





Crystallographer as seen by others

Crystallographer as seen by myself



















| What d            | o we w<br>QC s     | /ant to know about a<br>structure?                                                                                                                                                                                                                                   |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crystallographer: | orderin<br>structu | g principles of idealized and real real                                                                                                                                                                                                                              |
|                   |                    | As far as possible model-free<br>structure analysis in order to find<br>out whether or not QCs are<br>quasiperiodic and what kind of<br>disorder is present. One of the<br>goals is to provide realistic<br>models as input for quantum-<br>mechanical calculations. |
| Structure based   | understand         | ling of stability and properties of matter                                                                                                                                                                                                                           |

|   | What do                                     | we want to know about a QC structure?                                      |
|---|---------------------------------------------|----------------------------------------------------------------------------|
|   | We want to know ev<br>describes reality rea | erything we need to build a model that<br>sonably well.                    |
| ٢ | Mathematician:                              | idealized geometrical-structure building principles - mathematical objects |
|   | Physicist:                                  | idealized factors governing structure<br>formation and physical properties |
| ŀ | Materials Scientist:                        | real structure/microstructure-property relationships                       |
| L | Crystallographer:                           | ordering principles of idealized and real structures                       |
|   | Structure based unde                        | rstanding of stability and properties of quasicrystals                     |

# Structural peculiarities of quasicrystals

### Long-range order

- > Are QC strictly quasiperiodic or on average only or....
- Is nD description really applicable? If yes, are atomic surfaces dense or fractal or ...
- How does long-range order vary with temperature, pressure ...

#### Disorder

- Does disorder in quasicrystals differ from that in crystals?
- What is the structural meaning of phasons and phason fluctuations?

/here are the atoms (each one) in a quasicrysta



Structural peculiarities of quasicrystals

*Nowadays, ab-initio* quantum-mechanical modeling is possible for approximants only (< 1000 atoms). Consequently, the property that is typical for quasicrystals, *i.e.* the quasiperiodic long-range order, cannot be studied in this way at present and near future.

Where are the atoms - long-range order



Size of full data sets









## Structural peculiarities of quasicrystals

Short-range order (the structure of clusters)

The method of choice for obtaining a starting model are electron microscopic methods, in particular for decagonal phases.

The novel Ultra-High-Resolution Transmission Electron Microscopes (UHRTEM) with full correction of spherical aberration will allow to get much better images in future. For instance, for a 200 keV microscope (Zeiss), a resolution of 0.8 Å is possible.

However, compared to diffraction methods, the accuracy is very low (laterally:  $\approx$  0.5 Å, vertically: no spatial resolution at all).

Determination of local order



# Structural peculiarities of quasicrystals

## Disorder

A principal problem is that in most cases non-equilibrium structures are studied. Usually, a QC is prepared from the melt, HT annealed, quenched.

During cooling to RT partial relaxation takes place due to a different efficient atomic volume at HT and RT (atomic vibrations). Chemical disorder, thermal vacancies and random phason fluctuations are not equilibrated.

Structural disorder of the displacive and/or the substitutional type may be present anyway, also at equilibrium conditions.

Structural disorder





















































STM only shows a kind of electronic charge distribution as a function of the tunneling current. The image obtained reflects the

electronic surface structure rather than the atomic structure

















| Exar   | nple NAD⁺ synthetase                                    |         |  |
|--------|---------------------------------------------------------|---------|--|
|        | P2 <sub>1</sub> , a=52.28, b=84.97, c=59.64 Å, β=110.5° |         |  |
|        | No. of measured reflections                             | 790 765 |  |
|        | No. of unique reflections                               | 231 200 |  |
|        | with I > 4 $\sigma$ (I)                                 | 170 606 |  |
|        |                                                         |         |  |
|        | No. of reflections in refinement                        | 205 215 |  |
|        | No. of parameters                                       | 47 101  |  |
|        | No. of restraints                                       | 57 173  |  |
|        | No. of non-H atoms (excl. waters)                       | 4 518   |  |
|        |                                                         |         |  |
|        | R-factor                                                | 0.116   |  |
| Symers | ky et al, Acta Cryst. D58 (2002) 1138                   | 59      |  |



