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Bjerrum pairing correlations at charged interfaces
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PACS. 82.45.Mp – Thin layers, films, monolayers, membranes.
PACS. 61.20.Qg – Structure of associated liquids: electrolytes, molten salts, etc.
PACS. 82.39.Jn – Charge (electron, proton) transfer in biological systems.

Abstract. – Electrostatic correlations play a fundamental role in aqueous solutions. In this
letter, we identify transverse and lateral correlations as two mutually exclusive regimes. We
show that the transverse regime leads to binding by generalization of Bjerrum pair formation
theory, yielding binding constants from first-principle statistical-mechanical calculations. We
compare our theoretical predictions with experiments on charged membranes and Langmuir
monolayers and find good agreement. We contrast our approach with existing theories in the
strong-coupling limit and on charged modulated interfaces, and discuss different scenarios that
lead to charge reversal and equal-sign attraction by macro-ions.

Introduction. – In recent years it has been recognized that the precise ion distribution
next to charged macromolecules is a key problem for understanding biological processes such
as cell signaling, membrane fusion or DNA replication and is also of fundamental relevance in
many industrial applications. Ample theoretical and experimental efforts, reviewed in [1, 2],
have been devoted to the problem.

The standard theoretical approach for describing ions in solution next to charged interfaces
is the Poisson-Boltzmann (PB) theory. PB theory, however, ignores correlations, which are
believed to play a fundamental role when the interfaces are strongly charged and the solution
contains multi-valent ions. A new strong-coupling (SC) regime, defined by Γ ≡ aC/λG � 1,
where aC is a typical counterion separation near the interface and λG is the Gouy-Chapman
length, has been identified, and different SC theories have been proposed [3–6]. These theo-
retical descriptions usually assume that the charge at the interface is smeared to a uniform
density, whereas realistic interfaces consist of discrete charges. Theoretical models incorporat-
ing the discreteness of interfacial charges have been introduced recently, both within SC [7,8]
and PB [9,10].

Rather surprisingly, there are many experimental examples that show that PB theory
combined with a Langmuir adsorption theory (LPB) [11], where ion adsorption to the interface
is empirically included by binding constants, adequately describes divalent ion distributions,
both near membranes [12] and Langmuir monolayers [13]. It has been shown, for example,
that divalent ion distributions near fatty acid charged Langmuir monolayers (Γ ≈ 20) are
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Fig. 1 – Schematic view of the transverse and lateral correlation regimes discussed in this paper.

described by LPB with a striking accuracy [13]. This result is somewhat unexpected, as it
seems inescapable that tightly bound divalent ions to the interface are laterally correlated,
which should result in an additional contribution to the LPB free energy (the Madelung
energy) which is given by (see [14] and references therein)

Fcorr ≈ −2.101
√
2
lB
aL

kBT ≈ −4.2kBT, (1)

where lB = 7.1 Å is the Bjerrum length and aL ≈ 4.8 Å is the lattice constant of a fatty acid
in the crystalline phase. As shown below (see fig. 4), when the Madelung contribution eq. (1)
is accounted for within LPB, the agreement between theory and experiment is completely
ruined. In this letter, we consider transverse (as opposed to lateral) correlations (see fig. 1)
between the counterions and the discrete interfacial charges and show that they induce binding
by generalizing Bjerrum theory [15]. The free energy of the system becomes equivalent to LPB
but now the binding constants are electrostatic in origin and can be computed explicitly.

The Bjerrum pairing theory establishes that opposite charged ions of valence q+ and q−
and radii r+ and r− in bulk solution form pairs, with an association constant KB (defined by
KB = [AB]/[A+][B−], where [X] is the electrolyte concentration) given by [15]

KB = 4π
∫ |q+q−|lB/2

d

drr2 exp(−q+q−lB/r) = 4π(|q+q−|lB)3G
( |q+q−|lB

d

)
, (2)

where d = r+ + r− and G(x) =
∫ x

2
dzz−4ez. We interpret Bjerrum pairing as implying

that if two oppositely charged ions come closer than a distance D ≤ |q+q−|e2

2εkBT ≡ |q+q−|lB/2,
they attract more strongly than the disordering thermal fluctuations and bind. First-principles
expressions for Bjerrum constants [16] are numerically indistinguishable from eq. (2). Bjerrum
theory has been recently emphasized in many contexts such as, for example, in Coulomb
criticality [17].

