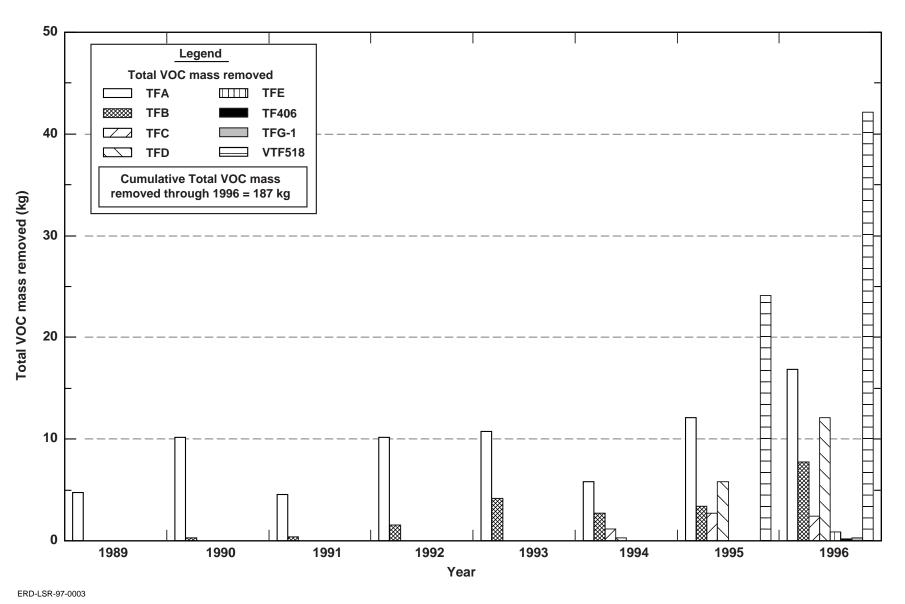


Figure 4. Total VOCs removed from the Livermore Site subsuface at treatment facilities.

1996 Annual Report

Patterson Pass Road

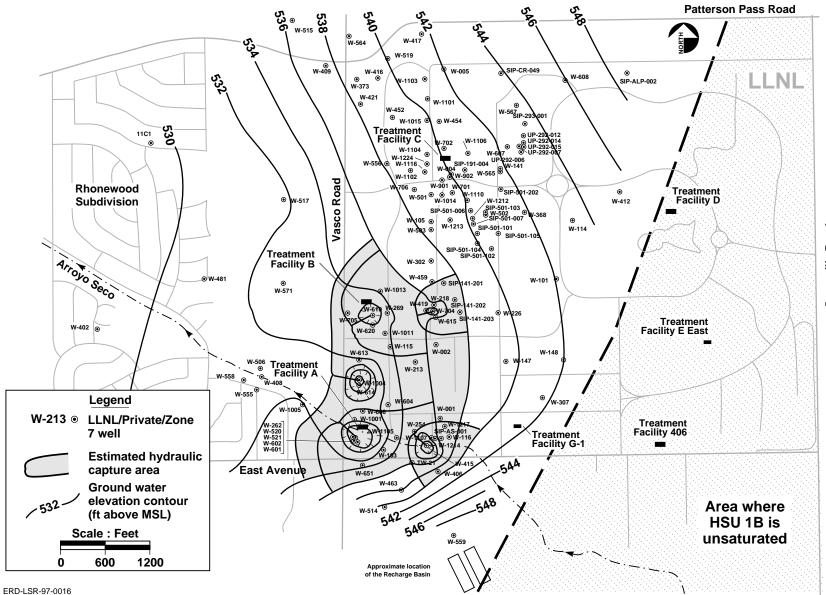


Figure 5. Ground water elevation contour map based on water levels collected from 121 of the wells completed within HSU 1B showing estimated HSU 1B hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.

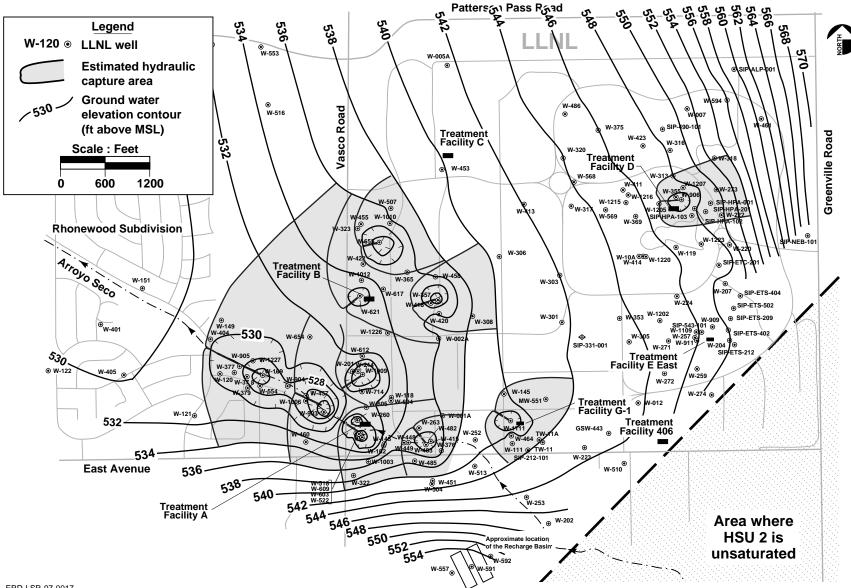


Figure 6. Ground water elevation contour map based on water levels collected from 145 of the wells completed within HSU 2 showing estimated HSU 2 hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.

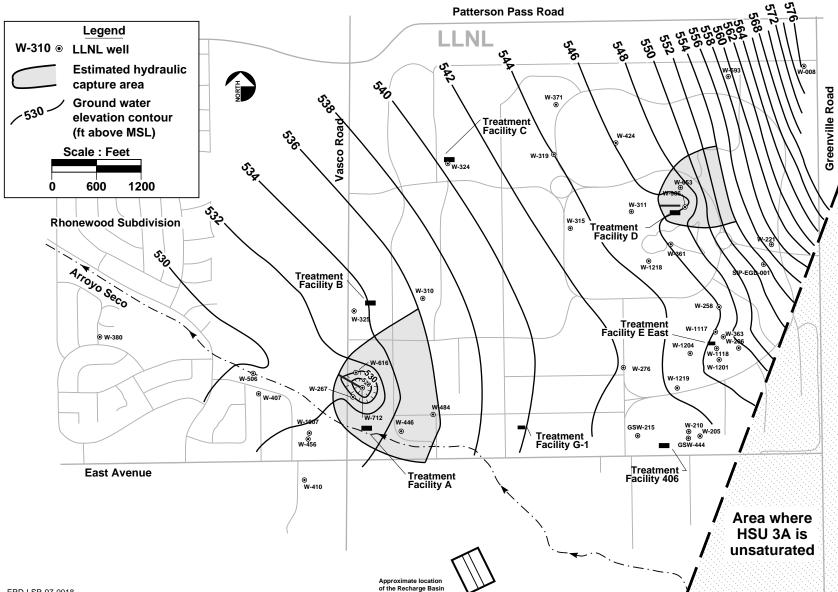


Figure 7. Ground water elevation contour map based on water levels collected from 52 of the wells completed within HSU 3A showing estimated HSU 3A hydraulic capture areas, LLNL and vicinity, fourth quarter of 1996.

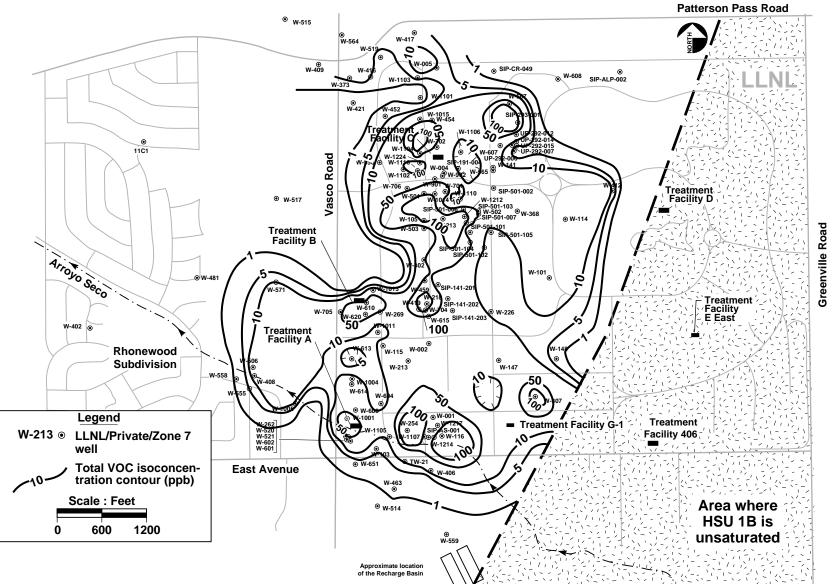
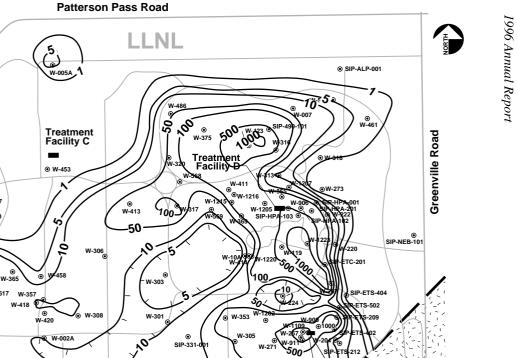
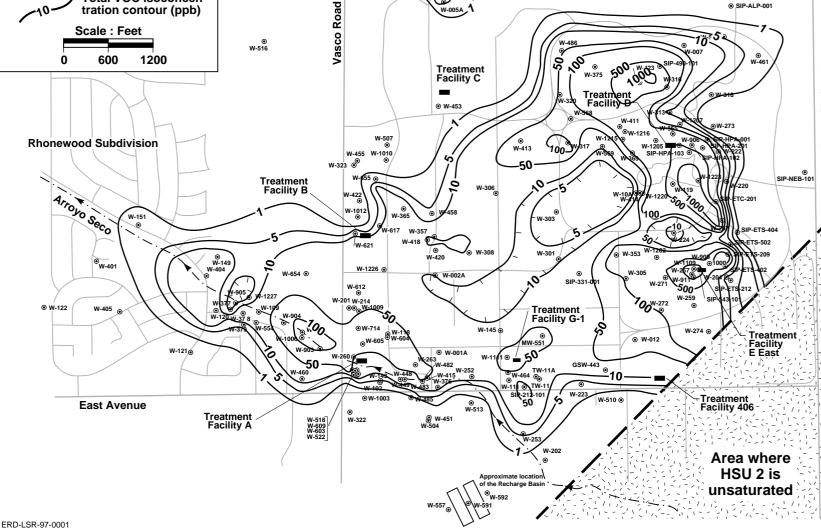




Figure 8. Isoconcentration contour map of total VOCs for 107 wells completed within HSU 1B based on samples collected in the fourth quarter of 1996 (or the next most recent data.)

Legend

Total VOC isoconcen-

tration contour (ppb)

● W-553

W-516 ⊙ LLNL

Figure 9. Isoconcentration contour map of total VOCs for 154 wells completed within HSU 2 based on samples collected in the fourth quarter of 1996 (or the next most recent data.)

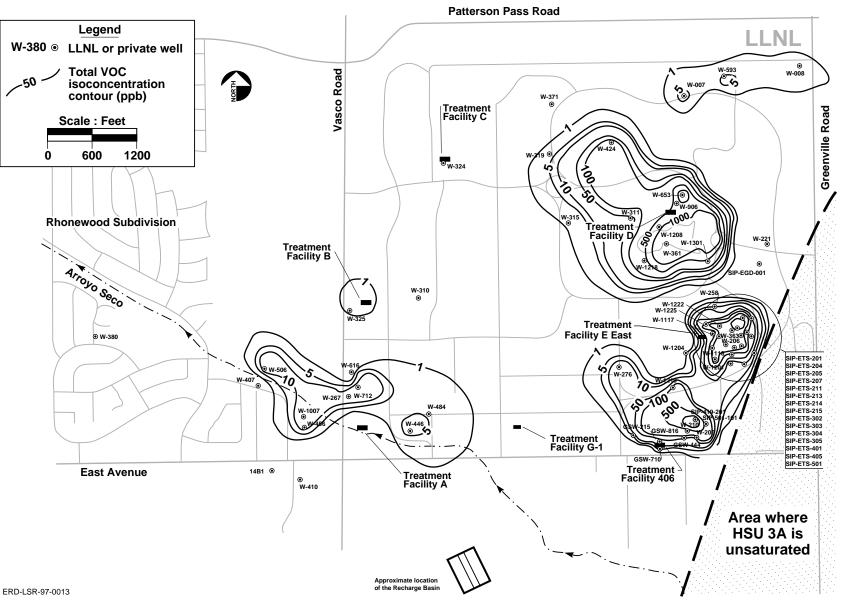
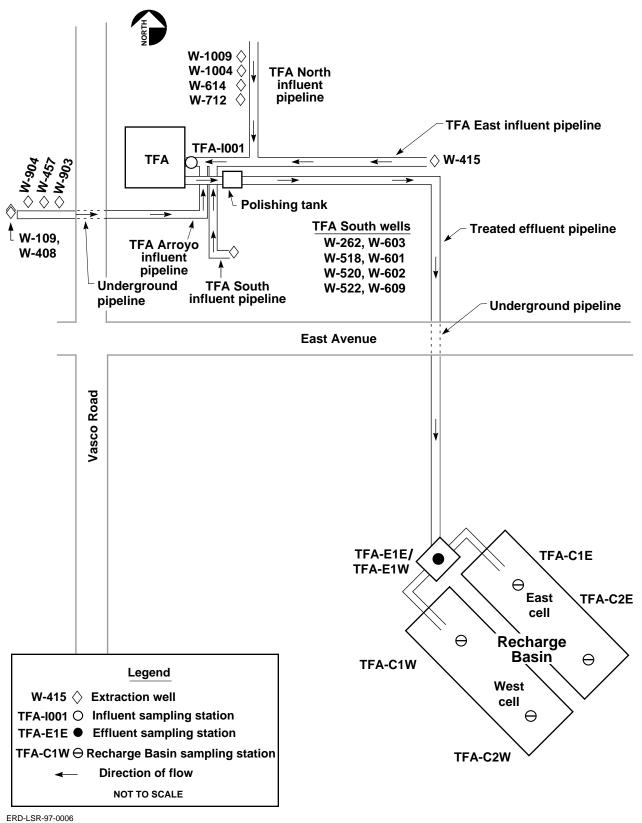
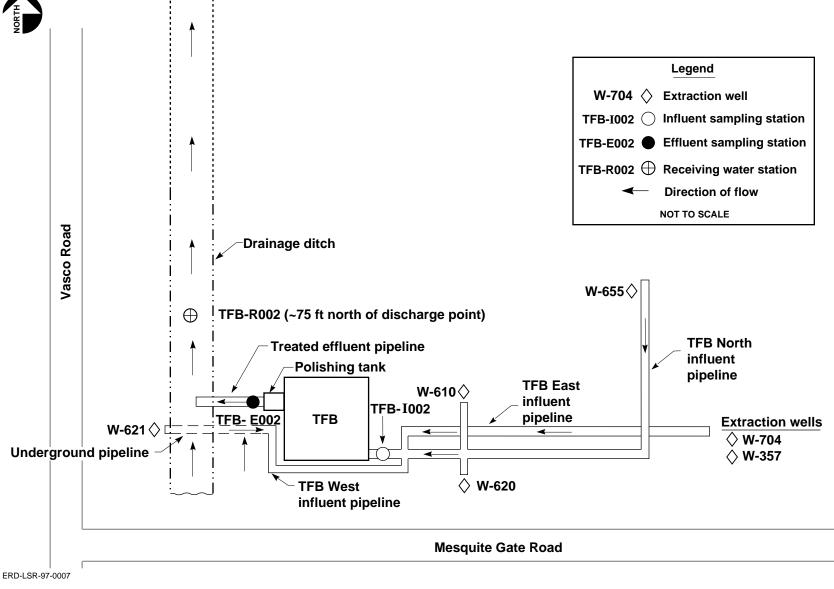
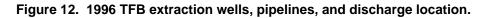
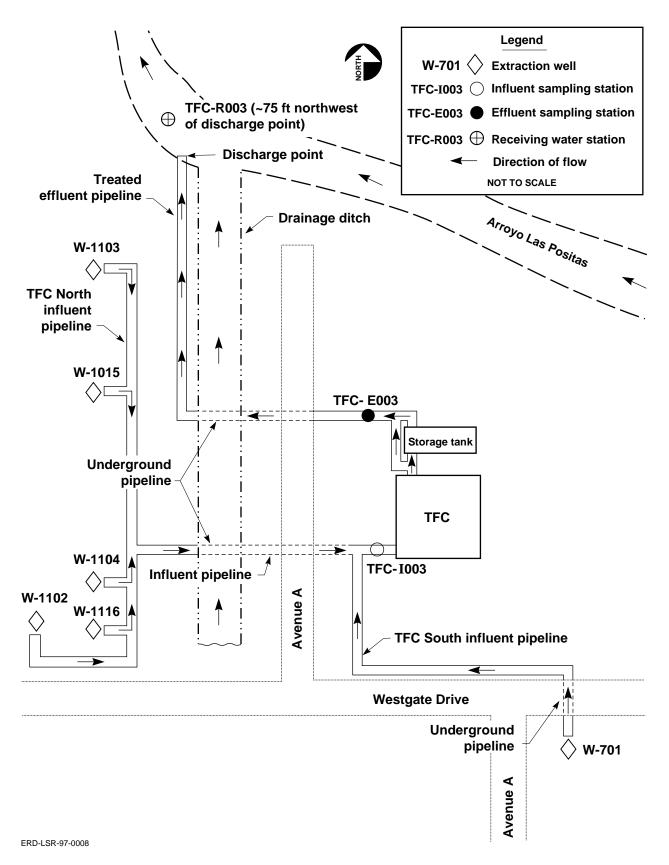
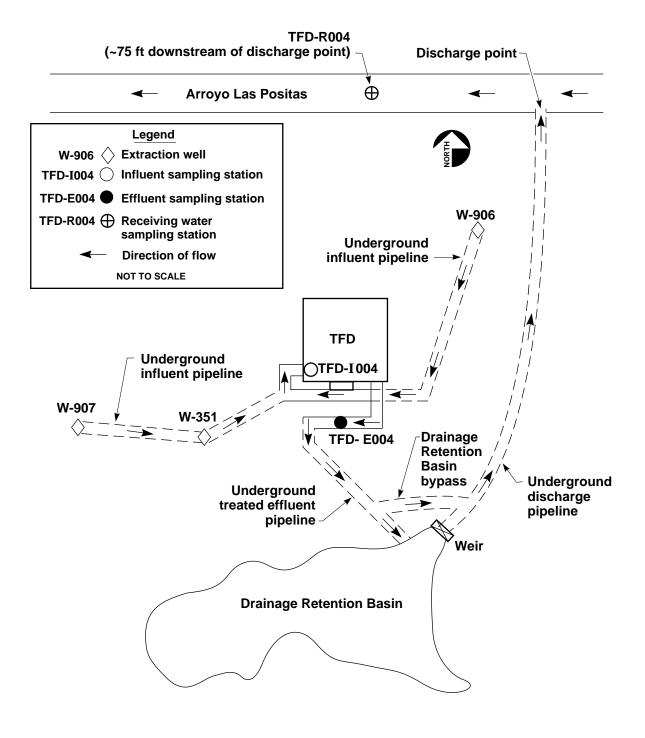
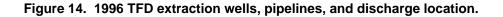


