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2 33. Passage of particles through matter

33. PASSAGE OF PARTICLES THROUGH MATTER

Revised August 2015 by H. Bichsel (University of Washington), D.E. Groom (LBNL),
and S.R. Klein (LBNL).

This review covers the interactions of photons and electrically charged particles in
matter, concentrating on energies of interest for high-energy physics and astrophysics and
processes of interest for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons (π±, p, etc.). Although
the charge number z of the projectile is included in the equations, only z = 1 is discussed
in detail. Muon radiative losses are discussed, as are photon/electron interactions at high
to ultrahigh energies. Neutrons are not discussed.

33.1. Notation

The notation and important numerical values are shown in Table 33.1.

33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed v = βc occur in single
collisions with energy losses W [1], leading to ionization, atomic, or collective excitation.
Most frequently the energy losses are small (for 90% of all collisions the energy losses are
less than 100 eV). In thin absorbers few collisions will take place and the total energy
loss will show a large variance [1]; also see Sec. 33.2.9 below. For particles with charge
ze more massive than electrons (“heavy” particles), scattering from free electrons is
adequately described by the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single collision. But in matter
electrons are not free. W must be finite and depends on atomic and bulk structure. For
electrons bound in atoms Bethe [3] used “Born Theorie” to obtain the differential cross
section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ). Examples of B(W )
and dσB/dW can be seen in Figs. 5 and 6 of Ref. 1.

Bethe’s theory extends only to some energy above which atomic effects are not
important. The free-electron cross section (Eq. (33.1)) can be used to extend the cross
section to Wmax. At high energies σB is further modified by polarization of the medium,
and this “density effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and W + dW occurring in
a distance δx is Neδx (dσ/dW )dW , where dσ(W ; β)/dW contains all contributions. It is
convenient to define the moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)
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33. Passage of particles through matter 3

Table 33.1: Summary of variables used in this section. The kinematic variables β
and γ have their usual relativistic meanings.

Symbol Definition Value or (usual) units

mec
2 electron mass × c2 0.510 998 928(11) MeV

re classical electron radius

e2/4πǫ0mec
2 2.817 940 3267(27) fm

α fine structure constant

e2/4πǫ0~c 1/137.035 999 074(44)

NA Avogadro’s number 6.022 141 29(27)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV

T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV

in a single collision

k bremsstrahlung photon energy MeV

z charge number of incident particle

Z atomic number of absorber

A atomic mass of absorber g mol−1

K 4πNAr2
emec

2 0.307 075 MeV mol−1 cm2

I mean excitation energy eV (Nota bene! )

δ(βγ) density effect correction to ionization energy loss

~ωp plasma energy
√

ρ 〈Z/A〉 × 28.816 eV
√

4πNer3
e mec

2/α |−→ ρ in g cm−3

Ne electron density (units of re)
−3

wj weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV

Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

so that M0 is the mean number of collisions in δx, M1 is the mean energy loss in
δx, (M2 − M1)

2 is the variance, etc. The number of collisions is Poisson-distributed
with mean M0. Ne is either measured in electrons/g (Ne = NAZ/A) or electrons/cm3
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4 33. Passage of particles through matter

(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a function
of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dx in the radiative region is not
simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax = 2mec
2 β2γ2, valid for

2γme ≪ M , is often implicit. For a pion in copper, the error thus introduced into dE/dx
is greater than 6% at 100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, where hadronic structure effects significantly modify the cross sections.
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33. Passage of particles through matter 5

This problem has been investigated by J.D. Jackson [9], who concluded that for hadrons
(but not for large nuclei) corrections to dE/dx are negligible below energies where
radiative effects dominate. While the cross section for rare hard collisions is modified, the
average stopping power, dominated by many softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged heavy particles,
M1/δx, is well-described by the “Bethe equation,”

〈

−dE

dx

〉

= Kz2 Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]

. (33.5)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for intermediate-Z
materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and values given in
Table 33.1, the units are MeV g−1cm2. As can be seen from Fig. 33.2, 〈−dE/dx〉 defined
in this way is about the same for most materials, decreasing slowly with Z. The linear
stopping power, in MeV/cm, is 〈−dE/dx〉 ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 33.2.6), and at the upper limit radiative
effects begin to be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax, but for all
practical purposes 〈dE/dx〉 in a given material is a function of β alone.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main problem is
that the mean is weighted by very rare events with large single-collision energy deposits.
Even with samples of hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most probable energy
loss, discussed in Sec. 33.2.9. The most probable energy loss in a detector is considerably
below the mean given by the Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples with the smallest signals
is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as described in Eq. (33.5)
still forms the basis of much of our understanding of energy loss by charged particles.
Extensive tables are available[4,5, pdg.lbl.gov/AtomicNuclearProperties/].

For heavy projectiles, like ions, additional terms are required to account for higher-
order photon coupling to the target, and to account for the finite size of the target radius.
These can change dE/dx by a factor of two or more for the heaviest nuclei in certain
kinematic regimes [7].

The function as computed for muons on copper is shown as the “Bethe” region of
Fig. 33.1. Mean energy loss behavior below this region is discussed in Sec. 33.2.6, and the
radiative effects at high energy are discussed in Sec. 33.6. Only in the Bethe region is it a
function of β alone; the mass dependence is more complicated elsewhere. The stopping
power in several other materials is shown in Fig. 33.2. Except in hydrogen, particles with
the same velocity have similar rates of energy loss in different materials, although there
is a slow decrease in the rate of energy loss with increasing Z. The qualitative behavior
difference at high energies between a gas (He in the figure) and the other materials shown
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6 33. Passage of particles through matter
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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Figure 33.3: Mass stopping power at minimum ionization for the chemical
elements. The straight line is fitted for Z > 6. A simple functional dependence on
Z is not to be expected, since 〈−dE/dx〉 also depends on other variables.