Correlations in the zero-temperature limit. – In some electrostatic problems, insight
into finite-temperature regimes can be obtained from the analysis of the zero-temperature
limit [10,14,18]. As a simple model for quantitatively analyzing correlations, we consider the
extreme case of NP charged particles arranged as a two-dimensional (2D) triangular crystal,
interacting with NP oppositely charged particles arranged as another 2D triangular crystal,
see fig. 2. Both crystals have the same lattice constant aL and area of unit cell AC . We
compute the electrostatic energy as a function of the distance z between the two planes for
two situations, where the lattices are either opposite or staggered to one another (see fig. 2).
This calculation is performed exactly by Ewald summation techniques (see [14] and references
therein). Figure 2 shows that the opposite configuration has lower electrostatic energy and
we therefore analyze it in more detail.
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Fig. 2 – Electrostatic energy UE (in units of e2q2/εaL) as a function of separation for two triangular
two-dimensional lattices of opposite charge (of equal valence q) in both the opposite and staggered
configuration.

Fig. 3 – Electrostatic energy parameterized by the two ratios defined in eq. (5) defining the interface-
ion and the ion-ion regimes for the opposite configuration.

As a function of the separation (z), the electrostatic energy can be divided into two regimes.
The transverse correlation (TC) regime (z � aL), where the energy is dominated by the
attraction of close opposite sign charges,

US(z) = −NP
e2

εz
, (3)

and the lateral correlation (LC) regime (z � aL), where the energy consists of the two
Madelung energies UM (one for each individual lattice) plus the energy of a planar capacitor
with the smeared surface charge of the lattices and width z. More precisely,

UL(z) = NP

(
2UM +

2πe2z

εAC

)
. (4)

We characterize the two regimes (schematically shown in fig. 1) by defining two ratios
measuring deviations of the electrostatic energy UE(z) relative to their asymptotic values,
eqs. (4) and (3),

r1(z) =
UE(z)− 2NPUM

2πe2zNP

AC

, r2(z) =
UE(z)
US(z)

. (5)

The transition separating the two regimes is sharp (fig. 3), defining a new characteristic length
z0 ∼ 0.35aL separating the TC and LC regimes. The length z0 is a property of the interface,
independent of solution conditions (ionic strength, temperature, etc.).

Bjerrum pairing induced correlations. – We first discuss the simpler situation of a uniform
charged interface with counter-ions of valence q. The first equation of the Ybon-Born-Green
(YBG) hierarchy is an exact relation between the ion distribution n(z), and the counterion-
counterion pair distribution function g(r, r′) [19],

−kBT
dn(z)
dz

= −q
2πσ
ε

n(z) +
∫

d3r′n(z)n(z′)g(r, r′)
∂V (|r − r′|)

∂z
, (6)
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Table I – Values in pKI units (pKI = log10(KI)) for the binding constants eq. (8) of different
counterions to oxygen (r− = 1.6 Å). The bare (crystallographic) radius r+ of the ions is used except
for Mg2+

H , for which the hydrated radius is used. (Units of KI are 1 M−1.)

Interface charge (qI) Na+ K+ Cs+ Ca2+/Cd2+ Ba2+ Mg2+ Mg2+
H La3+

−1 −0.44 −0.63 −1.05 +0.98 +0.90 1.10 0.23 +1.869
−2 +1.00 +0.91 +0.82 +2.80 +2.53 3.22 1.80 +4.965

where V (r) = q2e2/(εr). If g(r, r′) = 1 (no correlations) the above equation is equivalent
to PB. If, however, we assume a strong electrostatic repulsion where each ion excludes every
other like-sign ion g(r, r′) = 0 then the calculated density profile is

n(z) =
1

2πlBλ2
G

exp [−z/λG] , (7)

where λG is the Gouy-Chapman length. This result is the counter-ion density profile within
SC [3,4]. The second equation in the YBG hierarchy can now be used to obtain the correction
to g = 0, leading to g(r, r′) = exp

[
− q2lB

|r−r′|
]
. This result establishes the range of validity for

the approximation g ≈ 0 as defined by the condition |r − r′| � q2lB .
We now consider discrete interfacial charges. If q− is the valence of the discrete interfacial

charges, the same steps as above give the counterion density n(r) ∝ exp
[
|q+q−|lB
|r−r′|