Figure 10. Isoconcentration contour map of total VOCs for 64 wells completed within HSU 3A based on samples collected in the fourth quarter of 1996 (or the next most recent data.)


Figure 11. 1996 TFA extraction wells, pipelines, and discharge location.



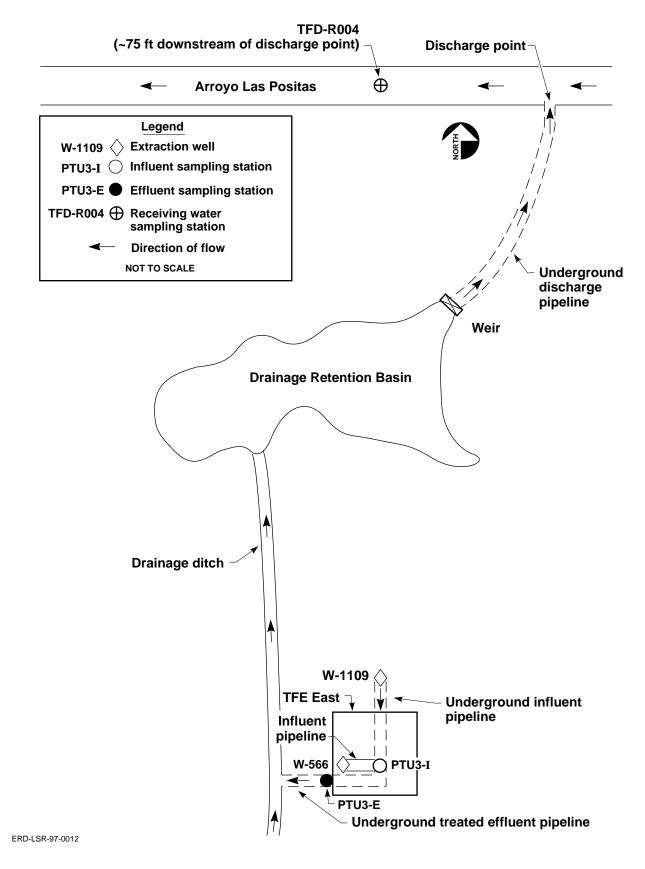


Figure 15. 1996 TFE East extraction wells, pipelines, and discharge location.

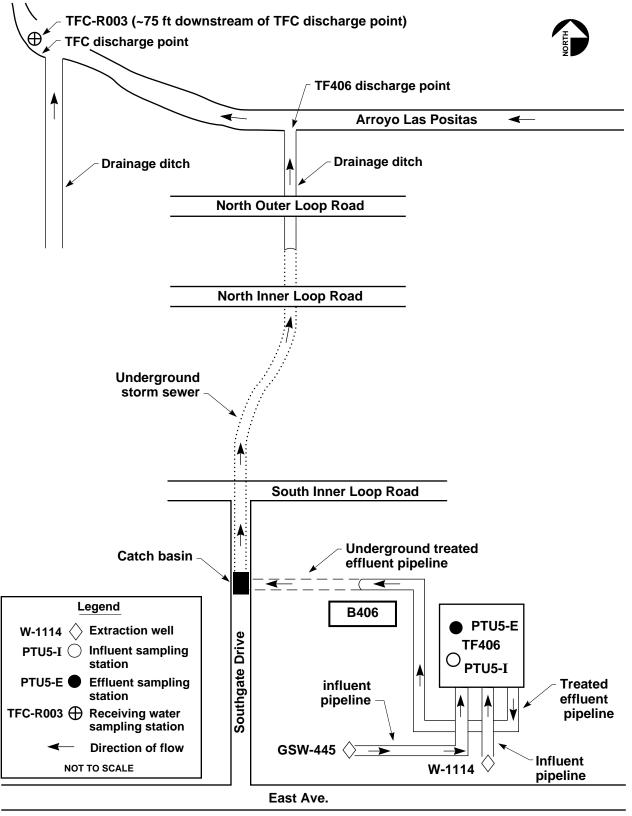


Figure 16. 1996 TF406 extraction wells, pipelines, and discharge location.

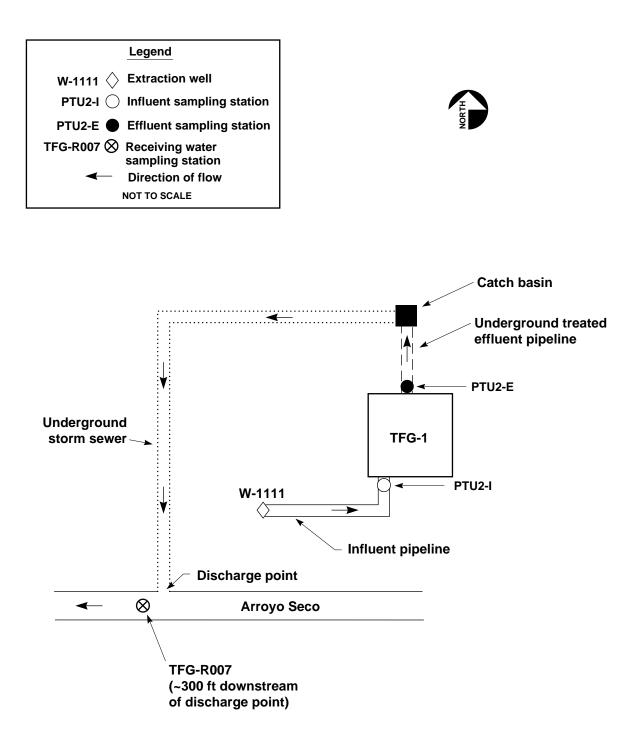


Figure 17. 1996 TFG-1 extraction well, pipelines, and discharge location.

Tables

Milestone	RAIP due date	Completion date
Issue CMP	01/29/96	01/25/96
Begin operation of TFG-1	04/18/96	04/17/96
Submit Draft CP to the regulatory agencies	07/01/96	06/20/96
Begin operation of TF406 PTU	08/30/96	08/27/96
Submit Draft Final CP to regulatory agencies	10/29/96	10/22/96
Begin operation of TFE East PTU	11/27/96	11/25/96
Issue CP	11/28/96	11/15/96

Table 1. 1996 Livermore Site RAIP milestones.

 Table 2. 1996 Livermore Site source investigation drilling.

Area	Borehole(s)	Completion(s)	Well completion type
Building 419	2	2	Piezometer
T-5475	5	4	2 FLUTe and 2 vapor extraction/injection
TF406	2	2	Piezometer
TFA	2	2	Monitor
TFB	3	3	Piezometer
TFD	1	1	Piezometer
TFD/ACI	1	1	Piezometer
TFE	2	2	Monitor
TFG	1	1	Piezometer
Total	19	18	

Treatment facility	Volume of ground water treated (Mgal)	Volume of soil vapor treated (Kft ³)	Estimated total VOC mass removed (kg)
TFA	92.1	-	16.8
TFB	14.8	-	7.7
TFC	4.4	-	2.4
TFD	10.7	-	12.1
TFE	0.5	-	0.8
TF406	0.4	-	0.2
TFG	0.9	-	0.2
VTF518	-	1,550	42.0
Total	124	1,550	82.2

Table 3. Summary of 1996 VOC remediation.

Notes:

kg = Kilograms.

 Kft^3 = Thousands of cubic feet.

Mgal = Millions of gallons.

Table 4. Summary of cumulative VOC remediation.

Treatment facility	Volume of ground water treated (Mgal)	Volume of soil vapor treated (Kft ³)	Estimated total VOC mass removed (kg)
TFA	261.9	-	75.0
TFB	48.4	-	20.1
TFC	12.9	-	6.2
TFD	12.8	-	18.1
TFE	0.5	-	0.8
TF406	0.4	_	0.2
TFG	0.9	-	0.2
VTF518	_	1,870	66.0
Total	338	1,870	187

Notes:

kg = Kilograms.

Kft³ = Thousands of cubic feet.

Mgal = Millions of gallons.

Appendix A

Well Construction and Closure Data

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
Monitor Wells	s					
W-1	21-Oct-80	122.5	116.0	95-100	2	NA
W-1A	12-Apr-84	180.0	156.0	145-156	2	NA
W-2	29-Aug-80	102.5	101.0	86-101	1 B	NA
W-2A	02-Apr-84	185.0	164.0	150-164	2	NA
W-4	28-Jul-80	92.0	90.0	75-90	1 B	NA
W-5	24-Oct-80	93.5	90.0	56-71 81-86	1 B	NA
W-5A	09-Apr-84	115.0	105.0	95-105	2	NA
W-7	03-Oct-80	110.5	100.5	76-81 88-98	2/3A	NA
W-8	14-May-81	110.0	105.0	72-77 92-102	3A/3B	NA
W-10A	08-Sep-80	110.7	110.0	85-95 100-105	2	NA
W-11	03-Jun-81	252.0	191.0	136-141 177-187	5	NA
W-12	14-Aug-80	115.75	115.0	99-114	2	NA
W-17	08-Oct-80	114.0	114.0	94-109	5	NA
W-17A	20-May-81	181.4	160.0	127-132 147-157	7	NA
W-19	19-Sep-80	164.75	161.0	147-157	7	NA
W-101	25-Jan-85	77.0	72.0	62-72	1 B	1
W-102	12-Feb-85	396.5	171.5	151.5-171.5	2	40
W-103	14-Feb-85	96.0	89.5	79.5-89.5	1 B	5
W-104	21-Feb-85	61.5	56.5	38.75-56.5	1 B	2.5
W-105	26-Feb-85	69.0	62.0	42-62	1 B	0.7
W-106	06-Mar-85	144.0	134.5	127.5-134.5	5	0.1-0.2
W-107	13-Mar-85	128.0	122.0	115-122	5	1-3
W-108	21-Mar-85	113.5	69.0	57-69	1A	10
W-110	26-Apr-85	371.0	365.0	340-365	5	6
W-111	02-May-85	122.0	117.0	97-117	2	1.5

Table A-1. Well construction data, Lawrence Livermore National Laboratory and vicinity, Livermore, California.

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-112	10-May-85	129.0	123.5	111-123.5	5	4
W-113	16-May-85	124.0	115.0	100-115	5	0.9
W-114	23-May-85	70.5	63.0	51-63	1 B	0.5
W-115	03-Jun-85	106.0	95.0	88-95	1 B	1.1
W-116	14-Jun-85	181.0	91.0	86-91	1 B	0.3
W-117	27-Jun-85	202.0	148.0	138-148	7	0.2
W-118	19-Jul-85	206.5	110.0	99-110	2	8
W-119	02-Aug-85	139.0	102.5	87.5-102.5	2	3.3
W-120	19-Aug-85	195.0	153.0	147-153	2	1
W-121	23-Aug-85	194.0	171.0	159-171	2	3.75
W-122	17-Aug-85	189.0	132.0	125-132	2	15
W-123	01-Oct-85	174.0	47.7	37.3-47.7	1A	5
W-141	23-Mar-85	61.5	60.0	45-60	1 B	0.8
W-142	29-Mar-85	74.2	72.0	62-72	2	0.8
W-143	12-Apr-85	130.0	126.0	121-126	2	0.8
W-146	16-Jul-85	225.0	125.0	115-125	2	5
W-147	26-Jul-85	137.0	87.0	77-87	1 B	0.5
W-148	08-Aug-85	152.0	98.0	83-98	1 B	0.5
W-151	30-Sep-85	237.0	157.5	148.5-157.5	2	1.5
W-201	17-Oct-85	211.0	161.0	151-161	2	14
W-202	07-Nov-85	191.0	109.0	99-109	2	0.5
W-203	15-Nov-85	87.0	41.0	31-41	1 A	3
W-204	22-Nov-85	110.0	110.0	100-110	2	5+
W-205	09-Dec-85	180.0	117.0	107-117	3 B	<0.1
W-206	19-Dec-85	188.0	118.0	106-118	3 A	<0.5
W-207	24-Jan-86	150.0	85.0	69-85	2	<0.5
W-210	11-Mar-86	176.0	113.0	108-113	3 B	<0.5
W-211	19-Mar-86	215.5	193.0	183-193	6	1
W-212	28-Mar-86	183.0	136.0	124-136	5	1
W-213	04-Apr-86	174.0	100.0	94-100	1 B	2
W-214	11-Apr-86	146.0	141.5	134-141.5	2	20+
W-217	20-May-86	200.0	112.5	98.5-112.5	5	<0.5
W-218	30-May-86	201.0	71.0	64.5-71	1 B	6
W-219	13-Jun-86	214.0	148.0	141-148	5	2

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-220	25-Jun-86	196.0	92.5	82.5-92.5	2	<0.5
W-221	07-Jul-86	178.0	95.0	82-95	3A	2
W-222	17-Jul-86	197.0	83.0	63-83	2	5
W-223	15-Aug-86	202.0	153.0	146-153	2	5.2
W-224	26-Aug-86	199.0	88.0	78-88	2	3
W-225	09-Sep-86	238.0	166.0	152-166	5	2.5
W-226	25-Sep-86	173.0	86.0	71-86	1 B	<0.25
W-251	03-Oct-85	50.0	47.5	35.5-47.5	1 A	2
W-252	18-Oct-85	197.0	126.0	108-126	2	3
W-253	30-Oct-85	180.0	128.0	112.5-128	2	1
W-254	21-Nov-85	277.0	91.5	84.5-91.5	1 B	5
W-255	05-Dec-85	187.0	124.0	115-124	5	1
W-256	19-Dec-85	187.0	137.0	132-137	4	<0.5
W-257	15-Jan-86	197.0	96.5	82.5-96.5	2	<0.5
W-258	31-Jan-86	157.0	121.5	116.5-121.5	3 A	0.5
W-259	07-Feb-86	200.0	99.0	93.5-99	2	<0.5
W-260	27-Feb-86	215.0	151.0	141-151	2	3.5
W-261	12-Mar-86	225.0	118.5	109-118.5	5	<0.5
W-263	07-Apr-86	146.0	130.0	123-130	2	2
W-264	14-Apr-86	170.0	151.0	141-151	2	20+
W-265	25-Apr-86	216.0	211.0	205-211	3 B	3
W-267	27-May-86	196.0	179.0	172.5-179	3 A	1
W-268	04-Jun-86	213.0	150.5	138-150.5	5	1
W-269	16-Jun-86	185.0	92.0	79-92	1 B	2
W-270	26-Jun-86	185.0	127.0	113-127	5	<0.5
W-271	07-Jul-86	201.0	112.0	105-112	2	2.1
W-272	18-Jul-86	226.0	110.0	95-110	2	1
W-273	11-Aug-86	203.0	84.0	64-84	2	3
W-274	21-Aug-86	217.0	95.0	90-95	2	<0.5
W-275	05-Sep-86	262.0	184.0	179-184	5	4
W-276	17-Sep-86	267.0	170.0	153.5-169.5	3 B	12
W-277	03-Oct-86	254.0	169.0	163-169	3 B	1.1
W-290	08-Jul-86	181.0	126.0	119.5-126	5	<0.5
W-291	24-Jul-86	194.0	137.0	127-137	5	<0.5