Average-structure solution by MEM  
Solving decagonal structures requires the fundamental maximum entropy equations  
(Bricogne 1984)  

$$q_i = \frac{p}{Z(\lambda_1,...,\lambda_N)} \exp\left(\sum_{n=1}^{N} \lambda_n \frac{\partial C_n}{\partial q_i}\right)$$
(5)  

$$Z\left(\lambda_1,...,\lambda_N\right) = \sum_{i=1}^{N} p \exp\left(\sum_{n=1}^{N} \lambda_n \frac{\partial C_n}{\partial q_i}\right)$$
(6)  
to be solved in five dimensions for all N<sub>P</sub> grid points q<sub>i</sub> restricted to all N<sub>C</sub> constraint  
equations C<sub>n</sub> by Lagrange multipliers  $\dot{\chi}_n$ . Two different constraint equations are  
necessary to take all structure factors derived from the symmetry minimum solution and  
all the observed structure amplitudes simultaneously into account. Assuming the noise to  
be gaussian the known structure factors F<sub>ebb</sub> (H) can be constrained by

$$C_{1} = \sum_{H} \frac{1}{\sigma^{2}} \left| F_{obs} \left( H \right) - F_{clc} \left( H \right) \right|^{2} = \chi^{2}.$$
(7)

Haibach et al., Acta Crystallogr. A (1996) 277

Average structure solution by MEM  
with their corresponding standard deviations 
$$\sigma$$
. The second constraint equation (compare  
Sakata & Sato 1990) only depends on the structure amplitudes and restrains all unknown  
phases to  

$$C_{2} = \sum_{\mathbf{x}} \frac{1}{\sigma^{2}} \left| \left| F_{abc}(\mathbf{K}) \right| - \left| F_{cb}(\mathbf{K}) \right| \right|^{2} = \chi^{2}.$$
(8)  
Substituting (7) and (8) into equation (5) results in a five-dimensional algorithm  

$$q_{i} = \frac{\mu}{Z\left(\lambda_{i},\lambda_{2}\right)} \exp\left[ -2\lambda_{i}\sum_{\mathbf{H}} \frac{1}{\sigma^{2}} \left| F_{abc}(\mathbf{H}) - F_{cb}(\mathbf{H}) \right| \cos\left(2\pi H\mathbf{x}_{i} - \varphi_{\Lambda}\right) - 2\lambda_{2}\sum_{\mathbf{k}} \frac{1}{\sigma^{2}} \left| \left| F_{abc}(\mathbf{K}) \right| - \left| F_{cb}(\mathbf{K}) \right| \left| \cos\left(2\pi K\mathbf{x}_{i} - \varphi_{\Lambda}\right) \right|,$$
(9)

with  $\phi_{\Delta} = \arctan \left\{ \ln \left[ F_{obs}(H) - F_{obs}(H) \right] \right\} / Re \left[ F_{obs}(H) - F_{obs}(H) \right] \right\}$ , the phase of the structure factor difference. This equation can be maximised solving  $\lambda$  by Newton's method (Bricogne 1984) or by exponential modelling (Collins & Mahar 1983).

Haibach et al., Acta Crystallogr. A (1996) 27









#### Structure refinement - average structure

SHELXL always refines against F<sup>2</sup>. Refinement against ALL F<sup>2</sup>-values is demonstrably superior to refinement against F-values greater than some threshold [say 46(F)]. More experimental information is incorporated (suitably weighted) and the chance of getting stuck in a local minimum is reduced. In pseudo-symmetry cases it is very often the weak reflections that can discriminate between alternative potential solutions. It is difficult to refine against ALL E-values because of the difficult yold estimating  $\alpha(F)$  from  $\alpha(F^2)$  when  $F^2$  is zero or (as a result of experimental error) negative. The diffraction experiment measures intensities and their standard deviations, which after the various corrections give  $F_0^2$  and  $\sigma(F_0^2)$ .