33.2.4. Mean excitation energy :

“The determination of the mean excitation energy is the principal non-trivial task in the
evaluation of the Bethe stopping-power formula” [10]. Recommended values have varied
substantially with time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-strength distributions and
dielectric-response functions were given in ICRU 49 [4]. See also ICRU 37 [11]. These
values, shown in Fig. 33.5, have since been widely used. Machine-readable versions can
also be found [12].

33.2.5. Density effect :

As the particle energy increases, its electric field flattens and extends, so that the
distant-collision contribution to Eq. (33.5) increases as ln βγ. However, real media
become polarized, limiting the field extension and effectively truncating this part of the
logarithmic rise [2–8,15–16]. At very high energies,

δ/2 → ln(~ωp/I) + lnβγ − 1/2 , (33.6)

where δ(βγ)/2 is the density effect correction introduced in Eq. (33.5) and ~ωp is the
plasma energy defined in Table 33.1. A comparison with Eq. (33.5) shows that |dE/dx|
then grows as lnβγ rather than lnβ2γ2, and that the mean excitation energy I is replaced
by the plasma energy ~ωp. The ionization stopping power as calculated with and without
the density effect correction is shown in Fig. 33.1. Since the plasma frequency scales as
the square root of the electron density, the correction is much larger for a liquid or solid
than for a gas, as is illustrated by the examples in Fig. 33.2.

The density effect correction is usually computed using Sternheimer’s parameteriza-
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8 33. Passage of particles through matter
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Figure 33.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the
range is 195 g cm−2 (17 cm).

tion [15]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);

δ0102(x−x0) if x < x0 (conductors)

(33.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 15) is obtained
by equating the high-energy case of Eq. (33.7) with the limit given in Eq. (33.6). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 16. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17],
and is summarized in Ref. 5.
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Figure 33.5: Mean excitation energies (divided by Z) as adopted by the ICRU [11].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid H2; the black
point at 19.2 eV is for H2 gas. The open circles show more recent determinations by
Bichsel [13]. The dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

The remaining relativistic rise comes from the β2γ growth of Wmax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 33.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of of Eq. (33.5) [4,11,13,14]
to correct for atomic binding having been neglected in calculating some of the contribu-
tions to Eq. (33.5). The Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order Born approximation.
Higher-order corrections, again important only at lower energies, are normally included
by adding the “Bloch correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping power for a negative
particle below that for a positive particle with the same mass and velocity. In a 1956
paper, Barkas et al. noted that negative pions had a longer range than positive pions [6].
The effect has been measured for a number of negative/positive particle pairs, including
a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula is given in
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10 33. Passage of particles through matter

ICRU 49 [4]. When the corrections are properly included, the Bethe treatment is
accurate to about 1% down to β ≈ 0.05, or about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons, one usually relies
on the phenomenological fitting formulae developed by Andersen and Ziegler [4,19]. As
tabulated in ICRU 49 [4], the nuclear plus electronic proton stopping power in copper is
113 MeV cm2 g−1 at T = 10 keV (βγ = 0.005), rises to a maximum of 210 MeV cm2 g−1

at T ≈ 120 keV (βγ = 0.016), then falls to 118 MeV cm2 g−1 at T = 1 MeV (βγ = 0.046).
Above 0.5–1.0 MeV the corrected Bethe theory is adequate.

For particles moving more slowly than ≈ 0.01c (more or less the velocity of the outer
atomic electrons), Lindhard has been quite successful in describing electronic stopping
power, which is proportional to β [20]. Finally, we note that at even lower energies,
e.g., for protons of less than several hundred eV, non-ionizing nuclear recoil energy loss
dominates the total energy loss [4,20,21].

33.2.7. Energetic knock-on electrons (δ rays) :

The distribution of secondary electrons with kinetic energies T ≫ I is [2]

d2N

dTdx
=

1

2
Kz2 Z

A

1

β2

F (T )

T 2
(33.8)

for I ≪ T ≤ Wmax, where Wmax is given by Eq. (33.4). Here β is the velocity of the
primary particle. The factor F is spin-dependent, but is about unity for T ≪ Wmax.
For spin-0 particles F (T ) = (1 − β2T/Wmax); forms for spins 1/2 and 1 are also
given by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). Additional formulae are given in Ref. 22.
Equation (33.8) is inaccurate for T close to I [23].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for example, on average
only one collision with Te > 10 keV will occur along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is produced at an
angle θ given by

cos θ = (Te/pe)(pmax/Wmax) , (33.9)

where pmax is the momentum of an electron with the maximum possible energy transfer
Wmax.

33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight can be obtained by
examining the mean energy deposit by an ionizing particle when energy transfers are
restricted to T ≤ Wcut ≤ Wmax. The restricted energy loss rate is

−dE

dx

∣

∣

∣

∣

T<Wcut

= Kz2 Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wcut

I2

−β2

2

(

1 +
Wcut

Wmax

)

− δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as Wcut → Wmax. It
can be verified that the difference between Eq. (33.5) and Eq. (33.10) is equal to
∫ Wmax
Wcut

T (d2N/dTdx)dT , where d2N/dTdx is given by Eq. (33.8).
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Figure 33.6: Bethe dE/dx, two examples of restricted energy loss, and the Landau
most probable energy per unit thickness in silicon. The change of ∆p/x with
thickness x illustrates its a lnx + b dependence. Minimum ionization (dE/dx|min)
is 1.664 MeV g−1 cm2. Radiative losses are excluded. The incident particles are
muons.