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-293	27-Aug-86	229.0	155.0	145-155	5	<1
W-294	15-Sep-86	251.0	139.0	122-139	5	1
W-301	07-Oct-86	203.0	141.0	136-141	2	5.5
W-302	22-Oct-86	191.0	83.5	78-83.5	1 B	2
W-303	28-Oct-86	197.0	128.0	124-128	2	15
W-304	12-Nov-86	207.0	200.0	195-200	4	1
W-305	18-Nov-86	146.0	138.0	128-138	2	20
W-306	04-Dec-86	207.0	110.0	98-110	2	8.5
W-307	15-Dec-86	214.0	102.0	93-102	1 B	1
W-308	13-Jan-87	194.0	113.0	107-113	2	2
W-309	20-Jan-87	73.0	NA	NA	NA	NA
W-310	04-Feb-87	202.0	184.5	176.5-184.5	3 A	10
W-311	20-Feb-87	226.5	147.5	134.5-147.5	3A	5
W-312	05-Mar-87	224.5	168.0	160-168	4	25
W-313	12-Mar-87	99.0	85.0	80-85	2	5.5
W-314	20-Mar-87	228.0	142.0	129-142	4	9.5
W-315	03-Apr-87	215.0	156.0	141-156	3 A	15
W-316	15-Apr-87	196.0	71.0	66-72	2	3
W-317	20-Apr-87	100.0	95.0	88-95	2	7
W-318	28-Apr-87	200.0	81.0	74-81	2	0.5
W-319	05-May-87	198.0	125.0	119-125	3 A	25
W-320	11-May-87	106.0	99.0	94-99	2	3
W-321	29-May-87	356.0	321.5	305-321.5	5	60
W-322	01-Jul-87	565.5	152.0	142-152	2	4
W-323	04-Aug-87	200.0	127.0	122-127	2	7
W-324	17-Aug-87	219.0	189.0	184-189	3 A	15
W-325	28-Aug-87	312.0	170.0	158-170	3 A	4
W-352	29-Oct-86	235.0	201.0	181-201	4	12.5
W-353	12-Nov-86	205.0	101.0	95.5-101	2	1
W-354	24-Nov-86	185.0	179.0	163-179	4	8
W-355	05-Dec-86	202.0	107.0	102-107	2	2
W-356	18-Dec-86	237.0	137.0	133-137	3B	6
W-359	10-Feb-87	195.0	150.5	138-150.5	5	10
W-360	24-Feb-87	260.0	204.5	181.5-204.5	4	30

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-361	05-Mar-87	257.0	135.0	125-135	3A	4
W-362	13-Mar-87	151.0	145.0	131-145	4	12
W-363	24-Mar-87	195.0	129.0	117-129	3 A	<0.5
W-364	31-Mar-87	195.0	165.0	155-165	3 B ,4	5
W-365	09-Apr-87	187.0	125.0	120-125	2	8.5
W-366	20-Apr-87	273.0	251.0	240-251	4	13
W-368	06-May-87	206.0	78.0	70-78	1 B	3
W-369	14-May-87	204.0	113.0	107-113	2	2
W-370	29-May-87	286.0	208.0	196.5-208	4	5
W-371	12-Jun-87	233.0	162.0	155-162	3 A	1.5
W-372	25-Jun-87	218.0	152.5	147.5-152.5	4	1
W-373	06-Jul-87	178.0	99.0	89-99	1 B	7
W-375	29-Jul-87	223.0	71.0	65-71	2	0.75
W-376	27-Aug-87	249.0	172.0	162-172	2	2
W-377	04-Sep-87	159.0	144.0	141.5-144	2	2.5
W-378	09-Sep-87	155.0	150.0	146-150	2	5
W-379	14-Sep-87	155.0	150.0	146-150	2	5
W-380	01-Oct-87	195.0	182.0	170-182	3A	10
W-401	05-Nov-87	159.0	153.0	109-153	2	25
W-402	13-Oct-87	104.0	102.0	92-102	1 B	40
W-403	16-Nov-87	585.0	495.0	485-495	7	3
W-404	04-Dec-87	245.0	158.0	150-158	2	33
W-405	04-Jan-88	244.0	162.0	132-162	2	50
W-406	20-Jan-88	213.0	94.0	79-84	1 B	2
W-407	04-Feb-88	215.0	205.0	192-205	3 A	4
W-409	07-Mar-88	272.0	78.0	71-78	1 B	30
W-410	30-Mar-88	369.0	205.0	193-205	3A	35
W-411	12-Apr-88	192.0	138.0	131-138	2	8
W-412	18-Apr-88	104.0	74.0	67-74	1 B	2.5
W-413	28-Apr-88	163.0	115.0	100-115	2	25
W-414	20-May-88	179.0	74.0	69.5-74	2	0.5
W-416	10-Jun-88	152.0	80.5	72-80.5	1 B	30
W-417	20-Jun-88	152.0	60.0	51-60	1 B	5
W-418	24-Jun-88	124.0	118.0	108-118	2	2.5

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-419	29-Jun-88	82.0	75.5	62.5-75.5	1 B	3
W-420	26-Jul-88	127.0	111.0	105-111	2	5
W-421	23-Aug-88	181.0	90.0	75-90	1 B	4.5
W-422	02-Sep-88	203.0	139.5	133-139.5	2	5
W-423	09-Sep-88	308.0	118.0	106-118	2	14
W-424	04-Oct-88	208.0	144.0	137-144	3A	3
W-441	14-Oct-87	250.0	144.0	135-144	5	2.5
W-446	18-Dec-87	202.0	196.0	186-196	3A	3
W-447	05-Feb-88	353.0	274.0	256-274	4	5
W-448	17-Feb-88	235.0	127.5	120.5-127.5	2	15
W-449	07-Mar-88	172.0	165.0	152-165	2	3
W-450	21-Mar-88	300.0	200.0	193-200	5	2
W-451	06-Apr-88	202.0	112.0	106-112	2	1.5
W-452	15-Apr-88	210.0	79.5	64-79.5	1 B	5
W-453	27-Apr-88	185.0	130.3	121-130	2	4
W-454	09-May-88	196.0	83.5	73-83.5	1 B	3
W-455	19-May-88	184.0	162.5	148-162.5	2	5
W-456	09-Jun-88	343.0	180.5	172-180.5	3A	2
W-458	30-Jun-88	212.5	116.0	108-116	2	2
W-459	20-Jul-88	76.0	73.0	59.5-73	1 B	1.5
W-460	22-Jul-88	361.0	140.5	135-140.5	2	30
W-461	16-Aug-88	133.0	51.5	41.5-51.5	2	<0.5
W-462	12-Sep-88	385.0	336.5	331-336.5	5	5
W-463	16-Sep-88	93.0	92.5	87-92.5	1 B	5
W-464	30-Sep-88	253.0	104.5	96-104.5	2	3.5
W-481	04-Nov-88	224.5	105.0	100-105	1 B	2
W-482	15-Jan-88	218.0	170.0	165-170	2	<0.5
W-483	26-Jan-88	140.0	130.0	115-130	2	2.5
W-484	11-Feb-88	255.0	188.0	185-188	3A	0.5
W-485	25-Feb-88	249.0	157.0	151-157	2	2
W-486	11-Mar-88	167.0	108.0	100-108	2	2
W-487	17-Mar-88	180.0	151.0	148-151	3 B	1
W-501	13-Oct-88	174.0	92.0	84-92	1 B	6.5
W-502	25-Oct-88	158.0	59.0	55-59	1 B	<0.5

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-503	02-Nov-88	187.0	80.0	74-80	1 B	1
W-504	21-Nov-88	358.0	167.0	157-167	2	3
W-505	15-Dec-88	278.0	180.0	167-180	3A	60
W-506	22-Dec-88	120.0	115.0	101-115	1 B	30
W-507	18-Jan-89	158.0	139.0	129-139	2	50
W-508	17-Feb-89	316.0	305.0	287-305	7	60
W-509	03-Mar-89	305.0	184.0	179-184	5	1
W-510	15-Mar-89	300.0	119.0	111-119	2	<0.5
W-511	31-Mar-89	316.0	176.0	167-176	3 B	1
W-512	13-Apr-89	261.0	176.0	166-176	5	2.5
W-513	26-Apr-89	259.0	115.0	102-115	2	1
W-514	17-May-89	386.0	115.5	92-115.5	1 B	2
W-515	30-May-89	211.0	78.0	68-78	1 B	3.5
W-516	09-Jun-89	203.0	119.0	114-119	2	15
W-517	20-Jun-89	215.0	88.0	80-88	1 B	6.7
W-519	14-Aug-89	186.5	80.5	60-80.5	1 B	25
W-521	13-Sep-89	166.0	95.0	86-95	1 B	1
W-551	18-Oct-88	308.0	155.5	151-155.5	2	20
W-552	25-Oct-88	70.5	64.0	48.5-64	1 A	3
W-553	03-Nov-88	186.0	106.5	99-106.5	2	1
W-554	22-Nov-88	239.0	141.5	126.5-141.4	2	60
W-555	05-Dec-88	122.0	116.5	102.5-116.5	1 B	20
W-556	15-Dec-88	192.0	81.5	76-81.5	1 B	6
W-557	22-Dec-88	122.5	118.0	102-118	2	2
W-558	17-Jan-89	117.0	110.5	101-110.5	1 B	20
W-559	24-Jan-89	105.0	100.0	93-100	2	0.75
W-560	07-Feb-89	263.0	206.5	201-206.5	3 B	10
W-561	23-Feb-89	180.0	152.0	143-152	5	4
W-562	08-Mar-89	263.0	158.0	145-158	5	2
W-563	17-Mar-89	192.0	105.0	95-105	2	2
W-564	30-Mar-89	184.0	85.0	79.5-85	1 B	3
W-565	06-Apr-89	177.0	82.5	75-82.5	1 B	15
W-567	27-Apr-89	194.0	61.5	51-61	1 B	10
W-568	05-Jun-89	156.0	101.0	97-101	2	30
W-569	16-May-89	215.0	109.5	101-109.5	2	4

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-570	09-Jun-89	180.0	175.0	161-175	5	1
W-571	15-Jun-89	223.5	207.5	102-107	1 B	22
W-591	29-Nov-88	112.0	107.5	97-107.5	2	<0.5
W-592	12-Dec-88	136.5	113.0	101-113	2	1.5
W-593	06-Feb-89	159.0	92.5	82-92.5	3A	1.5
W-594	27-Feb-89	156.0	61.0	55-61	2	0.5
W-604	27-Nov-89	111.0	83.0	76-82	1 B	0.5
W-605	08-Dec-89	246.0	136.0	130-136	2	10
W-606	21-Dec-89	145.0	89.0	73-89	1 B	2
W-607	24-Jan-90	186.0	55.0	49-55	1 B	3
W-608	07-Feb-90	162.0	66.0	55-66	1 B	3
W-611	04-Apr-90	161.0	98.0	87.5-98	1 B	2
W-612	19-Apr-90	222.0	136.0	126-136	2	10
W-613	02-May-90	93.0	88.0	81.5-88	1 B	7
W-615	01-Jun-90	121.0	99.0	91-99	1 B	3
W-616	14-Jun-90	255.0	188.0	178-188	3 A	8
W-617	26-Jun-90	200.0	110.0	103-110	2	6
W-618	17-Jul-90	357.0	205.0	201-205	3 B	10
W-619	07-Aug-90	330.0	252.0	232-252	3 B /4	30
W-622	28-Sep-90	206.0	112.0	104-112	5	<0.5
W-651	22-Feb-90	155.0	89.0	82-89	1 B	0.5
W-652	15-Mar-90	318.0	256.0	245-256	7	2
W-653	29-Mar-90	225.0	128.0	122-128	3 A	0.5
W-654	11-Apr-90	240.0	158.0	140-158	2	20
W-702	24-Oct-90	180.5	95.0	77-95	1 B	10
W-703	03-Dec-90	586.0	325.0	298-325	5	10
W-705	26-Dec-90	126.00	90.0	77-90	1 B	2
W-706	16-Jan-91	178.0	84.0	71-84	1 B	2
W-714	02-Jul-91	135.0	128.0	107-128	2	7.5
W-901	24-Feb-93	97.8	88.0	79-83	1B	1
W-902	22-Jan-93	95.5	88.0	80-83	1 B	1
W-905	07-Apr-93	221.0	144.5	134-144	2	4

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-908	18-Aug-93	239.0	197.0	180-197	5/6	<0.5
W-909	04-Nov-93	252.0	113.5	80.5-108.5	2/3A	2
W-911	20-Dec-93	180	113.5	73.5-108.5	2	3
W-912	07-Oct-93	239	174	168-174	5	3
W-913	08-Dec-93	454	255	235-255	4	25
W-1001	20-Dec-93	105	92	85-92	1 B	1.4
W-1002	31-Jan-94	292.5	260	246-260	5	16
W-1003	08-Feb-94	184.0	147	140-147	2	1.5
W-1005	14-Mar-94	192.0	110.0	98-110	1 B	20
W-1006	10-Mar-94	154.0	149.0	141-149	2	15
W-1007	31-Mar-94	199.5	182.0	172-182	3 A	2
W-1008	13-Apr-94	246	238	229.5-238	7	10
W-1010	24-May-94	463	142	128-142	2	20
W-1011	06-Jun-94	106	89	75-89	1 B	3
W-1012	20-Jun-94	161	117	96-112	2	5
W-1013	29-Jun-94	147	73	65-73	1 B	1.4
W-1014	12-Jul-94	99	89	65-89	1 B	30
W-1101	10-Nov-94	200.0	79.0	76.0-79.0	1 B	0.5
W-1105	17-Jan-95	110	93	78-93	1 B	3.5-4
W-1106	08-Feb-95	245	86	76-85	1 B	15
W-1107	06-Mar-95	199.5	93	74-88	1 B	<0.5
W-1108	27-Mar-95	250	156	142-156	5	12
W-1110	04-May-95	252	92.2	68-92	1 B	7
W-1112	28-Jun-95	263	210	201-210	5	3
W-1113	18-Jul-95	260	214	204-214	5	2.5
W-1115	12-Oct-95	126.5	118.2	108-118	3 A	1
W-1117	11-Sep-95	154	132.3	122-132	3A	1
W-1118	27-Sep-95	225	125	115-125	3 A	3.5
W-1201	18-Oct-95	225	133	125-133	3 A	1
W-1202	26-Oct-95	99.3	99	83-99	2	5+
W-1203	07-Nov-95	224	206.2	196-206	5	18+
W-1204	20 Nov-95	225	126.2	118-126	3A	2.5

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-1205	27-Nov-95	91	82	72-82	2	<0.5
W-1206	06-Dec-95	220	191	174-186	4	40+
W-1207	13-Dec-95	92	90	70-90	2	<0.5
W-1208	09-Jan-96	166	163	135-163	3A/3B	40
W-1209	26-Jan-96	210	164	148-164	4	3
W-1210	12-Feb-96	250	223	213-223	5	3
W-1211	05-Mar-96	273	205	185-200	4	25+
W-1212	19-Mar-96	150	75	52-75	1 B	3
W-1213	02-Apr-96	129	76	64-76	1 B	5+
W-1214	22-Apr96	180	100	80-100	1 B	2
W-1215	17-Apr-96	175	120	103-120.5	2	8.5
W-1216	07-May96	200	124	94-124	2	14
W-1217	15-May96	182	98.5	78-98	1 B	<0.5
W-1218	29-May-96	240	145.5	127-145	3A	6.7
W-1219	04-Jun-96	201	142	138-142	3 A	<0.5
W-1220	12-Jun-96	120	117	90-112	2	18
W-1221	01-Jul-96	220	172	162-172	4	4
W-1222	26-Jun-96	175	125.5	115-125	3 A	6
W-1223	23-Jul-96	175	102	87-97	2	4
W-1224	05-Sep-96	125	104.5	99-104	1 B	4.3
W-1225	14-Aug-96	150	121.2	113-121	3A	2
W-1226	06-Aug-96	155	126.5	116-126	2	1
W-1227	09-Oct-96	200	134	126-134	2	11
W-1250	07-Jun-96	210	200	130-135	4	0.85
W-1251	03-Jul-96	210	200	134-139	4	1.3
W-1252	25-Jul-96	208	202.3	135-140	4	<0.5
W-1253	15-Aug-96	206	200.1	127-132	4	<0.5
W-1254	15-Aug-96	125	200	131-141	4	26
W-1255	27-Aug-96	208	200.7	124-129	4	<0.5
W-1301	04-Dec-96	180	120.3	112-120	3A	15
TW-11	09-Jun-81	112.5	107.0	97-107	2	NA
TW-11A	16-Mar-84	163.0	160.0	133-160	2	NA
TW-21	12-Jun-81	111.5	95.0	85-95	1 B	NA