]
, which is

asymptotically exact for z � |q+q−|lB . Mobile ions “see” the interfacial charge as if no other
charges are present in the system. From the Bjerrum argument outlined in the introduction,
interface-ion pair-association then follows with a binding constant

KI =
KB

2
, (8)

where KB has been defined in eq. (2). The 1/2 prefactor in eq. (8) results from the fact that
half of the space (let us say the z < 0 region) becomes inaccessible to the mobile ions because of
the presence of the rigid interface. Selected values for the constants, eq. (8), are given in table I.

Free energy and counter-ion profiles. – The free energy of the system consists of a “Stern”
layer of bound ions induced by TC and a bulk solution containing the remaining unbound
ions. If nB

a is the bulk concentration of counterions of type a, fa the fraction of bound ions
and Ka

L the association constant of ion a to the interfacial charged groups, the free energy is

F

NP kBT
= −

∑
a

fa ln(Ka
Ln

B
a ) +

(
1−

∑
a

fa

)
ln

(
1−

∑
a

fa

)
+

∑
a

fa ln(fa) +
FPB(σ(fa))
NP kBT

.

(9)
The binding free energy gain for faNP ions is −faNp ln(Ka

L) and the loss of entropy is
−NP fa ln(nB

a ). These two contributions combine in the first term of the free energy. The
next term is the mixing entropy of the interfacial species, and the last term FPB is the free
energy of the remaining unbound ions. We restrict the analysis to the dilute limit, where the
activity coefficient of the ions may be approximated as unity, so FPB is the PB free energy
of a solution containing the remaining free (not bound) ions, thus keeping the number of free
and bound ions constant. Minimization of the free energy with respect to fa leads to

fa =
Ka

Ln
B
a exp[−qaφ(0)]

1 +
∑

a K
a
Ln

B
a exp[−qaφ(0)]

. (10)
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Table II – Comparison between experimental and theoretical (eq. (8) and eq. (2)) pK values. Carbonic
(Carb.) and Phosphoric (Phos.) pK values are reported in [20] for single (−1) and double (−2)
deprotonated acids.

pKI (membrane) pKB(solution)

Ion Eq. (8) Exp. [21] Exp. [22] Eq. (2) (−1) Carb. Phos. Eq. (2) (−2) Carb. Phos.

Na+ −0.44 −0.6 −0.35 −0.14 0.90
Ba2+ +0.90 +1.2 2.83 2.83
Ca2+ +0.98 1.0 +1.3 1.0 1.4 3.1 3.15 2.74

The effective surface charge density is σ(fa) = σ0
−1+

∑
a
(qa−1)Ka

LnB
a exp[−qaφ(0)]

1+
∑

a
Ka

L
nB

a exp[−qaφ(0)]
, where σ0 =

−e/Ac and φ(0) is the contact value potential in units of kBT/e. It is assumed that counterions
bind in a 1 : 1 ratio to the charges at the interface. It is trivial to include binding in a 2 : 1
(2 surface charges to 1 counterion) ratio, which may occur in some membranes [22].

From our previous discussion it should be expected that Ka
L is given by Ka

I , eq. (8).
It should be noted, however, that Ka

I is obtained by integration of a half-sphere of radius
|qIqa|lB/2, where the mobile ion “sees” the interfacial charge as the only charge in the system.
From the discussion following fig. 3, however, the mobile ion can only “see” the interface charge
if it is within a distance z0 ∼ 0.35aL from the interface. There are therefore two cases that
need to be considered. If z0 > |qIqa|lB/2 the association constant is given by eq. (8), but if
z0 � |qIqa|lB/2 the integration defining eq. (8) is restricted to a much smaller domain and
the actual constant KL is smaller than KI ,

Ka
L = Ka

I (aL ≥ α|qIqa|lB), Ka
L � Ka

I (aL � α|qIqa|lB) , (11)

where α ≈ 1–1.4. In cases where the ion binding is covalent, the previous formulas do not
apply. An important example is the proton, but the association constants for the proton follow
from pKa values (pKa = 2.16 and pKa = 5.1 for phosphate and carboxyl groups, respectively).