Since Wcut replaces Wmax in the argument of the logarithmic term of Eq. (33.5), the
βγ term producing the relativistic rise in the close-collision part of dE/dx is replaced by
a constant, and |dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The density
effect correction δ eliminates the explicit βγ dependence produced by the distant-collision
contribution.) This behavior is illustrated in Fig. 33.6, where restricted loss rates for
two examples of Wcut are shown in comparison with the full Bethe dE/dx and the
Landau-Vavilov most probable energy loss (to be discussed in Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the single-collision energy
above Wcut It is of limited use. The most probable energy loss, discussed in the next
Section, is far more useful in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or LAr cells),* the energy loss
probability distribution f(∆; βγ, x) is adequately described by the highly-skewed Landau
(or Landau-Vavilov) distribution [24,25]. The most probable energy loss is [26]†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* G <∼ 0.05–0.1, where G is given by Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25].
It is proportional to the absorber’s thickness, and as such parameterizes the constants
describing the Landau distribution. These are fairly insensitive to thickness for G <∼ 0.1,
the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and β from the text ver-
sions of the muon energy loss tables to be found at pdg.lbl.gov/AtomicNuclearProperties.
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12 33. Passage of particles through matter

where ξ = (K/2) 〈Z/A〉 z2(x/β2) MeV for a detector with a thickness x in g cm−2, and
j = 0.200 [26]. ‡ While dE/dx is independent of thickness, ∆p/x scales as a lnx + b. The
density correction δ(βγ) was not included in Landau’s or Vavilov’s work, but it was later
included by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(~ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted energy loss,
reaches a Fermi plateau. The Bethe dE/dx and Landau-Vavilov-Bichsel ∆p/x in silicon
are shown as a function of muon energy in Fig. 33.6. The energy deposit in the 1600 µm
case is roughly the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a 10 GeV muon traversing
1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVC
scintillator [1,13,28]. The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a kinetic energy transfer
limit of Wmax. The solid curve was calculated using Bethe-Fano theory. M0(∆)
and M1(∆) are the cumulative 0th moment (mean number of collisions) and 1st
moment (mean energy loss) in crossing the silicon. (See Sec. 33.2.1. The fwhm of
the Landau-Vavilov function is about 4ξ for detectors of moderate thickness. ∆p

is the most probable energy loss, and 〈∆〉 divided by the thickness is the Bethe
〈dE/dx〉.

The distribution function for the energy deposit by a 10 GeV muon going through a
detector of about this thickness is shown in Fig. 33.7. In this case the most probable
energy loss is 62% of the mean (M1(〈∆〉)/M1(∞)). Folding in experimental resolution

‡ Rossi [2], Talman [27], and others give somewhat different values for j. The most
probable loss is not sensitive to its value.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity
at the most probable value δp/x. The width w is the full width at half maximum.

displaces the peak of the distribution, usually toward a higher value. 90% of the collisions
(M1(〈∆〉)/M1(∞)) contribute to energy deposits below the mean. It is the very rare
high-energy-transfer collisions, extending to Wmax at several GeV, that drives the mean
into the tail of the distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe
equation, Eq. (33.5), is thus ill-defined experimentally and is not useful for describing
energy loss by single particles.♮ It rises as ln γ because Wmax increases as γ at high
energies. The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches of PVT plastic scintillator, the
ratio of the most probable E loss rate to the mean loss rate via the Bethe equation is
[0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses add less
than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is
essentially constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC
cells [1] and Si detectors [26], as shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC
cell. Also see Talman [27]. While ∆p/x may be calculated adequately with Eq. (33.11),
the distributions are significantly wider than the Landau width w = 4ξ [Ref. 26, Fig. 15].
Examples for 500 MeV pions incident on thin silicon detectors are shown in Fig. 33.8.
For very thick absorbers the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization, is

♮ It does find application in dosimetry, where only bulk deposit is relevant.
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14 33. Passage of particles through matter

shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the mean loss of a
minimum ionizing particle, 388 eV/µm (1.66 MeV g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin layers of pure elements
in the right proportion (Bragg additivity). In this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j

, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2) in the jth element.
Eq. (33.5) can be inserted into Eq. (33.13) to find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for
example, 〈Z/A〉 =

∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is
an underestimate, because in a compound electrons are more tightly bound than in the
free elements, and 〈δ〉 as calculated this way has little relevance, because it is the electron
density that matters. If possible, one uses the tables given in Refs. 16 and 29, that include
effective excitation energies and interpolation coefficients for calculating the density effect
correction for the chemical elements and nearly 200 mixtures and compounds. Otherwise,
use the recipe for δ given in Ref. 5 and 17, and calculate 〈I〉 following the discussion in
Ref. 10. (Note the “13%” rule!)
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33.2.11. Ionization yields : Physicists frequently

relate total energy loss to the number of ion pairs produced near the particle’s track.
This relation becomes complicated for relativistic particles due to the wandering of
energetic knock-on electrons whose ranges exceed the dimensions of the fiducial volume.
For a qualitative appraisal of the nonlocality of energy deposition in various media by such
modestly energetic knock-on electrons, see Ref. 30. The mean local energy dissipation per
local ion pair produced, W , while essentially constant for relativistic particles, increases
at slow particle speeds [31]. For gases, W can be surprisingly sensitive to trace amounts
of various contaminants [31]. Furthermore, ionization yields in practical cases may be
greatly influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei as described by the
Rutherford cross section. (However, for hadronic projectiles, the strong interactions also
contribute to multiple scattering.) For many small-angle scatters the net scattering and
displacement distributions are Gaussian via the central limit theorem. Less frequent
“hard” scatters produce non-Gaussian tails. These Coulomb scattering distributions
are well-represented by the theory of Molière [34]. Accessible discussions are given by
Rossi [2] and Jackson [33], and exhaustive reviews have been published by Scott [35] and
Motz et al. [36]. Experimental measurements have been published by Bichsel [37]( low
energy protons) and by Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1√
2

θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with an rms width given by [39,40]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln(x/X0)
]

. (33.15)

Here p, βc, and z are the momentum, velocity, and charge number of the incident particle,
and x/X0 is the thickness of the scattering medium in radiation lengths (defined below).
This value of θ0 is from a fit to Molière distribution for singly charged particles with
β = 1 for all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (33.15) describes scattering from a single material, while the usual problem involves
the multiple scattering of a particle traversing many different layers and mixtures. Since it
is from a fit to a Molière distribution, it is incorrect to add the individual θ0 contributions
in quadrature; the result is systematically too small. It is much more accurate to apply
Eq. (33.15) once, after finding x and X0 for the combined scatterer.