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
GEW-710	02-Aug-91	159.0	158.0	94-137	3A,3B	25
GSW-1A	12-Jun-86	208.0	133.0	115-133	3 B	12
GSW-2	14-Feb-85	113.0	107.0	87-107	3 A	NA
GSW-3	07-Feb-85	115.0	105.0	85-105	3 A	NA
GSW-4	22-Feb-85	112.0	106.0	86-106	3 A	NA
GSW-5	19-Mar-85	110.0	104.0	94-104	3 A	NA
GSW-6	28-Feb-86	212.0	137.0	121-137	3B	6
GSW-7	14-Mar-86	176.5	123.4	110.8-123.4	3B	2
GSW-8	01-Apr-86	176.0	133.0	127.5-133	3 B	2
GSW-9	14-Apr-86	197.5	152.5	147-152.5	3 B	1
GSW-10	29-Apr-86	205.5	127.5	114-127.5	3 B	8
GSW- 11	07-May-86	182.5	126.0	116-126	3 B	2
GSW-12	27-May-86	205.0	191.0	186.5-191	5	1
GSW-13	27-Jun-86	198.0	134.5	125-134.5	3 B	1
GSW-15	14-Aug-87	148.0	145.0	20.5-28	1 B	3.5
				38-44	1 B	
				50-56	2	
				60-64	2	
				68-73	2	
				77-83	2	
				95-105	3A	
				120-130	3 B	
GSW-16	19-Oct-87	146.0	145.0	23-28	1 B	20.5-30
				38-43	1 B	
				50-55	2	
				61-66	2	
				78-83	2	
				95-105	3A	
				120-130	3 B	
GSW-208	06-Feb-86	211.0	123.0	108-118	3 B	<2
GSW-209	27-Feb-86	204.0	135.2	112.8-132.8	3 B	2
GSW-215	22-Apr-86	213.5	133.5	127-133.5	3A	2

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well developmen flow rate (gpm) ^b
GSW-216	09-May-86	193.0	120.5	110.5-120.5	3B	3
GSW-266	08-May-86	220.0	166.0	159-166	3 B	1
GSW-326	02-Oct-87	230.0	134.0	129-134	4	0.5
GSW-367	29-Apr-87	159.0	124.0	114-124	2	2
GSW-403-6	11-May-84	138.0	113.6	90-110	3A	NA
GSW-442	27-Oct-87	270.0	145.0	138-145	3 B	0.5
GSW-443	09-Nov-87	291.0	141.0	123-141	2	5
GSW-444	20-Nov-87	278.0	120.0	110-120	3B	0.3
GSW-445	09-Dec-87	319.0	161.0	155-161	4	3
Dynamic Strip	pping Project W	ells ^C				
GSP-SNL- 001	07-Jan-92	147.0	104.0 131.0	99-104 118-131	3A 3B	NA NA
GEW-808	05-Jun-92	164.0	150.0	50-140	2/3A/3B 2/3A/3B	25
GIW-813	25-Jun-92	140.7	87.0 104.0	67-87 89-99	2 3A	NA
			127.0	107-127	3A/3B	NA
GIW-814	19-Jun-92	149.6	106.5 117.0	86.5-106.5 110-120	2/3A 3A	NA
			132.0	121-141	3B	NA
GIW-815	15-Jun-92	143.0	97.0 117.0	77-97 102-112	2/3A 3A	NA
			132.0	112.8-132	3B	NA
GEW-816	03-Jun-92	161.7	150.0	50-140	3A,3B	40
GIW-817	29-Jun-92	150.1	102.0 122.0	82-102 107-117	2/3A 3A	NA
			141.0	121-141	3B	NA
GIW-818	06-Jul-92	150.0	102 125	82-102 110-120	2/3A 3A	NA
			140	120-140	3B	NA
GIW-819	10-Jul-92	150.0	98.6 123	78.6-98.6 108-118	2/3A 3A 3B	NA
			141	121-141		NA

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well developmen flow rate (gpm) ^b
GIW-820	16-Jul-92	143.3	105 132	85-105 112-132	2/3A 3A3B	NA NA
					01102	
HW-GP-001	17-Apr-92	120.0	77.0	67-77	2	NA
	10 Mar 00	100.0	113.0	103-113	3A 2	NA
HW-GP-002	13-May-92	120.0	78.0 117.0	68-78 107-117	3A	NA NA
HW-GP-003	20-May-92	119.0	76.5	66.5-76.5	2	NA
			119.0	109-119	3A	NA
HW-GP-102	13-Aug-93	140.0	137.5	72.5-133.5	2/3A/3B	NA
HW-GP-103	23-Aug-93	138.0	137.5	71.5-132.5	2/3A/3B	NA
HW-GP-104	02-Sep-93	138.0	137.2	72.2-132.2	2/3A/3B	NA
HW-GP-105	28-Sep-93	138.0	137.5	72.5-132.5	2/3A/3B	NA
TEP-GP-106	21-Sep-93	137.5	135.5			
Extraction We	lls					
W-109	02-Apr-85	289.0	147.0	137-147	2	12
W-262	20-Mar-86	256.0	100.0	91-100	1 B	7
W-351	17-Oct-86	191.0	151.0	146-152	4	2.9
W-357	12-Jan-87	197.0	123.0	107-123	2	8
W-408	16-Feb-88	131.0	122.5	101-122.5	1 B	35
W-415	12-Aug-88	205.0	183.7	79-179	1 B	>50
W-457	22-Jun-88	289.0	149.5	130-149.5	2	20
W-518	08-Aug-89	251.0	139.0	131-139	2	2.5
W-520	30-Aug-89	160.0	101.5	94-101.5	1 B	12
W-522	05-Oct-89	145.5	141.5	134-141.5	2	25
W-566	19-Apr-89	317.0	207.0	197-207	5	12
W-601	13-Oct-89	146.0	96.0	88-96	1 B	15
W-602	06-Nov-89	168.0	100.0	90-100	1 B	10
W-603	15-Nov-89	150.0	147.0	141-147	2	5

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
W-609	21-Feb-90	120.0	112.0	104-112	2	4
W-610	16-Mar-90	453.0	84.5	69-84.5	1 B	4
W-614	18-May-90	262.0	123.0	100-123	1 B	12
W-620	30-Aug-90	206.0	88.5	75-88.5	1 B	5
W-621	09-Sep-90	149.0	120.0	113-120	2	4
W-655	25-Apr-90	193.0	130.0	121-129.5	2	2
W-701	10-Oct-90	159.0	86.0	74-86	1 B	10
W-704	01-Feb-91	135.0	107.0	67-76 88-97	1 B	20
W-712	29-Aug-91	200.0	185.5	170-185.5	3 A	8
W-903	28-Apr-93	223.0	145	132-140	2	20
W-904	06-May-93	212.0	154.0	121-133 140-149	2	20
W-906	27-Jul-93	200.0	132.0	58-132	2,3A	10
W-907	02-Sep-93	239.0	220.0	172.7-188.8 204.5-215.0	4 5	25 NA
W-1004	23-Feb-94	99.0	97.0	71-91	1 B	7
W-1009	02-May-94	191	140	134-140	2	20
W-1015	10-Aug-94	437	94	84-94	1 B	20
W-1102	29-Nov-94	163.0	95.5	76.0-94.0	1 B	8
W-1103	15-Dec-94	200.0	82.0	70.0-82.0	1 B	3.5
W-1104	18-Jan-95	165.0	99.0	77-87 92-98	1 B	35+
W-1109	11-Apr-95	121	113	94-108	2	3
W-1111	01-Jun-95	152	129	88-108 120-124	2 2	10.5 NA
W-1114	07-Aug-95	223	205	177-200	5	8.5
W-1116	17-Aug-95	214	101	72-98	1 B	9

Well number	Date completed	Borehole depth (ft)	Casing depth (ft)	Perforated interval (ft)	HSU ^a monitored	Well development flow rate (gpm) ^b
Other Wells						
7D2	07-Jun-76	74	72.3	63.2-67.3	3A	NA
11C1	08-Jun-76	68	66.2	56.2-61.2	1 B	NA
11H5	08-Nov-85	NA	255	NA	NA	NA
11J2	26-Apr-79	112	110	90-92	2	NA
	Ĩ			102-108		
11Q4	NA	NA	NA	NA	NA	NA
11Q5	NA	NA	NA	NA	NA	NA
14A3	07-Dec-77	NA	110	100-105	NA	NA
14A11 ^d	NA	NA	NA	NA	NA	NA
14 B 1	13-Aug-59	300	234	146-149	NA	NA
				192-195		
				198		
				200		
				203		
				205		
				207		
				209-213		
				226		
				230		
				234		
14 B 4	Aug-60	NA	260	143-148	NA	NA
1101	nug oo	1471	200	155-159	1 1 1 1	1 1/1
				186-189		
				205-215		
				245-250		
14 B 7	NA	NA	NA	NA	NA	NA
14H1	NA	NA	288	NA	NA	NA
14H2 ^d	NA	NA	NA	NA	NA	
18D1 ^d	NA	NA	NA	NA	7	NA

Note: Notes and footnotes appear on the following page.

Notes: Boreholes B-707, B-708, B-709, B-713, B-715, and B-750 were drilled for the Dynamic Underground Stripping Demonstration Project "Clean Site."

NA = Not applicable or not available.

- ^a Hydrostratigraphic Units (HSUs) are numbered consecutively downward from ground surface. An HSU is defined as sediments that are grouped together based on the hydrogeologic and contaminant transport properties. The permeable layers within an HSU are considered to be in good hydraulic communication, whereas permeable layers in different HSUs are considered to be in poor hydraulic communication. HSU contacts are interpreted and are subject to change.
- **b** Flow rate after 4 hours of air-lift pumping/surging.
- ^c Wells installed for the Dynamic Underground Stripping Demonstration Project include extraction wells (GEW series), injection wells (GIW series), temperature monitoring wells (TEP series), and heating wells (HW series). TEP wells consist of two nested 1-in. inside diameter (ID) piezometers surrounding a blank fiberglass 2-in. ID casing instrumented with geophysical sensors. The screened intervals listed therefore refer to the two individual piezometers.
- ^d Well number was changed in December 1988 to be consistent with Alameda County Flood Control and Water Conservation District, Zone 7 well identification. Well number changes made on this table are:

4A6 -----> 14H2 18D81 ----> 18D1 14A84 ----> 14A11

Appendix B

Hydraulic Test Results

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq ft)	Data quality ^c
W-001	01-Dec-83	Drawdown	5.7	2,000	110	Fair
W-001	23-Jan-85	Drawdown	7.1	3,100	170	Good
W-001A	22-Jan-85	Drawdown	1.4	190	19	Good
W-002	01-Dec-83	Slug	0.0	110	34	Poor
W-002A	24-Jan-85	Drawdown	10.3	2,700	200	Good
W-004	01-Dec-83	Drawdown	3.3	63	13	Good
W-005	01-Dec-83	Drawdown	4.3	110	20	Good
W-005	24-Jan-85	Drawdown	7.9	1,100	210	Fair
W-005A	23-Jan-85	Drawdown	13.0	1,300	130	Poor
W-007	01-Dec-83	Slug	0.0	43	14	Fair
W-008	01-Dec-83	Drawdown	2.9	29	4.9	Fair
W-011	01-Dec-83	Drawdown	4.1	130	15	Good
W-017	01-Dec-83	Slug	0.0	38	2.5	Good
W-017	21-Feb-86	Slug	0.0	85	5.7	Good
W-018	01-Dec-83	Drawdown	2.6	20	2.7	Poor
W-102	25-Mar-86	Drawdown	6.4	1,100	72	Good
W-102	05-Sep-86	Drawdown	24.0	770	53	Good
W-102	15-Sep-86	Longterm	27.5	4,200	290	Good
W-103	25-Apr-86	Drawdown	6.7	15,000	1,500	Good
W-104	03-Mar-88	Drawdown	5.4	1,200	170	Fair
W-104	25-Mar-88	Drawdown	3.3	450	45	Fair
W-105	06-Apr-87	Drawdown	0.8	73	7.3	Fair
W-106	19-Feb-86	Slug	0.0	7.4	1.3	Excel
W-107	17-Jun-85	Drawdown	1.0	94	9.4	Poor
W-108	29-Oct-85	Drawdown	7.9	750	63	Poor
W-109	05-Mar-86	Drawdown	8.1	3,200	540	Good
W-109	04-Sep-87	Drawdown	20.0	1,600	270	Good
W-109	29-Sep-87	Longterm	11.6	130	22	Fair
W-109	16-Oct-87	Drawdown	8.0	2,300	380	Fair
W-110	18-Jun-85	Drawdown	5.0	1,300	130	Good
W-111	13-Jun-85	Drawdown	1.0	370	37	Good
W-111	21-Nov-85	Drawdown	1.0	37	2.3	Good
W-112	18-Nov-86	Drawdown	13.4	2,100	170	Fair
W-112	15-Dec-86	Longterm	13.2	3,100	260	Fair
W-112	05-Nov-96	Longterm	13.7	3,250	260	Fair

Appendix B. Results of hydraulic tests.^a

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
W-113	17-Apr-86	Slug	0.0	7.4	1.2	Excel
W-115	05-Mar-86	Drawdown	1.1	180	30	Good
W-116	24-Dec-85	Slug	0.0	37	7.5	Good
W-117	20-Feb-86	Slug	0.0	2	0.4	Good
W-118	05-Mar-86	Drawdown	10.0	2,100	240	Good
W-119	08-Aug-85	Drawdown	2.0	1,600	100	Good
W-120	22-Apr-86	Drawdown	1.1	23	5.6	Poor
W-121	10-Sep-85	Drawdown	2.0	120	7.5	Good
W-121	23-Sep-85	Drawdown	4.0	23	1.5	Excel
W-121	14-Oct-85	Drawdown	3.0	34	2.2	Excel
W-121	15-Oct-85	Drawdown	4.5	45	3.0	Excel
W-122	28-Oct-85	Drawdown	10.8	490	49	Good
W-123	28-Oct-85	Drawdown	5.8	40	4.4	Poor
W-142	03-Mar-88	Slug	0.0	2,600	330	Excel
W-143	03-Mar-88	Slug	0.0	1,200	240	Excel
W-149	09-Sep-85	Drawdown	4.0	120	19	Good
W-149	11-Sep-85	Drawdown	8.0	95	16	Excel
W-149	11-Oct-85	Drawdown	4.8	58	9.7	Excel
W-149	11-Oct-85	Drawdown	7.0	70	12	Good
W-150	02-Oct-85	Drawdown	3.1	640	210	Fair
W-150	03-Oct-85	Drawdown	6.0	720	240	Fair
W-150	10-Oct-85	Drawdown	8.8	630	210	Fair
W-150	10-Oct-85	Drawdown	12.0	620	210.	Fair
W-151	28-Oct-85	Drawdown	5.8	550	61	Poor
W-201	05-Mar-86	Drawdown	10.0	740	86	Excel
W-203	02-Mar-88	Drawdown	6.6	1,100	110	Good
W-204	23-Jan-86	Drawdown	1.9	100	15	Fair
W-205	14-Feb-86	Slug	0.0	5.90	1.9	Good
W-205	18-Feb-86	Slug	0.0	5	1.9	Good
W-206	14-Apr-86	Slug	0.0	120	11	Good
W-207	02-Mar-88	Slug	0.0	380	32	Excel
W-210	09-Jun-86	Slug	0.0	0.60	0.1	Good
W-211	22-Oct-86	Drawdown	2.9	37	12	Fair
W-211	08-Dec-86	Longterm	1.0	44	15	Fair
W-212	12-May-86	Drawdown	0.8	18	3.1	Poor