Comparison with experiment. – We selected three ions with the atomic structure of the
noble gas: Na+, Ba2+ and Ca2+, binding to carboxyl (-COOH) and phosphate (-PO4H) groups
(in both cases, the binding is to an oxygen atom) and compared our predictions to available
experimental results in table II. In order to assess the validity of using the bare radius for
oxygen in eq. (8), we included binding constants to small soluble molecules containing the
same groups, which are described by eq. (2). The agreement with experiment is satisfactory.

Fatty acids are strongly charged systems (Γ ≈ 20) and are appropriate for investigations
of the SC limit. A first qualitative prediction of our approach is that divalent ions should
form a tight “Stern” layer, with almost negligible distribution, next to the interface. This is
well established experimentally from many X-ray reflectivity studies after the pioneering work
by Kjaer et al. [23]. On a more quantitative level, we use the data on arachidic acid (AA)
obtained by infrared reflection-absorption spectroscopy (IRRAS) [24].

Figure 4 shows IRRAS experimental results [24]. The solid line plots the degree of dis-
sociation expected from the LPB free energy, eq. (9). We used the expected pKa = 5.1 of
the carboxyl group and fitted the association constant to the experimental data. For calcium,
pK = 0 is obtained. This value is one order of magnitude smaller than the predicted value
in table I, but this should be expected given eq. (10) and the fact that typical interfacial
charge separation (the lattice constant for AA) satisfies aL ≈ 4.8 Å � 2lB = 14.2 Å. For Cd2+

pK = 1.8 is obtained. This value seems in contradiction with table II and eq. (10). However,
Cd2+ ions do not have a noble-gas structure and covalent bonding with oxygen is possible.
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Fig. 4 – Dissociation of arachidic acid as a function of pH. The symbols are the experimental results
from [24]. The solid lines are the results from eq. (9) with a 1 : 1 binding. The dash-dotted line
corresponds to a 2 : 1 binding for calcium and the dashed line shows the result of including the
Madelung term eq. (1) into the free energy eq. (9).

This has been confirmed from IRRAS data [25]. We should note that if the binding is indeed
covalent, the pK value obtained should be identical with the critical stability constants [20]
pK = 1.8, in agreement with our result. The constant for Mg2+ is pK ≈ −1.4. Given that
Mg2+ ion has a smaller radius than Ca2+, eq. (8) predicts a stronger Mg2+ binding than
Ca2+. In [24] it is argued that Mg2+ may bind covalently with AA, but by analogy with the
Cd2+ case, we should expect an enhanced value for the binding constant as compared with
Ca2+. It is well known that Mg2+ has a very stable hydration sheath [26] and we suggest that
Mg2+ binds electrostatically to oxygen retaining its hydration sheath (with a hydrated radius
r+ = 4.3 Å [26]). When the hydrated radius is used in eq. (8) (see table I), the calculated
association constant is consistent with the experimental values. For Na+ ions we find no
binding (pK < −2.5). In general, we infer that the small lattice constant of AA results in a
reduction of the binding constants by an order of magnitude or more from those obtained by
eq. (8). This is in agreement with our own reflectivity data for Cs+ ions (r+ = 1.7 Å) next to
phosphate groups [27] aL = 6.8 Å. We also analyzed older experimental data [13] and found
complete consistency with the results. We were not able to find similar data for trivalent ions.

Conclusions. – In this paper we have identified two correlation regimes, namely the TC
and LC (fig. 1). The TC regime results in electrostatic binding to the interface, for which the
association constants are computed by generalizing the Bjerrum theory [15]. Our approach
accounts for ion specificity (see table I) by including the finite size of the ions and the nature
of the head group charge through its size and from its pKa value, which accounts for proton
transfer and release. We compared our theoretical calculations with different experimental
results and found good agreement, see table II and fig. 4.

The theory presented differs from previous theories [3–6] in that these theories assume a
smeared interfacial charge distribution, where TC is absent, and deal with the LC. A scenario
for the LC would be, for example, when interfacial charges are buried a distance d > 0.35aL

inside the interface. Our approach differs from previous theories on charge modulations [7,8]
in that it incorporates binding by Bjerrum pairing into LPB. For slightly charged modulated
interfaces (defined by a small contact value potential relative to kBT ) at low monovalent salt
concentrations PB including modulations [9, 10] still applies.