* Shen et al.’s measurements show that Bethe’s simpler methods of including atomic
electron effects agrees better with experiment than does Scott’s treatment.
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Figure 33.10: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [34]

1

2π θ2
0

exp











−
θ2
space

2θ2
0











dΩ , (33.16)

1√
2π θ0

exp













−
θ2
plane

2θ2
0













dθplane , (33.17)

where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x + θ2
plane,y), where

the x and y axes are orthogonal to the direction of motion, and dΩ ≈ dθplane,x dθplane,y.
Deflections into θplane,x and θplane,y are independent and identically distributed.

Fig. 33.10 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are

ψ rms
plane =

1√
3

θ rms
plane =

1√
3

θ0 , (33.18)

y rms
plane =

1√
3

x θ rms
plane =

1√
3

x θ0 , (33.19)

s rms
plane =

1

4
√

3
x θ rms

plane =
1

4
√

3
x θ0 . (33.20)

All the quantitative estimates in this section apply only in the limit of small θ rms
plane and

in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a given plane
are correlated. Obviously, y ≈ xψ. In addition, y and θ have the correlation coefficient
ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint (y plane, θplane) distribution,

or for other calculations, it may be most convenient to work with independent Gaussian
random variables (z1, z2) with mean zero and variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3 (33.21)

=z1 x θ0/
√

12 + z2 x θ0/2 ; (33.22)

θplane =z2 θ0 . (33.23)
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Note that the second term for y plane equals x θplane/2 and represents the displacement
that would have occurred had the deflection θplane all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and compared with
various theoretical distributions [41].

33.4. Photon and electron interactions in matter

At low energies electrons and positrons primarily lose energy by ionization, although
other processes (Møller scattering, Bhabha scattering, e+ annihilation) contribute,
as shown in Fig. 33.11. While ionization loss rates rise logarithmically with energy,
bremsstrahlung losses rise nearly linearly (fractional loss is nearly independent of energy),
and dominates above the critical energy (Sec. 33.4.4 below), a few tens of MeV in most
materials

33.4.1. Collision energy losses by e± :

Stopping power differs somewhat for electrons and positrons, and both differ from
stopping power for heavy particles because of the kinematics, spin, charge, and the
identity of the incident electron with the electrons that it ionizes. Complete discussions
and tables can be found in Refs. 10, 11, and 29.

For electrons, large energy transfers to atomic electrons (taken as free) are described
by the Møller cross section. From Eq. (33.4), the maximum energy transfer in a single
collision should be the entire kinetic energy, Wmax = mec

2(γ − 1), but because the
particles are identical, the maximum is half this, Wmax/2. (The results are the same if
the transferred energy is ǫ or if the transferred energy is Wmax − ǫ. The stopping power is
by convention calculated for the faster of the two emerging electrons.) The first moment
of the Møller cross section [22]( divided by dx) is the stopping power:

〈

−dE

dx

〉

=
1

2
K

Z

A

1

β2

[

ln
mec

2β2γ2{mec
2(γ − 1)/2}

I2

+(1 − β2) − 2γ − 1

γ2
ln 2 +

1

8

(

γ − 1

γ

)2

− δ

]

(33.24)

The logarithmic term can be compared with the logarithmic term in the Bethe equation
(Eq. (33.2)) by substituting Wmax = mec

2(γ − 1)/2. The two forms differ by ln 2.
Electron-positron scattering is described by the fairly complicated Bhabha cross

section [22]. There is no identical particle problem, so Wmax = mec
2(γ − 1). The first

moment of the Bhabha equation yields
〈

−dE

dx

〉

=
1

2
K

Z

A

1

β2

[

ln
mec

2β2γ2{mec
2(γ − 1)}

2I2

+2 ln 2 − β2

12

(

23 +
14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

)

− δ

]

. (33.25)

Following ICRU 37 [11], the density effect correction δ has been added to Uehling’s
equations [22] in both cases.

For heavy particles, shell corrections were developed assuming that the projectile is
equivalent to a perturbing potential whose center moves with constant velocity. This
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18 33. Passage of particles through matter

assumption has no sound theoretical basis for electrons. The authors of ICRU 37 [11]
estimated the possible error in omitting it by assuming the correction was twice as great
as for a proton of the same velocity. At T = 10 keV, the error was estimated to be ≈2%
for water, ≈9% for Cu, and ≈21% for Au.

As shown in Fig. 33.11, stopping powers for e−, e+, and heavy particles are not
dramatically different. In silicon, the minimum value for electrons is 1.50 MeV cm2/g (at
γ = 3.3); for positrons, 1.46 MeV cm2/g (at γ = 3.7), and for muons, 1.66 MeV cm2/g (at
γ = 3.58).