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq ft)	Data quality ^d
W-213	22-Apr-86	Drawdown	3.8	190	38	Good
W-214	07-Oct-86	Longterm	27.6	2,300	350	Good
W-217	15-Jul-86	Slug	0.0	750	120	Good
W-218	17-Jun-86	Drawdown	11.7	6,400	1,100	Good
W-218	12-Nov-86	Longterm	7.7	4,000	670	Good
W-219	15-Jul-86	Drawdown	4.3	620	76	Good
W-219	23-Feb-87	Longterm	5.2	66	8.0	Fair
W-220	21-Aug-86	Slug	0.0	28	5.5	Excel
W-221	05-Aug-86	Drawdown	2.1	120	16	Fair
W-222	12-Aug-86	Drawdown	16.0	1,700	160	Excel
W-222	08-Mar-85	Longterm	7.7	1,100	180	Good
W-223	27-Aug-86	Drawdown	4.0	510	110	Good
W-224	28-Oct-86	Drawdown	7.6	3,600	400	Excel
W-225	23-Oct-86	Drawdown	4.0	85	11	Good
W-225	12-Jan-87	Longterm	2.0	62	8.5	Fair
W-226	31-Mar-87	Slug	0.0	1,700	160	Fair
W-252	04-Nov-85	Drawdown	4.0	920	50	Fair
W-252	19-Nov-85	Drawdown	5.6	800	43	Fair
W-254	27-Jan-86	Drawdown	4.2	340	38	Fair
W-254	27-Feb-86	Drawdown	3.2	370	41	Good
W-255	21-Jan-86	Drawdown	5.0	2,800	250	Fair
W-255	21-Jan-86	Drawdown	6.0	2,000	180	Fair
W-255	06-Jan-87	Longterm	2.0	400	36	Fair
W-256	11-Apr-86	Slug	0.0	11	5.5	Good
W-257	15-Apr-86	Slug	0.0	120	24	Good
W-258	05-Jun-86	Slug	0.0	35	9.0	Excel
W-258	29-Oct-86	Slug	0.0	32	8.0	Good
W-259	26-Mar-88	Slug	0.0	15	5.0	Good
W-260	25-Mar-86	Drawdown	3.0	140	22	Good
W-260	01-Oct-86	Longterm	1.4	120	18	Good
W-261	27-May-86	Slug	0.0	7	2.3	Excel
W-262	11-Apr-86	Drawdown	12.5	2,000	250	Excel
W-262	23-Sep-86	Longterm	22.0	2,750	340	Good
W-262	27-Apr-87	Longterm	23.1	6,800	810	Good
W-263	22-Apr-86	Drawdown	1.2	37	7.4	Poor

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq ft)	Data quality ^d
W-263	04-Nov-86	Longterm	1.8	76	15	Excel
W-264	07-May-86	Drawdown	8.1	930	100	Good
W-264	29-Oct-86	Longterm	23.0	480	50	Good
W-265	19-May-86	Drawdown	0.7	180	34	Fair
W-267	02-Jun-86	Drawdown	0.5	420	85	Poor
W-268	14-Nov-86	Drawdown	5.0	230	18	Good
W-269	14-Jul-86	Drawdown	5.0	570	95	Good
W-270	30-Dec-86	Slug	0.0	14	2.0	Good
W-271	04-Aug-86	Drawdown	5.5	340	76	Fair
W-272	19-Aug-86	Drawdown	0.8	150	30	Fair
W-273	27-Aug-86	Drawdown	3.2	600	90	Good
W-274	25-Mar-85	Slug	0.0	38	7.6	Fair
W-275	30-Oct-86	Drawdown	7.0	730	150	Fair
W-275	02-Mar-87	Longterm	5.5	830	170	Fair
W-276	21-Nov-86	Drawdown	13.0	960	110	Good
W-276	04-May-87	Longterm	24.0	2,700	300	Fair
W-277	03-Nov-86	Drawdown	0.9	74	25	Fair
W-290	05-Jan-87	Slug	0.0	14	4.0	Excel
W-291	27-Jan-87	Slug	0.0	25	7.1	Fair
W-292	28-Aug-86	Drawdown	6.0	400	56	Excel
W-294	29-Dec-86	Drawdown	5.3	5,300	29	Fair
W-294	29-Dec-86	Drawdown	5.9	5,400	300	Good
W-301	30-Oct-86	Drawdown	6.0	460	100	Good
W-302	18-Nov-86	Drawdown	1.0	100	27	Good
W-302	18-Nov-86	Drawdown	2.0	76	21	Fair
W-303	12-Nov-86	Drawdown	11.1	210	70	Good
W-304	13-Mar-87	Drawdown	0.9	74	25	Fair
W-305	26-Nov-86	Drawdown	19.0	720	72	Excel
W-305	18-May-87	Longterm	20.1	640	64	Excel
W-306	31-Mar-87	Drawdown	9.5	270	68	Good
W-307	26-Mar-87	Drawdown	0.9	66	33	Fair
W-308	04-Dec-87	Drawdown	2.6	27	5.4	Good
W-310	17-Feb-87	Drawdown	6.7	58	850	Good
W-311	19-Mar-87	Drawdown	9.8	130	12	Good
W-311	17-Nov-87	Longterm	9.9	370	26	Good

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
0W-312	27-Mar-87	Drawdown	20.5	1,800	300	Poor
W-312	03-Nov-87	Longterm	18.8	1,700	280	Good
W-313	25-Mar-87	Drawdown	7.9	3,000	600	Good
W-313	05-Oct-87	Longterm	9.6	3,400	680	Good
W-314	10-Apr-87	Drawdown	26.4	2,900	390	Good
W-314	13-Jul-87	Longterm	13.6	2,500	330	Fair
W-315	09-Apr-87	Drawdown	15.4	150	11	Good
W-315	05-Jan-85	Longterm	24.5	571	41	Excel
W-316	04-May-87	Drawdown	7.8	1,400	280	Good
W-317	12-May-87	Drawdown	12.1	300	43	Fair
W-317	15-Dec-87	Longterm	8.2	120	17.1	Good
W-318	07-Aug-87	Slug	0.0	120	16	Good
W-319	29-Jul-87	Drawdown	48.0	7,200	1,500	Good
W-320	15-May-87	Drawdown	1.8	58	17	Fair
W-320	15-May-87	Drawdown	3.0	22	3.7	Fair
W-320	26-Jun-87	Drawdown	2.1	49	14	Fair
W-321	28-Jul-87	Drawdown	40.0	6,600	450	Good
W-322	03-Aug-87	Drawdown	3.1	85	15	Good
W-323	11-Aug-87	Drawdown	3.4	205	59	Good
W-324	10-Sep-87	Drawdown	6.6	200	50	Good
W-325	10-Sep-87	Drawdown	6.0	160	13	Excel
W-351	12-Nov-86	Drawdown	5.7	27	14	Poor
W-352	30-Dec-86	Drawdown	20.0	280	14	Good
W-352	07-Jul-87	Longterm	19.5	120	6.0	Excel
W-353	20-Nov-86	Drawdown	2.1	60	17	Good
W-354	30-Dec-86	Drawdown	17.6	2,000	220	Fair
W-354	30-Dec-86	Drawdown	18.0	2,400	260	Good
W-354	20-Apr-87	Longterm	17.8	310	34	Good
W-355	29-Dec-86	Drawdown	2.1	19	5.0	Fair
W-356	17-Mar-87	Drawdown	5.7	180	59	Good
W-356	16-Jul-96	Longterm	4.9	230	57	Poor
W-357	18-Feb-87	Drawdown	15.0	1,300	110	Good
W-357	21-Jul-87	Longterm	9.2	210	18	Good
W-358	18-Mar-87	Drawdown	9.2	210	32	Excel
W-359	09-Mar-87	Longterm	19.0	2,800	290	Fair

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq ft)	Data quality ^d
W-359	20-Mar-87	Drawdown	18.6	1,100	110	Good
W-360	22-May-87	Drawdown	30.0	4,800	210	Excel
W-361	16-Mar-87	Drawdown	4.3	67	11	Good
W-361	12-Jan-85	Longterm	5.3	178	30	Good
W-362	23-Mar-87	Drawdown	16.4	470	49	Good
W-362	21-Sep-87	Longterm	13.6	370	39	Good
W-363	24-Jul-87	Slug	0.0	20	3.0	Excel
W-364	08-Apr-87	Drawdown	8.6	51	10	Fair
W-364	01-Jun-87	Longterm	4.8	110	22	Good
W-365	14-May-87	Drawdown	10.0	36	15	Fair
W-366	11-May-87	Drawdown	19.0	780	92	Fair
W-368	11-May-87	Drawdown	2.9	81	8.5	Fair
W-369	25-Jun-87	Drawdown	7.0	580	96	Good
W-369	10-Nov-87	Longterm	5.5	89	18	Good
W-370	23-Jun-87	Drawdown	4.4	84	10	Fair
W-371	24-Jun-87	Drawdown	3.3	15	3.0	Good
W-372	23-Nov-87	Slug	0.0	310	62	Excel
W-373	28-Jul-87	Drawdown	4.0	660	77	Fair
W-373	28-Jul-87	Drawdown	6.5	50	6.0	Poor
W-376	26-Jan-88	Drawdown	2.9	65	8.5	Fair
W-380	23-Oct-87	Drawdown	4.0	33	4.7	Excel
W-401	23-Oct-87	Drawdown	42.0	950	24	Excel
W-402	22-Oct-87	Drawdown	41.0	13,500	1,400	Good
W-403	03-Dec-87	Drawdown	9.7	370	26	Good
W-404	04-Feb-85	Drawdown	45.0	3,200	530	Good
W-405	16-Feb-85	Drawdown	47.2	546	14	Good
W-406	28-Jan-85	Drawdown	7.4	7,500	940	Fair
W-407	23-Feb-85	Drawdown	14.4	75	7.5	Fair
W-408	05-Apr-85	Drawdown	45.0	43,000	3,100	Good
W-409	22-Mar-85	Drawdown	20.0	230	38	Good
W-410	28-Apr-85	Drawdown	35.0	6,800	570	Fair
W-411	05-May-85	Drawdown	14.0	50	83	Good
W-412	06-May-88	Drawdown	4.1	700	64	Fair
W-414	27-Jul-85	Slug	0.0	150	38	Good
W-416	11-Jul-85	Drawdown	50.0	2,600	330	Good

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
W-417	27-Jun-88	Drawdown	5.3	340	57	Fair
W-420	16-Aug-85	Drawdown	3.5	710	100	Excel
W-421	12-Sep-85	Drawdown	4.8	320	27	Excel
W-422	19-Sep-85	Drawdown	8.6	230	42	Good
W-423	12-Oct-85	Drawdown	22.0	1,500	130	Good
W-424	17-Oct-85	Drawdown	4.5	130	19	Good
W-441	30-Oct-87	Drawdown	6.0	500	56	Good
W-441	13-Apr-88	Drawdown	13.0	2,200	240	Poor
W-441	19-Apr-88	Longterm	14.0	470	52	Good
W-447	26-Feb-88	Drawdown	7.1	124	850	Poor
W-448	24-Mar-85	Drawdown	24.5	4,200	600	Good
W-449	21-Mar-85	Drawdown	6.2	170	11	Good
W-450	14-Apr-88	Drawdown	3.3	38	650	Fair
W-451	27-Apr-88	Drawdown	2.1	80	16	Good
W-452	02-May-88	Drawdown	5.2	310	21	Excel
W-453	03-May-88	Drawdown	5.8	67	7.4	Fair
W-455	22-Jun-88	Drawdown	5.8	160	13	Good
W-456	14-Jul-85	Drawdown	4.5	260	33	Fair
W-457	29-Jul-85	Drawdown	20.5	450	24	Excel
W-458	02-Aug-85	Drawdown	0.8	24	150	Fair
W-460	01-Sep-85	Drawdown	17.0	1,900	380	Fair
W-461	07-Sep-85	Slug	0.0	690	140	Good
W-462	27-Sep-85	Drawdown	19.0	360	60	Good
W-463	11-Oct-85	Drawdown	24.0	1,600	200	Good
W-464	8-Nov-88	Drawdown	9.0	370	53	Good
W-481	02-Dec-87	Drawdown	1.1	8	1.7	Good
W-486	23-Mar-85	Drawdown	6.0	230	30	Good
W-487	14-Apr-88	Drawdown	2.2	45	15	Good
W-501	21-Oct-85	Drawdown	9.7	170	21	Good
W-502	14-Nov-85	Slug	0.0	12	30	Good
W-503	11-Nov-88	Drawdown	1.3	15	3.0	Fair
W-504	08-Dec-85	Drawdown	10.0	590	84	Good
W-505	21-Mar-89	Drawdown	34.2	653	76	Good
W-506	10-Feb-89	Drawdown	31.0	7,423	460	Good
W-507	06-Feb-89	Drawdown	39.0	2,900	290	Good

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
W-508	29-Mar-89	Drawdown	30.0	47,000	2,600	Good
W-509	11-May-89	Drawdown	0.9	10	2.0	Fair
W-510	11-May-89	Slug	0.0	220	110	Good
W-511	11-May-89	Drawdown	1.7	63	11	Fair
W-512	27-Apr-89	Drawdown	2.9	85	9.4	Good
W-513	09-May-89	Drawdown	0.6	33	3.0	Fair
W-514	26-May-89	Drawdown	1.4	84	530	Fair
W-515	06-Jun-89	Drawdown	2.8	37	4.2	Fair
W-516	19-Jun-89	Drawdown	19.5	1,428	286	Good
W-517	27-Jun-89	Drawdown	7.3	370	53	Good
W-518	10-Aug-89	Drawdown	6.2	1,421	178	Good
W-519	31-Aug-89	Drawdown	31.5	5,700	475	Excel
W-520	24-Jan-90	Drawdown	22.8	3,300	560	Excel
W-521	01-Feb-90	Drawdown	0.6	44	4.9	Fair
W-522	05-Feb-90	Drawdown	20.0	3,700	620	Fair
W-551	08-Nov-85	Drawdown	37.0	350	88	Good
W-552	12-Dec-88	Drawdown	38.0	4,700	390	Good
W-553	17-Nov-85	Drawdown	2.2	55	7.9	Fair
W-554	10-Jan-89	Drawdown	21.5	1,800	150	Good
W-555	28-Dec-88	Drawdown	14.0	460	23	Fair
W-556	25-Jan-89	Drawdown	17.0	850	170	Fair
W-557	23-Jan-89	Drawdown	1.2	570	36	Poor
W-558	23-Mar-89	Drawdown	24.7	5,200	650	Good
W-560	08-Mar-89	Drawdown	1.7	30	7.6	Fair
W-561	13-Mar-89	Drawdown	1.1	12	2.1	Fair
W-562	28-Mar-89	Drawdown	1.0	16	2.3	Fair
W-563	31-Mar-89	Drawdown	1.1	14	2.3	Fair
W-564	26-Apr-89	Drawdown	1.6	44	5.0	Poor
W-565	18-Apr-89	Drawdown	15.6	1,600	260	Good
W-566	02-May-89	Drawdown	17.0	780	86	Good
W-566	31-Aug-93	Longterm	22.5	2580	520	Fair
W-567	04-May-89	Drawdown	10.4	2,600	320	Excel
W-568	20-Jun-89	Drawdown	18.3	620	160	Fair
W-569	24-May-89	Drawdown	2.8	100	15	Fair
W-570	08-Jun-89	Drawdown	1.1	7	1.1	Fair

Flow Transmis-Hydraulic rate sivity conductivity Type of (K)^c Data **(Q) (T)** test^b (gpd/sq ft) quality^d Well Date (gpd/ft) (gpm) W-571 17-Jul-89 Drawdown 1,000 17.7 200 Excel W-592 23-Jan-89 Drawdown 2.2 2,200 280 Poor W-593 22-Feb-89 Drawdown 2.2 57 11.4 Good W-594 16-Mar-89 0.0 380 54 Excel Slug W-601 08-Feb-90 Drawdown 22.5 6,900 770 Excel W-602 29-Jan-90 Drawdown 24.0 5,300 620 Good W-603 07-Feb-90 Drawdown 6.1 100 20 Fair W-604 20-Feb-90 Slug 0.0 380 63 Good W-605 28-Feb-90 Drawdown 4.8 50 12 Good W-606 21-Feb-90 Slug 0.0 120 20 Fair W-607 22-Feb-90 Drawdown 1.4 800 100 Good W-608 28-Feb-90 Drawdown 1.2 230 30 Fair W-609 09-Mar-90 Drawdown 6.7 470 70 Good W-610 28-Mar-90 Drawdown 5.8 380 Good 5,500 W-611 16-Apr-90 Drawdown 3.5 1,000 110 Fair W-612 24-May-90 Drawdown 55 Good 13.5 550 W-612 05-Apr-94 Longterm 14 230 40 Good W-613 23-May-90 360 Good Drawdown 4.8 2,550 W-614 07-Jun-90 Drawdown 6.7 130 Good 1,650 19 W-615 21-Jun-90 Drawdown 1.3 130 Fair W-616 27-Jun-90 Drawdown 2.0 390 **40** Fair W-617 12-Jul-90 Drawdown 2.8 53 6.8 Good 1.9 W-618 01-Aug-90 Drawdown 24 4.8 Fair W-619 30-Aug-90 Drawdown 11.8 190 11 Good 650 Good W-620 01-Oct-90 Drawdown 5.8 6,500 W-621 Drawdown 39 04-Oct-90 3.8 310 Good W-622 12-Oct-90 Slug 0.0 130 16 Fair W-651 16-Mar-90 Slug 0.0 530 180 Fair W-652 22-Mar-90 Drawdown Good 1.0 11 3.8 W-653 11-Apr-90 Drawdown 0.3 2 1.9 Fair W-654 25-Apr-90 Drawdown 21.7 390 25 Fair W-655 12-May-90 Drawdown 12.2 1,000 220 Good W-701 23-Oct-90 Drawdown 14.5 6,800 650 Good W-701 03-Oct-92 430 Good Step 16.5 5,200 W-701 Drawdown 370 Good 01-Apr-93 24 3,700