In some situations (defined by amphiphile geometry and valence) we speculate that ions
may penetrate inside the head group in a staggered configuration shown in fig. 2, forming a
“molten salt” state consisting of the charged head groups and the mobile ions. This “molten
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salt” state has a Madelung energy (given by the limit z → 0 in the corresponding fig. 2), and
may lead to charge reversal. For moderate salt concentrations (defined by a Debye length
smaller than aL, the typical separation of charged interfacial groups), charge reversal of the
interface by binding is also possible. Charge reversal has been experimentally observed in both
membranes [12] and monolayers [28]. We have not discussed in any detail geometries other
than the plane. We expect our arguments on Bjerrum induced correlation binding to apply for
other geometries, such as cylinders, where equal charge attraction follows from binding [29].

It is imperative to compare theoretical ion distributions to experimental distributions that
include points distant from the interface. Only recently, however, with the use of anomalous
X-ray reflectivity techniques, are ion distributions becoming available [27, 28]. We hope to
provide more detailed comparisons with those experimental results in the near future.

∗ ∗ ∗

The work of AT has been supported by NSF grant DMR-0426597. The work at the
Ames Laboratory is supported by the DOE, office of Basic Energy Sciences under contract
No. W-7405-ENG-82.

REFERENCES

[1] Boroudjerdi H. et al., Phys. Rep., 416 (2005) 129.
[2] Grosberg A. Yu., Nguyen T. T. and Shklovskii B. I., Rev. Mod. Phys., 74 (2002) 329.
[3] Shklovskii B. I., Phys. Rev. E, 60 (1999) 5802.
[4] Moreira A. G. and Netz R., Europhys. Lett., 52 (2001) 705.
[5] Burak Y., Andelman D. and Orland H., Phys. Rev. E, 70 (2004) 016102.
[6] Santangelo C., arXiv:cond-mat 0509007 (2005).
[7] Moreira A. G. and Netz R. R., Europhys. Lett., 57 (2002) 911.
[8] Henle M. L., Santangelo C. D., Patel D. M. and Pincus P., Europhys. Lett., 66 (2004) 286.
[9] Lukatsky D. B. and Safran S. A., Europhys. Lett., 60 (2002) 629.
[10] Travesset A., Eur. Phys. J. E, 17 (2005) 435.
[11] Grahame D. C., Chem. Rev., 1 (1947) 103.
[12] McLaughlin S., Annu. Rev. Biophys. Chem., 18 (1989) 113.
[13] Bloch J. M. and Yun W., Phys. Rev. A, 41 (1990) 844.
[14] Bowick M. et al., Phys. Rev. B, 73 (2006) 024115.
[15] Robinson R. A. and Stokes R. H., Electrolyte Solutions (Dover Publ., Mineola, NY) 1959.
[16] Petrucci S., Ionic Interactions (Academic Press, New York, NY) 1971.
[17] Levin Y. and Fisher M., Physica A, 225 (1996) 164.
[18] Travesset A., Phys. Rev. E, 72 (2005) 36110.
[19] Hansen J. P. and McDonald I. R., Theory of Simple Liquids (Academic Press, London) 2003.
[20] Martell A. E. and Smith R. M. (Editors), Critical Stability Constants (Plenum, New York)

1974.
[21] McLaughlin S. and Brown J., J. Gen. Physiol., 77 (1981) 445.
[22] Huster D., Arnold K. and Gawrisch K., Biophys. J, 78 (2000) 3011.
[23] Kjaer et al., J. Phys. Chem., 93 (1989) 3200.
[24] Le Calvez et al., Langmuir, 17 (2001) 670.
[25] Simon-Kutscher J., Gericke A. and Huhnerfuss H., Langmuir, 12 (1996) 1027.
[26] Israelachvili J., Intermolecular and Surface Forces (Academic Press, London) 2000.
[27] Bu W., Vaknin D. and Travesset A., Phys. Rev. E, 72 (2005) 60501.
[28] Vaknin D., Kruger P. and Losche M., Phys. Rev. Lett., 90 (2003) 178102.
[29] Arenzon J. J., Stilck J. and Levin Y., Eur. Phys. J. B, 12 (1999) 79.