33.4.2. Radiation length :

High-energy electrons predominantly lose energy in matter by bremsstrahlung, and
high-energy photons by e+e− pair production. The characteristic amount of matter
traversed for these related interactions is called the radiation length X0, usually measured
in g cm−2. It is both (a) the mean distance over which a high-energy electron loses
all but 1/e of its energy by bremsstrahlung, and (b) 7

9 of the mean free path for pair
production by a high-energy photon [42]. It is also the appropriate scale length for
describing high-energy electromagnetic cascades. X0 has been calculated and tabulated
by Y.S. Tsai [43]:

1

X0
= 4αr2

e
NA

A

{

Z2
[

Lrad − f(Z)
]

+ Z L′
rad

}

. (33.26)

For A = 1 g mol−1, 4αr2
eNA/A = (716.408 g cm−2)−1. Lrad and L′

rad are given in
Table 33.2. The function f(Z) is an infinite sum, but for elements up to uranium can be
represented to 4-place accuracy by

f(Z) =a2
[

(1 + a2)−1 + 0.20206

− 0.0369 a2 + 0.0083 a4 − 0.002 a6

]

,

(33.27)

where a = αZ [44].

Table 33.2: Tsai’s Lrad and L′
rad, for use in calculating the radiation length in an

element using Eq. (33.26).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

The radiation length in a mixture or compound may be approximated by

1/X0 =
∑

wj/Xj , (33.28)
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where wj and Xj are the fraction by weight and the radiation length for the jth element.

Figure 33.11: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e
± :

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [43]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,
(33.29)

where y = k/E is the fraction of the electron’s energy transferred to the radiated photon.
At small y (the “infrared limit”) the term on the second line ranges from 1.7% (low Z) to
2.5% (high Z) of the total. If it is ignored and the first line simplified with the definition
of X0 given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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Figure 33.12: The normalized bremsstrahlung cross section k dσLPM/dk in lead
versus the fractional photon energy y = k/E. The vertical axis has units of photons
per radiation length.

This formula is accurate except in near y = 1, where screening may become incomplete,
and near y = 0, where the infrared divergence is removed by the interference of
bremsstrahlung amplitudes from nearby scattering centers (the LPM effect) [45,46] and
dielectric suppression [47,48]. These and other suppression effects in bulk media are
discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section drops and the curves
become rounded as y → 1. Curves of this familar shape can be seen in Rossi [2]
(Figs. 2.11.2,3); see also the review by Koch & Motz [49].
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Figure 33.13: Two definitions of the critical energy Ec.

Except at these extremes, and still in the complete-screening approximation, the
number of photons with energies between kmin and kmax emitted by an electron travelling
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Figure 33.14: Electron critical energy for the chemical elements, using Rossi’s
definition [2]. The fits shown are for solids and liquids (solid line) and gases
(dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases.
(Computed with code supplied by A. Fassó.)

a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

− 4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

. (33.31)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly proportional to its energy,
while the ionization loss rate varies only logarithmically with the electron energy. The
critical energy Ec is sometimes defined as the energy at which the two loss rates are
equal [50]. Among alternate definitions is that of Rossi [2], who defines the critical
energy as the energy at which the ionization loss per radiation length is equal to the
electron energy. Equivalently, it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe transverse electromagnetic
shower development more accurately (see below). These definitions are illustrated in the
case of copper in Fig. 33.13.

The accuracy of approximate forms for Ec has been limited by the failure to distinguish
between gases and solid or liquids, where there is a substantial difference in ionization
at the relevant energy because of the density effect. We distinguish these two cases in
Fig. 33.14. Fits were also made with functions of the form a/(Z + b)α, but α was found
to be essentially unity. Since Ec also depends on A, I, and other factors, such forms are
at best approximate.

Values of Ec for both electrons and positrons in more than 300 materials can be found
at pdg.lbl.gov/AtomicNuclearProperties.
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Figure 33.15: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes [51]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [52].
In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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Figure 33.16: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ)
for various elemental absorbers as a function of photon energy. The mass attenuation
coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of
thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few
percent. For a chemical compound or mixture, 1/λeff ≈

∑

elements wZ/λZ , where
wZ is the proportion by weight of the element with atomic number Z. The processes
responsible for attenuation are given in Fig. 33.11. Since coherent processes are
included, not all these processes result in energy deposition. The data for 30 eV
< E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants

(courtesy of Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are
from http://physics.nist.gov/PhysRefData, through the courtesy of John H.
Hubbell (NIST).

33.4.5. Energy loss by photons :

Contributions to the photon cross section in a light element (carbon) and a
heavy element (lead) are shown in Fig. 33.15. At low energies it is seen that the
photoelectric effect dominates, although Compton scattering, Rayleigh scattering, and
photonuclear absorption also contribute. The photoelectric cross section is characterized
by discontinuities (absorption edges) as thresholds for photoionization of various atomic
levels are reached. Photon attenuation lengths for a variety of elements are shown in
Fig. 33.16, and data for 30 eV< k <100 GeV for all elements are available from the web
pages given in the caption. Here k is the photon energy.
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Figure 33.17: Probability P that a photon interaction will result in conversion to
an e+e− pair. Except for a few-percent contribution from photonuclear absorption
around 10 or 20 MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon attenuation length
λ (Fig. 33.16), the probability that a given photon will produce an electron pair
(without first Compton scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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Figure 33.18: The normalized pair production cross section dσLPM/dy, versus
fractional electron energy x = E/k.
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The increasing domination of pair production as the energy increases is shown in
Fig. 33.17. Using approximations similar to those used to obtain Eq. (33.30), Tsai’s
formula for the differential cross section [43] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k is the fractional
energy transfer to the pair-produced electron (or positron), and k is the incident photon
energy. The cross section is very closely related to that for bremsstrahlung, since the
Feynman diagrams are variants of one another. The cross section is of necessity symmetric
between x and 1 − x, as can be seen by the solid curve in Fig. 33.18. See the review by
Motz, Olsen, & Koch for a more detailed treatment [53].