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
W-702	29-Nov-90	Drawdown	2.5	150	30	Good
W-702	25-Feb-93	Step	4.6	36	7	Poor
W-703	19-Dec-90	Drawdown	7.0	230	9.1	Good
W-704	04-Mar-91	Drawdown	19.0	1,800	140	Fair
W-705	20-Feb-91	Drawdown	0.8	40	6.1	Fair
W-706	29-Jan-91	Drawdown	0.2	8	1	Fair
W-712	25-Feb-92	Drawdown	7.8	750	48	Good
W-712	18-Mar-93	Longterm	15.1	1440	93	Good
W-714	06-Dec-91	Drawdown	2.9	140	6.7	Good
W-902	25-Mar-93	Drawdown	0.6	6	2	Fair
W-909	18-Oct-95	Drawdown	2.7	150	5.1	Good
W-911	02-Feb-96	Drawdown	1.4	53	2.1	Good
W-912	10-Nov-95	Drawdown	4.1	65	11	Poor
W-913	16-Aug-95	Drawdown	23.5	730	36	Good
W-1001	13-Aug-95	Drawdown	1.3	170	25	Fair
W-1007	23-Sep-95	Drawdown	1.6	13	1.3	Fair
W-1010	10-Jul-95	Drawdown	20.3	1,650	140	Fair
W-1011	11-Jul-95	Drawdown	3.8	240	17	Good
W-1012	13-Jul-95	Drawdown	3.3	35	2.2	Fair
W-1013	13-Jul-95	Drawdown	2.7	2,000	250	Poor
W-1014	28-Aug-96	Drawdown	31.1	7,500	310	Good
W-1101	22-Nov-95	Drawdown	0.8	9.9	3.3	Good
W-1102	29-Jan-96	Drawdown	14.7	81	4.5	Fair
W-1103	29-Nov-95	Drawdown	3	19	1.6	Fair
W-1105	17-Jul-95	Drawdown	2.4	320	26	Fair
W-1106	24-Jul-96	Drawdown	7.1	5,200	580	Good
W-1108	03-Nov-95	Drawdown	12.3	950	68	Good
W-1108	25-Jun-96	Longterm	11.6	1,030	75	Poor
W-1109	26-Jun-95	Drawdown	8.7	460	33	Fair
W-1109	04-Jun-96	Longterm	6.8	760	40	Poor
W-1110	22-Jan-96	Drawdown	6.3	690	29	Fair
W-1111	20-Oct-95	Drawdown	15.8	2,100	95	Good
W-1112	24-May-96	Drawdown	6.4	94	10	Fair
W-1113	26-Aug-96	Drawdown	1	5.5	0.4	Good
W-1114	27-Oct-95	Longterm	15.1	270	12	Fair

Well	Type of Date test ^b		Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq_ft)	Data quality ^d
W-1116	23-Feb-96	Drawdown	6.6	290	11	Fair
W-1117	23-Aug-96	Drawdown	0.7	3.4	0.34	Fair
W-1118	18-Jan-96	Drawdown	5.6	350	35	Good
W-1201	01-Nov-96	Drawdown	1	8.3	0.92	Poor
W-1203	02-May-96	Drawdown	18.8	900	90	Good
W-1204	22-Feb-96	Drawdown	1.3	17	2.2	Poor
W-1209	17-May-96	Drawdown	0.98	11	0.69	Good
W-1210	30-May-96	Drawdown	2.1	7.3	0.73	Fair
W-1211	26-Jul-96	Drawdown	28.6	5,000	330	Good
W-1212	14-May-96	Drawdown	1.9	35	2.5	Good
W-1212	10-Sep-96	Longterm	1.3	85	3.6	Poor
W-1213	22-Jul-96	Drawdown	11.6	500	42	Fair
W-1213	30-Jul-96	Longterm	9.6	440	37	Poor
W-1215	15-Aug-96	Drawdown	11.6	610	61	Fair
W-1215	08-Oct-96	Longterm	9.8	3,000	300	Poor
W-1216	14-Aug-96	Drawdown	11.4	210	21	Good
W-1216	15-Oct-96	Longterm	11.1	130	4.4	Poor
W-1218	11-Nov-96	Drawdown	5.8	83	4.6	Fair
W-1220	13-Nov-96	Drawdown	20.3	2,600	120	Good
W-1222	31-Oct-96	Drawdown	6.1	430	43	Good
W-1254	19-Nov-96	Longterm	18.9	1,130	1.6	Fair
TW-11	24-Jan-85	Drawdown	0.3	200	20	Good
TW-11A	24-Jan-85	Drawdown	10.0	3,100	110	Fair
GSW-01	11-Dec-85	Slug	0.0	72	0.2	Fair
GSW-01A	14-Jul-86	Drawdown	13.4	12,000	790	Good
GSW-02	17-Dec-85	Slug	0.0	240	10	Good
GSW-03	23-Dec-85	Slug	0.0	510	41	Good
GSW-04	19-Dec-85	Slug	0.0	17	0.9	Good
GSW-05	12-Feb-86	Slug	0.0	99	9	Excel
GSW-06	23-Jun-86	Drawdown	25.0	4,800	310	Good
GSW-06	16-Jun-87	Longterm	20.0	5,500	350	Good
GSW-07	03-Apr-86	Drawdown	4.3	230	23	Excel
GSW-08	19-Nov-86	Drawdown	2.0	230	38	Good
GSW-09	28-May-86	Drawdown	1.9	500	63	Poor
GSW-10	22-May-86	Drawdown	14.3	21,000	2,000	Good

Well	Date	Type of test ^b	Flow rate (Q) (gpm)	Transmis- sivity (T) (gpd/ft)	Hydraulic conductivity (K) ^c (gpd/sq ft)	Data quality ^d
GSW-11	02-Jun-86	Drawdown	4.7	390	45	Excel
GSW-12	07 - Jun-86	Drawdown	0.8	51	11	Fair
GSW-1 3	04-Aug-86	Slug	0.0	110	13	Excel
GSW-1 3	08-Aug-86	Slug	0.0	62	7	Good
GSW-15	23-Feb-88	Drawdown	25.8	1,500	190	Good
GSW-208	08-May-86	Drawdown	1.9	440	80	Good
GSW-209	08-May-86	Drawdown	6.1	1,200	120	Good
GSW-215	04-Jun-86	Drawdown	1.9	220	40	Poor
GSW-216	16-Jan-92	Drawdown	10.5	3,500	440	Fair
GSW-266	20-Jun-86	Drawdown	2.1	470	72	Good
GSW-266	18-Nov-86	Drawdown	3.0	450	64	Good
GSW-266	18-Nov-86	Drawdown	4.7	410	59	Good
GSW-367	11-May-87	Drawdown	6.9	200	29	Fair
GSW-403-6	08-Dec-85	Slug	0.0	4	0.2	Good
GSW-442	23-Nov-87	Drawdown	1.2	32	4.6	Good
W-702	25-Feb-93	Step	1-4.6	36	7	Poor
GSW-443	30-Nov-87	Drawdown	10.3	260	8.7	Good
GSW-444	28-Jan-88	Slug	0.0	9	0.86	Good
GSW-445	26-Jan-85	Drawdown	4.7	43	4.30	Fair
GEW-710	23-Sep-91	Step	36.0	4,800	220	Excel
GEW-816	15-Aug-92	Drawdown	39.0	12,000	1,100	Good
W-415	31-Aug-85	Drawdown	10.0	3,100	78	Fair
W-704	03-May-91	Drawdown	19.0	1,800	140	Fair
W-712	25-Feb-92	Drawdown	7.8	790	50	Good
11H4	15-Jan-85	Drawdown	24.6	2,000	77	Good
11H4	19-Jan-85	Longterm	29.5	1,780	18	Good
11J4	10-Jun-88	Drawdown	17.0	1,000	15	Excel
11J4	14-Jun-85	Longterm	16.0	1,100	16	Good
13D1	09-Feb-85	Longterm	50.0	4,800	48	Excel

Footnotes appear on following page.

- ^a The pumping test results were obtained by using the analytic techniques of Theis (1935), Cooper and Jacob (1946), Papadopulos and Cooper (1967), Hantush and Jacob (1955), Hantush (1960), or Boulton (1963). The particular method used depends on the character of the data obtained. The slug test results were obtained using the method of Cooper et al. (1967). (See references below.)
- ^b "DRAWDOWN" denotes one-hour pumping tests; "LONGTERM" denotes 24- to 48-hour pumping tests; "STEP" denotes a step drawdown test, flow rate given is the maximum or final step.
- ^c K is calculated by dividing T by the thickness of permeable sediments intercepted by the sand pack of the well. This thickness is the sum of all sediments with moderate to high estimated conductivities determined from the geologic and geophysical logs of the well.
- d Hydraulic test quality criteria:
 - Excel: High confidence that type curve match is unique. Data are smooth and flow rate well controlled.
 - Good: Some confidence that curve match is unique. Data are not too "noisy." Well bore storage effects, if present, do not significantly interfere with the curve match. Boundary effects can be separated from properties of the pumped zone.
 - Fair: Low confidence that curve match is unique. Data are "noisy." Multiple leakiness and other boundary effects tend to obscure the curve match.
 - Poor: Unique curve match cannot be obtained due to multiple boundaries, well bore storage, uneven flow rate, or equipment problems. Usually, the test is repeated.

References

- Boulton, N. S. (1963), "Analysis of Data from Non-Equilibrium Pumping Tests Allowing for Delayed Yield from Storage," *Proc. Inst. Civ. Eng.* **26**, 469-482.
- Cooper, H. H., Jr., J. D. Bredehoeft, and I. S. Papadopulos (1967), "Response of a Finite-Diameter Well to an Instantaneous Charge of Water," *Water Resour. Res.* **3**, 263-269.
- Cooper, H. H., and C. E. Jacob (1946), "A Generalized Graphical Method of Evaluating Formation Constants and Summarizing Well Field History," *Am. Geophys. Union Trans.* **27**, 526-534.
- Hantush, M. S. (1960), "Modification of the Theory of Leaky Aquifers," *The J. of Geophys. Res.* **65**, 3173-3725.
- Hantush, M. S., and C. E. Jacob (1955), "Non-Steady Radial Flow in an Infinite Leaky Aquifer," *Am. Geophys. Union Trans.* **36** (1), 95-100.
- Papadopulos, I. S., and H. H. Cooper, Jr. (1967), "Drawdown in a Well of Large Diameter," *Water Resour. Res.* **3**, 241-244.
- Theis, C. V. (1935), "The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage," *Am. Geophys. Union Trans.* 16, 519-524.

Appendix C

1997 Ground Water Sampling Schedule

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-001	S	2-97	(1-97)	E601
W-001 W-001A	A	4-97		E601
W-001A W-002	A	3-97		E601
W-002 W-002A	A	4-97		E601
W-004	A	4-97 4-97		E601
W-005	В	4-98		E601
W-005A	В	3-98		E601
W-007	В	3-98		E601
W-008	Q	1-97	WGMG	E601
W-010A	æ B	3-98		E601
W-011	S	1-97		E601
W-012	S	2-97		E601
W-017	В	4-98		E601
W-017A	В	3-98		E601
W-019	В	4-98		E601
W-101	В	4-98		E601
W-102	В	1-98		E601
W-103	Α	3-97		E601
W-104	Q	1-97		E601
W-105	Α	4-97		E601
W-106	Α	3-97		E601
W-107	Α	4-97		E601
W-108	В	2-98		E601
W-110	Q	1-97		E601
W-111	Α	4-97		E601
W-112	Q	1-97		E601
W-113	В	4-98		E601
W-114	Α	1-97		E601
W-115	В	3-98		E601
W-116	Q	1-97		E601
W-117	В	4-98		E601
W-118	S	1-97		E601
W-119	Q	1-97		E601
W-120	Q	1-97		E601
W-121	Q	1-97	WGMG	E601
W-122	Α	4-97		E601

Table C-1. 1997 LLNL Livermore Site g	ground water sampling schedule.
---------------------------------------	---------------------------------

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-123	В	2-97		E601
N-141	В	2-98		E601
W-142	Q	1-97		E601
W-143	S	2-97		E601
W-146	Α	4-97		E601
W-147	В	4-98		E601
W-148	В	4-98		E601
W-151	Q	1-97	WGMG	E601
N-201	S	2-97		E601
W-202	Α	4-97		E601
W-203	В	2-98		E601
W-204	Α	1-97	E906	E601
W-205	Q	1-97		E601
W-206	Q	1-97	E906	E601
W-207	Q	1-97		E601
W-210	Q	1-97	NPDESMET; E906	E601
W-211	S	2-97		E601
W-212	В	4-98		E601
W-213	Α	3-97		E601
W-214	S	2-97		E601
W-217	Q	1-97	WGMG; E903+E904	E601
W-219	S	1-97		E601
W-220	S	1-97		E601
W-221	Α	4-97	WGMG	E601
W-222	Q	1-97		E601
W-223	Α	1-97		E601
W-224	Α	1-97		E601
W-225	Q	1-97		E601
W-226	В	4-98		E601
W-251	Q	1-97		E601
W-252	Α	3-97		E601
W-253	Α	4-97		E601
W-254	Q	1-97		E601
W-255	S	2-97		E601
W-256	Α	1-97		E601
W-257	Q	1-97	E906	E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-258	Α	4-97		E601
W-259	Q	1-97	E906	E601
W-260	Q	1-97		E601
W-261	Α	3-97		E601
W-263	Q	1-97		E601
W-264	S	2-97		E601
W-265	Α	2-97		E601
W-267	S	1-97		E601
W-268	Α	4-97		E601
W-269	Α	4-97		E601
W-270	Α	4-97	WGMG; E903+E904	E601
W-271	Q	1-97		E601
W-272	Α	3-97		E601
W-273	В	3-98		E601
W-274	Q	1-97		E601
W-275	S	2-97		E601
W-276	Α	3-97		E601
N-277	Α	1-97		E601
W-290	В	4-98		E601
W-291	В	4-98		E601
W-292	Q	1-97		E601
W-293	Α	2-97		E601
W-294	Α	2-97		E601
W-301	В	2-98		E601
W-302	В	3-98		E601
W-303	В	1-98		E601
W-304	Α	3-97		E601
W-305	Α	2-97		E601
W-306	В	4-98		E601
W-307	S	2-97		E601
N-308	В	4-98		E601
W-310	В	3-98		E601
W-311	Q	1-97		E601
W-312	Α	1-97		E601
W-313	Α	1-97		E601
W-314	S	2-97		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-315	Q	1-97		E601
W-316	Q	1-97		E601
W-317	S	2-97		E601
W-318	Α	2-97		E601
W-319	В	4-98		E601
W-320	Α	1-97		E601
W-321	В	3-98		E601
W-322	Q	1-97		E601
W-323	Q	1-97		E601
W-324	В	2-98		E601
W-325	В	4-98		E601
W-352	PTU	PTU		E601
W-353	Α	3-97		E601
W-354	Q	1-97		E601
W-355	Q	1-97		E601
W-356	Q	1-97		E601
W-359	Q	1-97		E601
W-360	Q	1-97		E601
W-361	Q	1-97		E601
W-362	Α	2-97		E601
W-363	Q	1-97	E906	E601
W-364	Α	3-97		E601
W-365	S	1-97		E601
W-366	В	1-98		E601
W-368	Α	1-97		E601
W-369	Q	1-97		E601
W-370	Α	2-97		E601
W-371	В	3-98		E601
W-372	Α	3-97		E601
W-373	Α	3-97	WGMG	E601
W-375	S	2-97		E601
W-376	В	2-98		E601
W-377	Α	2-97		E601
W-378	Q	1-97		E601
W-379	A	2-97		E601
W-380	В	4-98		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-401	В	2-98		E601
W-402	В	4-98		E601
W-403	В	3-98		E601
W-404	Q	1-97		E601
W-405	Q	1-97		E601
W-406	Α	1-97		E601
W-407	Q	1-97		E601
W-409	S	2-97		E601
W-410	Q	1-97		E601
W-411	S	2-97		E601
W-412	В	4-98		E601
W-413	Α	1-97		E601
W-414	В	3-98		E601
W-416	В	2-98		E601
W-417	В	2-98		E601
W-418	Α	4-97		E601
W-419	Q	1-97		E601
W-420	S	2-97		E601
W-421	Q	1-97		E601
W-422	Α	3-97		E601
W-423	Q	1-97		E601
W-424	Q	1-97		E601
W-441	Q	Collapsed		
W-446	S	2-97		E601
W-447	Q	1-97		E601
W-448	S	2-97		E601
W-449	S	2-97		E601
W-450	Α	1-97		E601
W-451	В	1-98		E601
W-452	В	4-98		E601
W-453	В	3-98		E601
W-454	Q	1-97		E601
W-455	A	3-97		E601
W-456	Α	2-97		E601
W-458	В	4-98		E601
W-459	Α	4-97		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-460	S	2-97		E601
W-461	Q	1-97		E601
W-462	Α	3-97		E601
W-463	Α	3-97		E601
W-464	Q	1-97		E601
W-481	Q	1-97		E601
W-482	S	2-97		E601
W-483	S	2-97		E601
W-484	В	3-98		E601
W-485	Α	2-97		E601
W-486	В	1-97	E906	E601
W-487	Α	1-97		E601
W-501	S	2-97		E601
W-502	В	2-98		E601
W-503	Α	2-97		E601
W-504	Α	4-97		E601
W-505	Α	2-97		E601
W-506	Q	1-97		E601
W-507	В	3-98		E601
W-509	Q	1-97		E601
W-510	В	3-98		E601
W-511	Α	3-97		E601
W-512	S	2-97		E601
W-513	Α	2-97		E601
W-514	В	2-98		E601
W-515	Q	1-97		E601
W-516	В	4-98		E601
W-517	Q	1-97		E601
W-519	В	3-98		E601
W-521	Q	1-97		E601
W-551	S	2-97		E601
W-552	В	4-98		E601
W-553	В	4-98		E601
W-554	Α	2-97		E601
W-555	Α	2-97		E601
W-556	В	3-98	WGMG	E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-557	В	3-98		E601
W-558	Q	1-97		E601
W-559	Α	3-97		E601
W-560	Α	4-97		E601
W-561	Α	2-97		E601
W-562	В	4-98		E601
W-563	В	2-98		E601
W-564	Q	1-97		E601
W-565	В	4-98		E601
W-567	Α	1-97		E601
W-568	Α	3-97		E601
W-569	S	1-97		E601
W-570	В	3-98		E601
W-571	В	3-98	WGMG	E601
W-591	Α	3-97		E601
W-592	Α	2-97		E601
W-593	Α	1-97		E601
W-594	Α	1-97		E601
W-604	S	2-97		E601
W-605	S	1-97		E601
W-606	Q	1-97		E601
W-607	S	2-97		E601
W-608	Α	1-97		E601
W-611	Α	2-97		E601
W-612	S	2-97		E601
W-613	S	1-97		E601
W-615	Α	4-97		E601
W-616	S	2-97		E601
W-617	S	1-97		E601
W-618	Q	1-97		E601
W-619	Ã	3-97		E601
W-622	Q	1-97	NPDESMET; E906	E601
W-651	$\tilde{\mathbf{Q}}$	1-97		E601
W-652	Ã	1-97		E601
W-653	Q	1-97		E601
N-654	S	1-97		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-702	Q	1-97		E601
W-705	Q	1-97		E601
W-706	В	3-98		E601
W-714	Q	1-97		E601
W-750		2-97		E601
W-905	Α	4-97		E601
W-909	Q	1-97	E906	E601
W-911	Q	2-97		E601
W-912	Q	1-97		E601
W-913	Q	1-97		E601
W-1001	Q	1-97		E601
W-1002	Q	1-97		E601
W-1003	Α	4-97		E601
W-1005	Q	1-97		E601
W-1006	Q	1-97		E601
W-1007	S	2-97		E601
W-1008	Α	4-97		E601
W-1010	Α	4-97		E601
W-1011	Q	1-97		E601
W-1012	Α	4-97	WGMG	E601
W-1013	Q	1-97		E601
W-1014	S	2-97		E601
W-1101	Q	1-97		E601
W-1105	Q	1-97		E601
W-1106	Q	1-97		E601
W-1107	Q	1-97		E601
W-1108	Q	1-97	E906	E601
W-1110	Q	1-97		E601
W-1112	Q	1-97		E601
W-1113	~ Q	1-97		E601
W-1115	~ Q	1-97		E601
W-1117	~ Q	1-97	E906	E601
W-1118	~ Q	1-97	E906	E601
W-1201	~ Q	1-97	E906	E601
W-1202	~ Q	1-97		E601
W-1203	Q	1-97		E601

