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Introduction

Motivation:

I Interested in impact and penetration problems

I Problems involving compressible solids and
fluids, where fluid may become turbulent

I Simplest example (computationally) is a point
source explosion in fluid above a solid surface

I Want to use modern high-order Godunov
methods for fluids (and solids)

Examples of existing Eulerian sharp interface multi-
material methods that provide suitable frameworks:

I Cut cell method [1] (complex,conservative)

I Ghost cell method [2] (low
complexity,non-conservative)

From [2]

[1 ]Barton et al., A conservative level-set based method for compressible solid/fluid problems on
fixed grids, JCP (2011)

[2 ]Barton et al., Eulerian adaptive finite-difference method for high-velocity impact and
penetration problems, JCP (2013)
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Fluids

I It is intended to use existing methods for
compressible fluid dynamics that can be
categorised as ILES

I Therefore we solve inviscid Euler
equations:0BB@
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The favoured numerical methods:

I Fixed Cartesian meshes

I Cell-centered variables

I Un-split finite difference
discretisation

I Large numerical stencils

I Explicit Runge-Kutta time
integration

I However, interested in applying low-numerical dissipation methods developed for
explicit LES to solids and these can easily be switched on for fluids also

I What follows therefore forms a basis for use of LES models should they be
required



Solids: hyperelastic model

Usual mass, momentum and energy balance laws supplemented by balance laws for
deformation:

∂F ij
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= −uiβj , βj =

∂F kj

∂xk
, F = ρF.

F := ∂x/∂x0 deformation gradient
Closure relations:

I Specific internal energy

E = E (F,S , h)

I Cauchy stress

σ = ρF
∂E (F,S , h)

∂FT



Solids: inelastic deformations

Multiplicative decomposition

F = Fe Fi

Additional rate equations

Dt Fi = Li Fi
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where
Φ = Fe Li

Associative flow rules:

Li = χFe−1 devσ

||devσ||
Feχ ≥ 0

Maxwell materials:

χ :=
1

τ
||devσ||



Solids: complete system

13+ equations:
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Eigenstructure:

1. 7 wave families

2. 6 genuinely non-linear waves

3. 7 linear degenerate waves (speed of
entropy wave)

4. Complete set of eigenvectors
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Cut-cells: Finite volume discretisation

Each component assumed
to have governing equa-
tions in form:

Ut +∇ · F = S

Method of lines and finite
volume discretisation:
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Explicit Runge-Kutta used to solve time integral

For solids: use fractional stepping to address stiff inelastic source terms p
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Cut-cells: small cell problem

For target ‘T’ and associated set S of small cells, final update:
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Pairing method can have significant impact on symmetry
preservation!



Cut-cells: Coupling components

1. Rotate cell averaged values for each
component onto normal to interface

2. Solve multi-material Riemann problem:

q = q + f(eσ)

3. Rotate solution back

4. Compute interface fluxes using solution

Closure relations for various scenarios:

I Solid/solid

I Solid/vacuum

I Solid/fluid

I Solid/wall

I Fluid/fluid

I Fluid/wall
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Interface tracking

Level-sets:

φt + uI · ∇φ = 0

Pros:

I Allow slide

I Simplicity (geometry,
advection)

I Allow breakup/merging

I Continuous representation of
surfaces

I Allows use of RK method

Cons:

I Mass errors

I Cost?
(extrapolation,reinitialisation)



Interface tracking

Polygonisation of zero-level-set:
(a) Marching cubes: fastest, but has ambiguous cases

(b) Marching tets: divide cube symmetrically into 24 tets;
no ambiguity!

Provides:

I Material volume

I List of interface
facets

I List of cell wall
facets

Bitwise operations make
this fast!



Interface tracking

I Marching tets provides facet
list representing interface

I Relatively straightforward
(and cheap) to rebuild signed
distance function from these

I Can then evolve the vertex
list to represent interface

I As tri set becomes distorted,
can rebuild as before
(locally?)
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High-order in space: WENO

I Fluxes at cell faces; WENO-LLF:

gi−1/2 = eg+
i−1/2

+ eg−
i−1/2

where

g+ =
1

2
(gL + η ◦ qL)

g− =
1

2
(gR − η ◦ qR )

Choice of wave-speed:

I basic single wave-speed

I local characteristic decomposition

Characteristic analysis better; both
expensive for solids!



High-order in space: WENO

I Need to provide ghost states outside
material regions to complete stencil

I Can extrapolate solution to
multi-material Riemann problem

I In simplest case requires marching of
interpolated values



High-order in space: WENO

I When boundaries of same material
collide large stencils cause
‘permeation’ effect

I Effect exacerbated for larger stencils

I Adjust stencil to consider strips of
material regions



High-order in space: Hybrid WENO/centered

Use WENO:

I Around shocks and steep gradients of selected
variables

I At the interfaces

Extension of Hill et al., JCP (2011)

Specifics:

I 3rd Order TVD Runge-Kutta
for time integration

I 5th Order WENO

I 6th Order central differences

Shock detection using Riemann based method of Lombardini (M. Lombardini, PhD
Thesis, Caltech, 2008) adapted to solids:

|uR ± λi
R | < |eu ± eλi | < |uL ± λi

L|, i = 1, 2, 3

Assuming e· to be Roe average works satisfactorily

Characteristic polynomial:

(u − λ)det|Ω− (u − λ)2| = 0
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1d IVP

Solid/solid IVP from Barton et al.,
JCP (2010)

I Initial conditions:
I Al on left (red)
I Cu on right (blue)
I initial interface at x = 0.5

I Slip boundary conditions

I Symbols indicate where
WENO used



2d underwater explosion

To test the method in the event
of large interface deformations con-
sider the problem of an underwater
explosion:

I Example from Liu et al., JCP
215 (2006)

I Water modelled using
stiffened gas EoS

I Air and high-pressure gas
ideal γ = 1.4

I 1 level-set field



2d underwater explosion



3d explosion in air

I Similar initial conditions to
underwater explosion but
with high pressure gas above
the surface

I Solid deforms inelastically
according to idealised
plasticity with von-Mises
yield surface

I Air and high-pressure gas
ideal γ = 1.4



3d explosion in air



Summary

Summary:

I A three-dimensional cut-cell method has been developed for coupled solid/fluid
problems

I All variables are cell centred and grids remain fixed

I Method can handle largely distorting interfaces

I A hybrid method for the single component fluxes improves overheads, and paves
the way for implementation of turbulence models for fluids

Future work:

I V&V; error analysis; cost analysis

I AMR to improve efficiencies

I incorporation of LES model (explicit LES)

I particle based front tracking to improve mass
conservation

I improved constitutive models for solid
materials
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