Eq. (33.32) may be integrated to find the high-energy limit for the total e+e−

pair-production cross section:

σ = 7
9 (A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to energies as low as
1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high energies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of quantum mechanical
interference between amplitudes from different scattering centers. Since the longitudinal
momentum transfer to a given center is small (∝ k/E(E − k), in the case of
bremsstrahlung), the interaction is spread over a comparatively long distance called the
formation length (∝ E(E− k)/k) via the uncertainty principle. In alternate language, the
formation length is the distance over which the highly relativistic electron and the photon
“split apart.” The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically based on the average
multiple scattering, or more rigorously using a quantum transport approach [45,46].

In amorphous media, bremsstrahlung is suppressed if the photon energy k is less than
E2/(E + ELPM ) [46], where*

ELPM =
(mec

2)2αX0

4π~cρ
= (7.7 TeV/cm) × X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The energy-weighted
bremsstrahlung spectrum for lead, k dσLPM/dk, is shown in Fig. 33.12. With appropriate
scaling by X0/ρ, other materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM . The pair-production
cross sections for different photon energies are shown in Fig. 33.18.

If k ≪ E, several additional mechanisms can also produce suppression. When the
formation length is long, even weak factors can perturb the interaction. For example,
the emitted photon can coherently forward scatter off of the electrons in the media.

* This definition differs from that of Ref. 54 by a factor of two. ELPM scales as the 4th
power of the mass of the incident particle, so that ELPM = (1.4 × 1010 TeV/cm) × X0/ρ
for a muon.
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Because of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed by a factor
(kme/ωpE)2 [48]. Magnetic fields can also suppress bremsstrahlung.

In crystalline media, the situation is more complicated, with coherent enhancement or
suppression possible. The cross section depends on the electron and photon energies and
the angles between the particle direction and the crystalline axes [55].

33.4.7. Photonuclear and electronuclear interactions at still higher energies :

At still higher photon and electron energies, where the bremsstrahlung and pair
production cross-sections are heavily suppressed by the LPM effect, photonuclear and
electronuclear interactions predominate over electromagnetic interactions.

At photon energies above about 1020 eV, for example, photons usually interact
hadronically. The exact cross-over energy depends on the model used for the photonuclear
interactions. These processes are illustrated in Fig. 33.19. At still higher energies
(>∼ 1023 eV), photonuclear interactions can become coherent, with the photon interaction
spread over multiple nuclei. Essentially, the photon coherently converts to a ρ0, in a
process that is somewhat similar to kaon regeneration [56].
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Figure 33.19: Interaction length for a photon in ice as a function of photon energy
for the Bethe-Heitler (BH), LPM (Mig) and photonuclear (γA) cross sections [56].
The Bethe-Heitler interaction length is 9X0/7, and X0 is 0.393 m in ice.

Similar processes occur for electrons. As electron energies increase and the LPM
effect suppresses bremsstrahlung, electronuclear interactions become more important.
At energies above 1021eV, these electronuclear interactions dominate electron energy
loss [56].
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33.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates
an electromagnetic cascade as pair production and bremsstrahlung generate more
electrons and photons with lower energy. The longitudinal development is governed by
the high-energy part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy, and then dissipate
their energy by ionization and excitation rather than by the generation of more shower
particles. In describing shower behavior, it is therefore convenient to introduce the scale
variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy in units of critical
energy.
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Figure 33.20: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the
curve is a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X0/2 intervals
(scale on right) and the squares the number of photons with E ≥ 1.5 MeV crossing
the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles from an EGS4 [57] simulation of a 30 GeV electron-induced
cascade in iron are shown in Fig. 33.20. The number of particles crossing a plane (very
close to Rossi’s Π function [2]) is sensitive to the cutoff energy, here chosen as a total
energy of 1.5 MeV for both electrons and photons. The electron number falls off more
quickly than energy deposition. This is because, with increasing depth, a larger fraction
of the cascade energy is carried by photons. Exactly what a calorimeter measures depends
on the device, but it is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov detectors and other
devices with “thick” sensitive regions it is closer to the energy deposition (total track
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length). In such detectors the signal is proportional to the “detectable” track length Td,
which is in general less than the total track length T . Practical devices are sensitive to
electrons with energy above some detection threshold Ed, and Td = T F (Ed/Ec). An
analytic form for F (Ed/Ec) obtained by Rossi [2] is given by Fabjan in Ref. 58; see also
Amaldi [59].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade
is reasonably well described by a gamma distribution [60]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(33.36)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower profiles in elements
ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy
deposition profiles are well described by Eq. (33.36) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (33.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced
cascades. To use Eq. (33.36), one finds (a − 1)/b from Eq. (33.37) and Eq. (33.35), then
finds a either by assuming b ≈ 0.5 or by finding a more accurate value from Fig. 33.21.
The results are very similar for the electron number profiles, but there is some dependence
on the atomic number of the medium. A similar form for the electron number maximum
was obtained by Rossi in the context of his “Approximation B,” [2] (see Fabjan’s review
in Ref. 58), but with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.
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Figure 33.21: Fitted values of the scale factor b for energy deposition profiles
obtained with EGS4 for a variety of elements for incident electrons with
1 ≤ E0 ≤ 100 GeV. Values obtained for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized, since b depends
upon both Z and incident energy, as shown in Fig. 33.21. As a corollary of this
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Z dependence, the number of electrons crossing a plane near shower maximum is
underestimated using Rossi’s approximation for carbon and seriously overestimated for
uranium. Essentially the same b values are obtained for incident electrons and photons.
For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and electrons is somewhat
greater than at lower energies since the first or first few interaction lengths are increased
via the mechanisms discussed above.