W-1204 Q 1-97 E601 W-1205 Q 1-97 E601 W-1206 Q 1-97 E601 W-1207 Q 1-97 E601 W-1208 PTU PTU E601 W-1209 Q 1-97 E601 W-1210 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1214 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1212 Q 1-97 E601 W-1221 Q 1-97 E601 W-1220 Q 1-97 E601 W-1250 Q 1-97 E601 W-1251 Q 1-97	Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
W-1206 Q 1-97 E601 W-1207 Q 1-97 E601 W-1208 PTU PTU E601 W-1209 Q 1-97 E601 W-1210 Q 1-97 E601 W-1211 Q 1-97 E601 W-1212 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1218 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E601 W-1223 Q 1-97 E601 W-1254 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 <	W-1204	Q	1-97		E601
W-1207Q1-97E601W-1208PTUPTUE601W-1209Q1-97E601W-1210Q1-97E601W-1211Q1-97E601W-1212Q1-97E601W-1214Q1-97E601W-1215Q1-97E601W-1216Q1-97E601W-1217Q1-97E601W-1218Q1-97E601W-1220Q1-97E601W-1221Q1-97E906W-1222Q1-97E001W-1251Q1-97E601W-1252Q1-97E601W-1253Q1-97E601W-1254Q1-97E601W-1255Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-125Q1-97E601W-125Q1-97E601W-125Q1-97E601W-125Q1-97E601W-125Q1-97E601 <t< td=""><td>W-1205</td><td>Q</td><td>1-97</td><td></td><td>E601</td></t<>	W-1205	Q	1-97		E601
W-1208 PTU PTU E601 W-1209 Q 1-97 E601 W-1210 Q 1-97 E601 W-1211 Q 1-97 E601 W-1212 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1221 Q 1-97 E601 W-1221 Q 1-97 E601 W-1221 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E601 W-1251 Q 1-97 E601 W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 TW11A B 3-98 E601 H431 S 1-97	W-1206		1-97		E601
W-1209Q1-97E601W-1210Q1-97E601W-1211Q1-97E601W-1212Q1-97E601W-1213Q1-97E601W-1216Q1-97E601W-1218Q1-97E601W-1221Q1-97E601W-1221Q1-97E601W-1221Q1-97E601W-1221Q1-97E601W-1223Q1-97E601W-1254Q1-97E601W-1253Q1-97E601W-1254Q1-97E601W-1255Q1-97E601W-1254Q1-97E601W-1255Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254Q1-97E601W-1254S2-97E601W11AB1-98E601H411Q1-97WGMGH411B1-98E601H411B3-98E601H411B3-98E601H411B3-98E601H411B3-98E601H411B3-98E601H411B3-98E601H411B3-98E601H411<	W-1207	Q	1-97		E601
W-1210 Q 1-97 E601 W-1211 Q 1-97 E601 W-1212 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E601 W-1223 Q 1-97 E006 W-1224 Q 1-97 E001 W-1252 Q 1-97 E001 W-1253 Q 1-97 E001 W-1254 Q 1-97 E001 W-1255 Q 1-97 E001 W11A B 3-98 E001 W11A B 1-98 E001 W11A B 1-97 WGMG H4A1 S 1-97 WGMG H4A3 S 1-97 WGMG H4A1 B 1-98 E001 H4A3 Q 1-97 WGMG	W-1208	PTU	PTU		E601
W-1211 Q 1-97 E601 W-1212 Q 1-97 E601 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1219 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E601 W-1223 Q 1-97 E601 W-1254 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W11A A 3-97 E601 TW11A B 3-98 E601 TW11A B 1-97 WGMG 14A1 S 1-97 WGMG 14A3 S 1-97 WGMG 14B1 Q 1-97 WGMG 14B4 B 1-98 E601	W-1209	Q	1-97		E601
W-1212 Q 1-97 E624 W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1210 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E006 W-1222 Q 1-97 E906 E601 W-1250 Q 1-97 E906 E601 W-1251 Q 1-97 E001 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W111 A 3-97 E601 TW11A B 3-98 E601 11C1 B 1-97 E601 14A11 S 1-97 E601 14A3	W-1210	Q	1-97		E601
W-1214 Q 1-97 E601 W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E906 E601 W-1222 Q 1-97 E906 E601 W-1250 Q 1-97 E906 E601 W-1251 Q 1-97 E906 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W111 A 3-97 E601 TW21 S 2-97 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 E601	W-1211	Q	1-97		E601
W-1215 Q 1-97 E601 W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E601 W-1222 Q 1-97 E006 E601 W-1221 Q 1-97 E006 E601 W-1222 Q 1-97 E006 E601 W-1250 Q 1-97 E601 E601 W-1251 Q 1-97 E601 E601 W-1253 Q 1-97 E601 E601 W-1254 Q 1-97 E601 E601 W-1255 Q 1-97 E601 E601 TW11 A 3-97 E601 E601 TW11A B 3-98 E601 E601 14A11 S 1-97 KGMG E601 14A3 S 1-97 WGMG E601 14A3 S 1-97 WGMG E601 14A3 S 1-97 WGMG E601 14A3 S 1-97 WGMG <t< td=""><td>W-1212</td><td>Q</td><td>1-97</td><td></td><td>E624</td></t<>	W-1212	Q	1-97		E624
W-1216 Q 1-97 E601 W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E006 E601 W-1222 Q 1-97 E906 E601 W-1220 Q 1-97 E906 E601 W-1221 Q 1-97 E006 E601 W-1222 Q 1-97 E006 E601 W-1250 Q 1-97 E601 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W11A A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 14A3 S 1-97 E601 14A3 S 1-97 <	W-1214	Q	1-97		E601
W-1217 Q 1-97 E601 W-1218 Q 1-97 E601 W-1220 Q 1-97 E601 W-1221 Q 1-97 E906 E601 W-1222 Q 1-97 E906 E601 W-1220 Q 1-97 E906 E601 W-1221 Q 1-97 E906 E601 W-1220 Q 1-97 E906 E601 W-1251 Q 1-97 E601 E016 W-1252 Q 1-97 E601 E016 W-1253 Q 1-97 E601 E016 W-1254 Q 1-97 E601 E601 W-1255 Q 1-97 E601 E601 TW11 A 3-97 E601 E601 TW11A B 3-98 E601 E601 11C1 B 1-97 WGMG E601 14A3 S 1-97 WGMG E601 14A3 <t< td=""><td>W-1215</td><td>Q</td><td>1-97</td><td></td><td>E601</td></t<>	W-1215	Q	1-97		E601
W-1218 Q 1-97 E601 W-1220 Q 1-97 E006 W-1221 Q 1-97 E906 E601 W-1222 Q 1-97 E906 E601 W-1220 Q 1-97 E906 E601 W-1220 Q 1-97 E906 E601 W-1250 Q 1-97 E906 E601 W-1251 Q 1-97 E601 W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W11 A 3-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 14A3 S 1-97 WGMG 14A1 S 1-97 WGMG 14A3 S 1-97 WGMG 14B4 B 1-98 E601 14K4 B 1-98 E601 14K4 B 1-98 E601 14K2 B 3-98 E601 <td>W-1216</td> <td>Q</td> <td>1-97</td> <td></td> <td>E601</td>	W-1216	Q	1-97		E601
W-1220 Q 1-97 E601 W-1221 Q 1-97 E906 E601 W-1222 Q 1-97 E906 E601 W-1250 Q 1-97 E906 E601 W-1251 Q 1-97 E601 E601 W-1252 Q 1-97 E601 E601 W-1253 Q 1-97 E601 E601 W-1254 Q 1-97 E601 E601 W-1255 Q 1-97 E601 E601 W-1254 Q 1-97 E601 E601 W-1255 Q 1-97 E601 E601 TW11 A 3-97 E601 E601 TW21 S 2-97 E601 14A1 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 WGMG E601 14B1 Q 1-97 WGMG E601 14A2 B 3-98 E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 E601 14C3	W-1217	Q	1-97		E601
W-1221 Q 1-97 E906 E601 W-1222 Q 1-97 E906 E601 W-1250 Q 1-97 E601 W-1251 Q 1-97 E601 W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 14A1 S 1-97 E601 14A1 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 E601 14B1 Q 1-97 WGMG E601 14B4 B 1-98 E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 E601 14C3 Q 1-97 E601 14C3 Q 1-97 E601 14C3 Q	W-1218	Q	1-97		E601
W-1222 Q 1-97 E906 E601 W-1250 Q 1-97 E601 W-1251 Q 1-97 E601 W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW21 S 2-97 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 WGMG E601 14B4 B 1-98 E601 E601 14C1 B 3-98 <	W-1220	Q	1-97		E601
W-1250 Q 1-97 E601 W-1251 Q 1-97 E601 W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 11C1 B 1-97 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14A3 S 1-97 E601 14B1 Q 1-97 WGMG E601 14B4 B 1-98 E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 WGMG E601 14C3 Q 1-97 E601 14C1 B 3-98 E601 14C3 Q 1-97 E601 14C1 B 3-98 E601 14C1 B 3-98	W-1221	Q	1-97		E601
W-1251Q1-97E601W-1252Q1-97E601W-1253Q1-97E601W-1254Q1-97E601W-1255Q1-97E601TW11A3-97E601TW11AB3-98E601TW21S2-97E60111C1B1-97E60114A31S1-97E60114B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	W-1222	Q	1-97	E906	E601
W-1252 Q 1-97 E601 W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 11C1 B 1-98 E601 14A11 S 1-97 E601 14A3 S 1-97 WGMG 14B1 Q 1-97 WGMG 14B4 B 1-98 E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 WGMG 14C1 B 3-98 E601 14C3 Q 1-97 E601 14C3 Q 1-97 E601 14H1 B 2-98 E601	W-1250	Q	1-97		E601
W-1253 Q 1-97 E601 W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 11C1 B 1-98 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14B1 Q 1-97 WGMG E601 14B4 B 1-98 E601 E601 14C1 B 3-98 E601 E601 14C2 B 3-98 E601 E601 14C3 Q 1-97 WGMG E601 14C3 Q 1-97 E601 E601 14H1 B 2-98 E601 E601	W-1251	Q	1-97		E601
W-1254 Q 1-97 E601 W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 11C1 B 1-98 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14B1 Q 1-97 WGMG E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 E601 14H1 B 2-98 E601	W-1252	Q	1-97		E601
W-1255 Q 1-97 E601 TW11 A 3-97 E601 TW11A B 3-98 E601 TW21 S 2-97 E601 11C1 B 1-98 E601 14A11 S 1-97 E601 14A3 S 1-97 E601 14B1 Q 1-97 WGMG E601 14C1 B 3-98 E601 14C2 B 3-98 E601 14C3 Q 1-97 E601 14H1 B 2-98 E601	W-1253	Q	1-97		E601
TW11A3-97E601TW11AB3-98E601TW21S2-97E60111C1B1-98E60114A11S1-97E60114A3S1-97E60114B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114C1B3-98E60114C3Q1-97E60114C1B2-98E601	W-1254	Q	1-97		E601
TW11AB3-98E601TW21S2-97E60111C1B1-98E60114A11S1-97E60114A3S1-97WGMGE60114B1Q1-97WGMGE60114B4B3-98E60114C1B3-98E60114C2Q1-97E60114C3Q1-97E60114H1B2-98E601	W-1255	Q	1-97		E601
TW21S2-97E60111C1B1-98E60114A11S1-97E60114A3S1-97WGMG14B1Q1-97WGMG14B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	TW11	Α	3-97		E601
11C1B1-98E60114A11S1-97E60114A3S1-97WGMGE60114B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2Q1-97E60114C3Q1-97E60114H1B2-98E601	TW11A	В	3-98		E601
14A11S1-97E60114A3S1-97WGMGE60114B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	TW21	S	2-97		E601
14A3S1-97E60114B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	11C1	В	1-98		E601
14B1Q1-97WGMGE60114B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	14A11	S	1-97		E601
14B4B1-98E60114C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	14A3	S	1-97		E601
14C1B3-98E60114C2B3-98E60114C3Q1-97E60114H1B2-98E601	14B1	Q	1-97	WGMG	E601
14C2B3-98E60114C3Q1-97E60114H1B2-98E601	14B4	В	1-98		E601
14C3Q1-97E60114H1B2-98E601	14C1	В	3-98		E601
14H1 B 2-98 E601	14C2	В	3-98		E601
	14C3	Q	1-97		E601
18D1 B 2-98 E601	14H1	В	2-98		E601
	18D1	В	2-98		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
7D2	Q	1-97		E601
GEW710	Q	1-97		E601
GEW808	Q	1-97		E601
GEW816	Q	1-97		E602
GSW006	Q	1-97		E602/14d
GSW007	Α	4-97		E601
GSW008	Q	1-97		E602/14d
GSW009	Q	1-97		E602/14d
GSW011	Q	1-97		E602/14d
GSW013	Q	1-97		E602/14d
GSW215	Q	1-97		E602/14d
GSW266	Q	1-97		E602/14d
GSW326	Α	4-97		E601
GSW367	S	2-97		E601
GSW442	Α	4-97		E601
GSW443	S	2-97		E624
GSW444	S	2-97		E601
HW-GP-103	Q	1-97		E601
HW-GP-104	Q	1-97		E601
SIP-141-201	S	2-97		E601
SIP-141-202	S	2-97		E601
SIP-141-203	S	2-97		E601
SIP-191-003	Α	4-97		E601
SIP-191-004	Α	4-97		E601
SIP-212-101	Q	1-97	E906	E601
SIP-293-001	Q	1-97	E906	E601
SIP-331-001	S	2-97		E601
SIP-419-101	Q	1-97	NPDESMET; E906	E601
SIP-419-201	Q	1-97	NPDESMET; E906	E601
SIP-419-202	Q	1-97	NPDESMET; E906	E601
SIP-490-102	Α	4-97		E601
SIP-501-004	Α	4-97		E601
SIP-501-006	Q	1-97		E601
SIP-501-007	Q	1-97		E601
SIP-501-101	A	4-97		E601
SIP-501-102	Α	4-97		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
SIP-501-104	A	4-97	(1)/)	E601
SIP-501-104	A	4-97 4-97		E601 E601
SIP-501-201		4-97 1-97		E601 E601
SIP-501-201	Q	1-97		E601 E601
SIP-511-101	Q	1-97	NIDDECMET. E006	E601 E601
SIP-511-101	Q	1-97	NPDESMET; E906 NPDESMET; E906	E601 E601
	Q	1-97 1-97	NPDESMET; E906	E601 E601
SIP-518-203	Q			E601 E601
SIP-543-101 SIP-AS-001	Q	1-97 1-97		E601 E601
	Q			
SIP-CR-049	Q	1-97		E601
SIP-ETC-201	Q	1-97		E601
SIP-ETS-201	A	4-97		E601
SIP-ETS-204	S	1-97		E601
SIP-ETS-205	A	3-97		E601
SIP-ETS-207	S	2-97		E601
SIP-ETS-209	S	2-97		E601
SIP-ETS-211	A	4-97		E601
SIP-ETS-212	Α	4-97		E601
SIP-ETS-213	S	2-97		E601
SIP-ETS-214	Α	4-97		E601
SIP-ETS-215	Α	4-97		E601
SIP-ETS-302	Α	4-97		E601
SIP-ETS-303	S	2-97		E601
SIP-ETS-304	S	2-97		E601
SIP-ETS-306	Α	4-97		E601
SIP-ETS-401	S	2-97		E601
SIP-ETS-402	S	2-97		E601
SIP-ETS-404	Α	4-97		E601
SIP-ETS-405	Α	4-97		E601
SIP-ETS-501	Α	4-97		E601
SIP-ETS-502	Α	4-97		E601
SIP-HPA-001	Q	1-97		E601
SIP-HPA-003	Q	1-97		E601
SIP-HPA-102	Q	1-97		E601
SIP-HPA-103	Q	1-97		E601
SIP-HPA-201	Q	1-97		E601