The use of a threshold for ignoring weak reflections may introduce bias which primarily affects the atomic displacement parameters; it is only justified to speed up the early stages of refinement. In the final refinement ALL DATA should be used except for reflections known to suffer from systematic error. Anyone planning to ignore this advice should read Hirshfeld & Rabinovich (1973) and Arnberg, Hovmöller & Westman (1979) first. Refinement against F<sup>2</sup> also facilitates the treatment of twinned and powder data, and the determination of absolute structure.

owchart

# R-factors and Goodness of fit



where n is the number of reflections and p is the total number of parameters refined. Weighting scheme  $~w=1~/~[~\sigma^2(F_o^{-2})~].$ 

One cosmetic disadvantage of refinement against  $F^2$  is that R-indices based on  $F^2$  are larger than (more than double) those based on F.

The R-index for MEM calculations is not a reliability factor. Its value is meaningless.





## Diffraction methods - weak reflections

Weak reflections in periodic structure analysis

Due to atomic scattering factor and temperature factor large q<sup>II</sup>-reflections are weak. They are important for high-resolution electron density maps but not for atomic positions.

Weak reflections in quasiperiodic structure analysis

Additional to weak reflections of the type described above, all reflection intensities are rapidly falling off with  $q^{\perp}$  independent from  $q^{||}.$ 

#### Problem

All diffraction experiments on high-quality single crystals suffer from multiple diffraction effects, which may strongly increase intensities of weak reflections. This is a special problem for quasicrystals with their dense reciprocal space.



| X-ray data collectio                                                                           | on - diffuse intensities                                                                                                     |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 3D diffuse diffraction data ca<br>area detectors and synchrotic<br>help distinguishing between | an only be quantitavely collected employing<br>ron radiation. Variation with temperature can<br>static and dynamic disorder. |
| Separation of diffuse scattering                                                               | ing of static and dynamic origin by quasielastic<br>g.                                                                       |
| Problem:<br>Separation of Bragg reflection                                                     | n intensities from diffuse scattering                                                                                        |
| ocparation of Dragg Tenectio                                                                   | in interfactors from diffuse southering.                                                                                     |









| Modelii                                     | ng based o                                | on first-p                    | orincipl                    | es                               |                       |    |
|---------------------------------------------|-------------------------------------------|-------------------------------|-----------------------------|----------------------------------|-----------------------|----|
|                                             |                                           |                               |                             |                                  | -                     |    |
| Based on<br>methods v<br>properties         | realistic structur<br>vill give realistic | al paramete<br>results for th | rs modeling<br>ne relaxed : | g by first-prir<br>structure and | nciples<br>d physical |    |
|                                             |                                           |                               |                             |                                  |                       |    |
|                                             |                                           |                               |                             |                                  |                       |    |
|                                             |                                           |                               |                             |                                  |                       |    |
| Problem:                                    |                                           |                               |                             |                                  |                       |    |
| <i>Problem:</i><br>Till now, c<br>atoms per | nly approximant<br>unit cell < 1000       | s can be cal                  | Iculated wit                | h a maximu                       | m number              | of |
| Problem:<br>Till now, c<br>atoms per        | nly approximant<br>unit cell < 1000       | s can be cal                  | Iculated wit                | h a maximu                       | m number              | of |



## Where will we be at ICQ10?

We will certainly have toy models, which much better describe experimental observations than actual models do, especially for decagonal Al-Co-Ni.

We will better understand what clusters are and what properties they have. Consequently, we will better understand the local (short-range) order in quasicrystals.

We will still not have solved the long-range order structure of quasicrystals with an accuracy comparable to that of regular structure analysis.

Let's start working!