The gamma function distribution is very flat near the origin, while the EGS4 cascade
(or a real cascade) increases more rapidly. As a result Eq. (33.36) fails badly for about
the first two radiation lengths; it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (33.36) should be used only in applications
where average behavior is adequate. Grindhammer et al. have developed fast simulation
algorithms in which the variance and correlation of a and b are obtained by fitting
Eq. (33.36) to individually simulated cascades, then generating profiles for cascades using
a and b chosen from the correlated distributions [61].

The transverse development of electromagnetic showers in different materials scales
fairly accurately with the Molière radius RM , given by [62,63]

RM = X0 Es/Ec , (33.38)

where Es ≈ 21 MeV (Table 33.1), and the Rossi definition of Ec is used.
In a material containing a weight fraction wj of the element with critical energy Ecj

and radiation length Xj , the Molière radius is given by

1

RM
=

1

Es

∑ wj Ecj

Xj
. (33.39)

Measurements of the lateral distribution in electromagnetic cascades are shown in
Refs. 62 and 63. On the average, only 10% of the energy lies outside the cylinder with
radius RM . About 99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails. The distributions
are characterized by a narrow core, and broaden as the shower develops. They are often
represented as the sum of two Gaussians, and Grindhammer [61] describes them with the
function

f(r) =
2r R2

(r2 + R2)2
, (33.40)

where R is a phenomenological function of x/X0 and lnE.
At high enough energies, the LPM effect (Sec. 33.4.6) reduces the cross sections

for bremsstrahlung and pair production, and hence can cause significant elongation of
electromagnetic cascades [46].
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33.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more important than ionization
for all charged particles. For muons and pions in materials such as iron, this “critical
energy” occurs at several hundred GeV. (There is no simple scaling with particle mass,
but for protons the “critical energy” is much, much higher.) Radiative effects dominate
the energy loss of energetic muons found in cosmic rays or produced at the newest
accelerators. These processes are characterized by small cross sections, hard spectra,
large energy fluctuations, and the associated generation of electromagnetic and (in the
case of photonuclear interactions) hadronic showers [64–72]. As a consequence, at these
energies the treatment of energy loss as a uniform and continuous process is for many
purposes inadequate.

It is convenient to write the average rate of muon energy loss as [73]

−dE/dx = a(E) + b(E) E . (33.41)

Here a(E) is the ionization energy loss given by Eq. (33.5), and b(E) is the sum of e+e−

pair production, bremsstrahlung, and photonuclear contributions. To the approximation
that these slowly-varying functions are constant, the mean range x0 of a muon with initial
energy E0 is given by

x0 ≈ (1/b) ln(1 + E0/Eµc) , (33.42)

where Eµc = a/b. Fig. 33.22 shows contributions to b(E) for iron. Since a(E) ≈ 0.002
GeV g−1 cm2, b(E)E dominates the energy loss above several hundred GeV, where b(E)
is nearly constant. The rates of energy loss for muons in hydrogen, uranium, and iron are
shown in Fig. 33.23 [5].
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Figure 33.22: Contributions to the fractional energy loss by muons in iron due to
e+e− pair production, bremsstrahlung, and photonuclear interactions, as obtained
from Groom et al. [5] except for post-Born corrections to the cross section for direct
pair production from atomic electrons.
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Figure 33.23: The average energy loss of a muon in hydrogen, iron, and uranium
as a function of muon energy. Contributions to dE/dx in iron from ionization and
the processes shown in Fig. 33.22 are also shown.

The “muon critical energy” Eµc can be defined more exactly as the energy
at which radiative and ionization losses are equal, and can be found by solving
Eµc = a(Eµc)/b(Eµc). This definition corresponds to the solid-line intersection in
Fig. 33.13, and is different from the Rossi definition we used for electrons. It serves the
same function: below Eµc ionization losses dominate, and above Eµc radiative effects
dominate. The dependence of Eµc on atomic number Z is shown in Fig. 33.24.

The radiative cross sections are expressed as functions of the fractional energy loss ν.
The bremsstrahlung cross section goes roughly as 1/ν over most of the range, while for the
pair production case the distribution goes as ν−3 to ν−2 [74]. “Hard” losses are therefore
more probable in bremsstrahlung, and in fact energy losses due to pair production may
very nearly be treated as continuous. The simulated [72] momentum distribution of an
incident 1 TeV/c muon beam after it crosses 3 m of iron is shown in Fig. 33.25. The most
probable loss is 8 GeV, or 3.4 MeV g−1cm2. The full width at half maximum is 9 GeV/c,
or 0.9%. The radiative tail is almost entirely due to bremsstrahlung, although most of
the events in which more than 10% of the incident energy lost experienced relatively hard
photonuclear interactions. The latter can exceed detector resolution [75], necessitating
the reconstruction of lost energy. Tables in Ref. 5 list the stopping power as 9.82 MeV
g−1cm2 for a 1 TeV muon, so that the mean loss should be 23 GeV (≈ 23 GeV/c), for
a final momentum of 977 GeV/c, far below the peak. This agrees with the indicated
mean calculated from the simulation. Electromagnetic and hadronic cascades in detector
materials can obscure muon tracks in detector planes and reduce tracking efficiency [76].
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33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of
light (Cherenkov radiation) or if it crosses suddenly from one medium to another with
different optical properties (transition radiation). Neither process is important for energy
loss, but both are used in high-energy and cosmic-ray physics detectors.