Well number	1997 VOC sampling frequency	Next quarter sample date	Metals, RAD, etc. (1-97)	VOCs
UP-292-006	Q	1-97	E906	E601
UP-292-007	Q	1-97	E906	E601
UP-292-012	Q	1-97	E906	E601
UP-292-015	Q	1-97	E906	E601

Notes:

S = Semiannual.

A = Annual.

B = Biennial.

Q = Quarterly.

E601 = EPA Method 601 for purgeable halocarbons.

E624 = EPA Method 624 for VOCs.

E602 = EPA Method 602 for aromatic volatile compounds.

E602/14d = EPA Method 602/14d for aromatic volatile compounds on 14-day turnaround.

E903+904 = Isotopic radium 226, 228.

E906 = EPA Method 906 for tritium.

NPDESMET = National Pollution Discharge Elimination System Metals.

WGMG = Water Guidance and Monitoring Group.

Appendix D

1996 Drainage Retention Basin Annual Monitoring Program Summary

Appendix D

1996 Drainage Retention Basin Annual Monitoring Program Summary

This Appendix summarizes the 1996 LLNL Operations and Regulatory Affairs Division routine maintenance activities, maintenance monitoring, and discharge data for the Drainage Retention Basin (DRB). The DRB, located in the central portion of the Livermore Site (Fig. D-1), is an artificial water body with about 43 acre-ft (approximately 1.4×10^7 gal) capacity, which was designed to receive storm water runoff and treated ground water. Discharge samples are collected at the first planned release of the rainy season and, at a minimum, in conjunction with one additional storm water monitoring event. Release water samples are collected at sample location CDBX and are compared with the LLNL Arroyo Las Positas outfall samples collected at sample location WPDC (Fig. D-1). Weekly maintenance field monitoring measurements are conducted at sample locations CDBA, CDBC, CDBD, CDBE, CDBF, CDBJ, CDBK, and CDBL (Fig. D-2). Monthly, quarterly, semi-annual and annual maintenance samples are collected at sampling location CDBE (Fig. D-2).

Maintenance samples are used as the basis for management decisions regarding the DRB. Management action levels (MALs) are specified in the *Drainage Retention Basin Management Plan, Lawrence Livermore National Laboratory* (Limnion Corp., 1991). The MAL is the concentration at which corrective management responses should be implemented. In most cases, short-term variances outside the normal range are not significant, and management response is required only if the objective is substantially exceeded.

Release samples are collected at the first release of the rainy season and during one additional release, in conjunction with storm water samples, as requested by the California Regional Water Quality Control Board-San Francisco Bay Region (CRWQCB-SF). Release samples are used to determine compliance with current discharge limits.

Complete analytical results of basin and release water samples are available upon request.

D.1. Drainage Retention Basin Maintenance Monitoring

Samples collected during 1996 within the DRB at sample location CDBE did not meet the MALs for alkalinity, nitrate (as nitrogen), nitrite (as nitrogen), ammonia, phosphorus (as phosphate), turbidity, temperature, alkalinity, and iron. Results of the September 1996 CDBE tritium analysis are still pending.

Total phosphorous as phosphate was above the 0.02 milligrams per liter (mg/L) MAL each month in 1996 with concentrations ranging from <0.05 to 0.24 mg/L. Nitrate as nitrogen concentrations ranging from 0.2 mg/L to 0.6 mg/L also equaled or exceeded the 0.2 mg/L MAL every month during 1996. Nitrite as nitrogen concentrations remained below the 0.5 mg/L analytical reporting limit in January, February, May, June, and September. However, this analytical reporting limit is above the 0.2 mg/L MAL. In the remaining months, LLNL sent

nitrite samples to two new laboratories which were able to obtain an analytical reporting limit of 0.1 mg/L. Samples collected during these months were below the 0.1 mg/L analytical reporting limit. Ammonia nitrogen concentrations were above the 0.1 mg/L MAL in January, February, May, July, and September. Detectable concentrations of ammonia nitrogen ranged from 0.02 mg/L to 3.9 mg/L.

Although nutrient levels have been increasing for the last two years, chlorophyll "a", which indicates the level of algae growth, remains well below the 10 mg/L MAL, ranging from <0.00096 mg/L to 0.0118 mg/L. This indicates nutrients are not the limiting factor for algae growth in the DRB. Two possible explanations for the low levels of algae growth are high turbidity and low alkalinity.

Turbidity is a measurement of water clarity and effects the photic zone where algae growth would be expected to be concentrated. The turbidity during 1996 remained persistently high, ranging from 0.146 meters (m) to 0.474 m as measured by a secchi disk. The high turbidity severely reduces light penetration and is likely limiting algae growth. Turbidity first dropped below the 0.914 m MAL during August 1994 and remained below the MAL in 1995 and 1996.

In January 1995, total alkalinity dropped below the MAL of not less than 50 mg/L for the first time since June 1993, and continued below the MAL throughout 1996 except during the month of September when it was 100 mg/L. Low alkalinity can result in an increase in the toxicity of certain dissolved metals, such as copper. The basin management plan (Limnion Corp., 1991) did not anticipate alkalinity dropping below 50 mg/L but recommends if this occurs that the alkalinity be adjusted to 75 to 100 mg/L using either hydrated lime or sodium sesquicarbonate.

LLNL began monitoring in March for active ingredients of commonly used herbicides which could also inhibit algae growth. Quarterly monitoring in March, July, and October detected low levels of Bromocil (13 to 36 μ g/L) and Diuron (7 to 23 μ g/L). March showed the highest levels, which then decreased during the remainder of the year.

During September 1995, LLNL conducted chronic toxicity tests on algae and fish to determine if the lack of algae growth was due to something other than turbidity. The results of the test using the algae <u>Selanastrum capricornutum</u>, indicated algae growth inhibition occurred at a 12.5% concentration of DRB water. The test using the fathead minnow, <u>Pimephales promelas</u> showed no chronic toxicity in up to 100% DRB water. Follow-up chronic toxicity testing in September 1996 indicated that DRB water had no chronic toxicity to the fathead minnow, and actually had a growth inducing effect on the algae. However, this contradicts what is observed in the DRB and could indicate that turbidity is still the main growth limiting factor. LLNL is continuing to look into the cause of the reduced algae growth within the DRB.

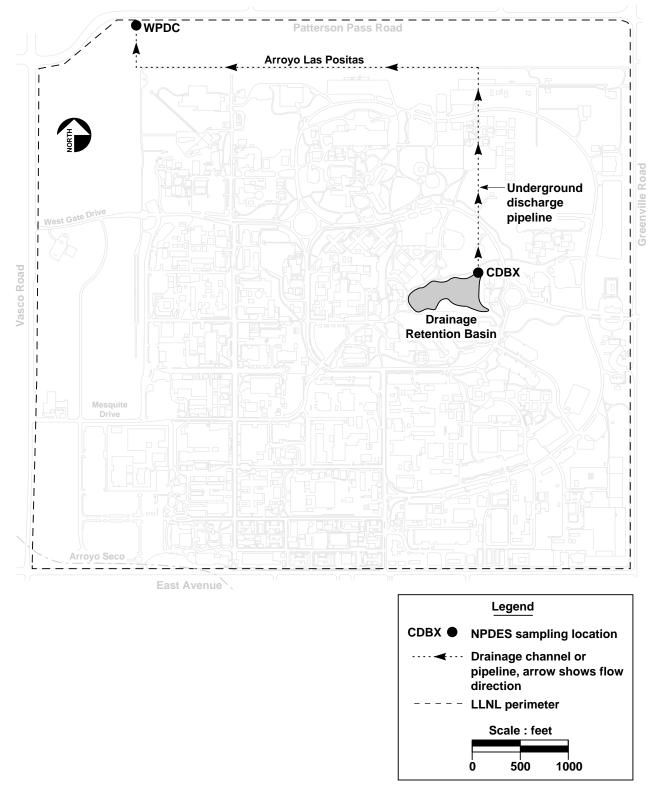
Dissolved oxygen remained above the MAL of 5 mg/L and mostly at or above the MAL of 80% saturation. Dissolved oxygen levels below 5 mg/L allow anaerobic bacteria to thrive, potentially releasing metals and nutrients from the sediments into the water.

Iron was the only metal that exceeded the current discharge limits. As reported in the *Annual Environmental Report* (Harrach, 1995), influent data indicate that the iron concentration at CDBE is within the range of storm water influent data. Iron was above its MAL of 3,000 μ g/L from February through August. Concentrations of iron at location CDBE ranged from 2,100 μ g/L to 10,000 μ g/L in 1996.

Semiannual and annual maintenance sampling was conducted during April and September 1996. Quarterly sampling was conducted in January, April, July, and October. Results for chemical oxygen demand, oil and grease, total and fecal coliform bacteria, volatile organic compounds, semi-volatile organic compounds, total petroleum hydrocarbons, polynuclear aromatic compounds, ethylene dibromide and total organic carbon all met their MALs. Tritium results for the September sample are still pending. Gross alpha, and beta were consistent with background levels. Acute fish toxicity test using the fathead minnow (93% survival) met the 90% survival MAL.

D-2. Drainage Retention Basin Discharge Monitoring

Two DRB release samples were collected in 1996. The November 19, 1996 release was a manual release and was the first of the rainy season. The release was necessary to prevent flooding of areas around the DRB and the upstream channels. The January 16, 1996 sample was collected from storm water overflowing the lowered weir gate and occurred concurrent with the 1995/96 storm water sampling event. Samples were collected during this release from locations CDBX and WPDC. Only discharges from CDBX are subject to the discharge limits established in the Record of Decision (DOE, 1992) as revised in an August 15, 1996 letter from the CRWQCB-SF (Bessette Rochette, 1996). Discharges from WPDC are monitored at the request of the CRWQCB-SF to evaluate the impact of the release as it flows through the main LLNL storm water drainage channel. Dry season (April 1–November 30) limits identified in the August 15, 1996 letter were used to evaluate the compliance of the November release, wet weather limits (December 1–March 31) were used to evaluate the compliance of the January release.


Samples collected at WPDC on January 16, 1996, are a combination of site runoff, surface water draining from offsite, ground water treatment facility discharges, and the release from the DRB. Samples collected on November 19, 1996 are a combination of DRB discharges and ground water treatment facility discharges.

In January 1996, LLNL began measuring the volume of water discharged from the DRB at CDBX with a flow meter installed in December 1995. A total 28 million gal of water was discharged from the DRB in the months of January, February, March, May, November and December. The largest single day discharge occurred on December 21, 1996 (3.6 million gal).

Samples collected from CDBX contained total petroleum hydrocarbons and iron above discharge limits. Sample results are still pending for tritium. Ethylene dibromide was below the analytical reporting limit. All other constituents were below discharge limits. Iron (3,200 and 3,900 μ g/L) exceeded the 3,000 μ g/L discharge limit at CDBX. Samples collected from WPDC exceeded the discharge limit for iron only in the January sample (9,700 μ g/L). These concentrations for iron are within the range of iron concentrations reported in the storm water influent to the DRB. Total petroleum hydrocarbons exceeded the discharge limit of 50 μ g/L for the first time. The analytical results indicated that total petroleum hydrocarbons indicative of diesel were detected at 68 μ g/L. Total petroleum hydrocarbons indicative of gasoline were below the analytical reporting limit of 50 μ g/L.

D-3. References

- Bessette Rochette, M. (1996), Letter from Michael Bessette Rochette, CRWQCB-SF Project Manager, to Paul Ko, DOE Project Manager, stating approval of changes to metals discharge limits and sampling frequencies, dated August 15, 1996.
- Harrach, R. (1995), *Lawrence Livermore National Environmental Report 1995*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-50027-95).
- Hoffman, J., P. McKereghan, J. Macdonald, B. Qualheim, R. Bainer, E. Folsom, and M. Dresen, (Eds.) (1995), *LLNL Ground Water Project 1994 Annual Report*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-115640-94-4).
- The Limnion Corporation (1991), Drainage Retention Basin Management Plan: Lawrence Livermore National Laboratory, Concord, Calif.
- U.S. Department of Energy (DOE) (1992), *Record of Decision for the Lawrence Livermore National Laboratory, Livermore Site*, Lawrence Livermore National Laboratory, Livermore, Calif. (UCRL-AR-109105).

ERD-LSR-97-0019

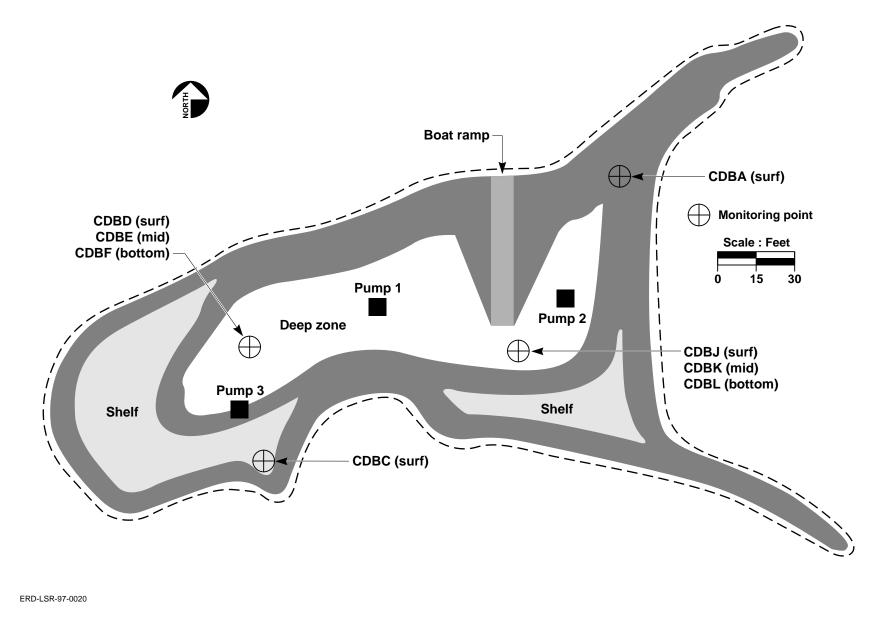


Figure D-2. Monitoring locations in the Drainage Retention Basin.