θc

γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 33.26: Cherenkov light emission and wavefront angles. In a dispersive
medium, θc + η 6= 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s direction, for a particle
with velocity βc in a medium with index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g . in gases. (33.43)

The threshold velocity βt is 1/n, and γt = 1/(1−β2
t )1/2. Therefore, βtγt = 1/(2δ+δ2)1/2,

where δ = n − 1. Values of δ for various commonly used gases are given as a function of
pressure and wavelength in Ref. 79. For values at atmospheric pressure, see Table 6.1.
Data for other commonly used materials are given in Ref. 80.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s frequency,
and let k = 2π/λ be its wavenumber. The photons propage at the group velocity
vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium, this simplies to
vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media the radiation is
concentrated in a thin conical shell whose vertex is at the moving charge, and whose
opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 33.26.) This cone has a opening half-angle η, and, unless the medium is
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non-dispersive (dn/dω = 0), θc + η 6= 900. The Cherenkov wavefront ‘sideslips’ along
with the particle [82]. This effect has timing implications for ring imaging Cherenkov
counters [83], but it is probably unimportant for most applications.

The number of photons produced per unit path length of a particle with charge ze and
per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

re mec2

(

1 − 1

β2n2(E)

)

≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (33.45)

or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(

1 − 1

β2n2(λ)

)

. (33.46)

The index of refraction n is a function of photon energy E = ~ω, as is the sensitivity
of the transducer used to detect the light. For practical use, Eq. (33.45) must be
multiplied by the the transducer response function and integrated over the region for
which β n(ω) > 1. Further details are given in the discussion of Cherenkov detectors in
the Particle Detectors section (Sec. 34 of this Review).

When two particles are close together (lateral separation <∼ 1 wavelength), the
electromagnetic fields from the particles may add coherently, affecting the Cherenkov
radiation. Because of their opposite charges, the radiation from an e+e− pair at close
separation is suppressed compared to two independent leptons [84].

33.7.2. Coherent radio Cherenkov radiation :

Coherent Cherenkov radiation is produced by many charged particles with a non-zero
net charge moving through matter on an approximately common “wavefront”—for
example, the electrons and positrons in a high-energy electromagnetic cascade. The
signals can be visible above backgrounds for shower energies as low as 1017 eV; see
Sec. 35.3.3 for more details. The phenomenon is called the Askaryan effect [85]. Near
the end of a shower, when typical particle energies are below Ec (but still relativistic),
a charge imbalance develops. Photons can Compton-scatter atomic electrons, and
positrons can annihilate with atomic electrons to contribute even more photons which
can in turn Compton scatter. These processes result in a roughly 20% excess of
electrons over positrons in a shower. The net negative charge leads to coherent radio
Cherenkov emission. The radiation includes a component from the decelerating charges
(as in bremsstrahlung). Because the emission is coherent, the electric field strength is
proportional to the shower energy, and the signal power increases as its square. The
electric field strength also increases linearly with frequency, up to a maximum frequency
determined by the lateral spread of the shower. This cutoff occurs at about 1 GHz in ice,
and scales inversely with the Moliere radius. At low frequencies, the radiation is roughly
isotropic, but, as the frequency rises toward the cutoff frequency, the radiation becomes
increasingly peaked around the Cherenkov angle. The radiation is linearly polarized in the
plane containing the shower axis and the photon direction. A measurement of the signal
polarization can be used to help determine the shower direction. The characteristics of
this radiation have been nicely demonstrated in a series of experiments at SLAC [86]. A
detailed discussion of the radiation can be found in Ref. 87.
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33.7.3. Transition radiation :

The energy radiated when a particle with charge ze crosses the boundary between
vacuum and a medium with plasma frequency ωp is

I = αz2γ~ωp/3 , (33.47)

where

~ωp =
√

4πNer3
e mec

2/α =

√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV . (33.48)

For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.
The number spectrum dNγ/d(~ω diverges logarithmically at low energies and

decreases rapidly for ~ω/γ~ωp > 1. About half the energy is emitted in the range
0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a practical detector removes the divergence.
For a particle with γ = 103, the radiated photons are in the soft x-ray range 2 to 40 keV.
The γ dependence of the emitted energy thus comes from the hardening of the spectrum
rather than from an increased quantum yield.

The number of photons with energy ~ω > ~ω0 is given by the answer to problem 13.15
in Ref. 33,

Nγ(~ω > ~ω0) =
αz2

π

[

(

ln
γ~ωp

~ω0
− 1

)2

+
π2

12

]

, (33.49)

within corrections of order (~ω0/γ~ωp)
2. The number of photons above a fixed

energy ~ω0 ≪ γ~ωp thus grows as (ln γ)2, but the number above a fixed fraction
of γ~ωp (as in the example above) is constant. For example, for ~ω > γ~ωp/10,
Nγ = 2.519 αz2/π = 0.59% × z2.

The particle stays “in phase” with the x ray over a distance called the formation
length, d(ω) = (2c/ω)(1/γ2 + θ2 + ω2

p/ω2)−1. Most of the radiation is produced in this
distance. Here θ is the x-ray emission angle, characteristically 1/γ. For θ = 1/γ the
formation length has a maximum at d(γωp/

√
2) = γc/

√
2 ωp. In practical situations it is

tens of µm.
Since the useful x-ray yield from a single interface is low, in practical detectors it

is enhanced by using a stack of N foil radiators—foils L thick, where L is typically
several formation lengths—separated by gas-filled gaps. The amplitudes at successive
interfaces interfere to cause oscillations about the single-interface spectrum. At increasing
frequencies above the position of the last interference maximum (L/d(w) = π/2), the
formation zones, which have opposite phase, overlap more and more and the spectrum
saturates, dI/dω approaching zero as L/d(ω) → 0. This is illustrated in Fig. 33.27 for a
realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for the intensity
have been obtained [88,89]. Although one might expect the intensity of coherent
radiation from the stack of foils to be proportional to N2, the angular dependence of the
formation length conspires to make the intensity ∝ N .
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Figure 33.27: X-ray photon energy spectra for a radiator consisting of 200 25µm
thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single
surface (dashed line). Curves are shown with and without absorption. Adapted
from Ref. 88.
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