Reconnection-based Arbitrary-Lagrangian-Eulerian (ReALE) Method with Adaptive Mesh Refinement and Coarsening LA-UR-13-22256

W. Bo^1 M.J. Shashkov² S.K. Sambasivan¹

¹CCS-2, Los Alamos National Lab

²XCP-4, Los Alamos National Lab

MULTIMAT 2013

1 / 19

Outline

- Introduction
- H-adaptation
- Numerical results
- Conclusions and perspectives

Introduction

ReALE

- Cell centered Lagrangian formulation of governing equations
- Rezone: Move generators, generate a new mesh using Voronoi tessellation
- Remap: Transfer flow states to the new mesh based on exact intersections of polygonal meshes

Rezone phase in adaptive ReALE

- Move generators in Lagrangian way
- Global smoothing for the generators

• H-adaptation

[1] Burton, Breil et.al.'s talks

[2] P.H. Maire *et.al.* A cell-centered Lagrangian scheme for compressible flow problems, SISC, 2007

[3] R. Loubère et.al., ReALE: A reconnection-based ALE method, JCP, 2010

[4] R. Loubère et.al., An h-adaptive reconnection-based method using Voronoi tessellation, MULTIMAT'11

[5] S. Sambasivan, *et.al.*, A finite volume Lagrange approach for computing elasto-plastic deformation of solids on general unstructured grids, JCP, 2013.

W. Bo (LANL)

Adaptive ReALE

- Relocate generators after the Lagrangian step to improve the shape of the cells
- The new positions of the generators should be close to their Lagrangian positions

Algorithm

1. For each generator i, compute a reference length d_i

j is a neighbor of i

 J_j : Jacobian matrix for the Lagrangian step $J_j = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ $\lambda = |\Sigma|^{1/2} \quad \hat{I}_{\perp} = \lambda \mathbf{U} \mathbf{V}^*$

$$\begin{aligned} \lambda &= |\mathcal{L}|^{-j}, \ J_j &= \lambda \mathbf{U}^{\mathbf{v}} \\ d_{ji} &= ||\hat{J}_j(\mathbf{x}_{gi}^k - \mathbf{x}_{gj}^k) - (\mathbf{x}_{gi}^{k,Lag} - \mathbf{x}_{gj}^{k,Lag})|| \\ d_i &= \max_j d_{ji} \end{aligned}$$

2. Lloyd-like iterations under the constrain $||\mathbf{x}_{gi}^{k,\text{new}} - \mathbf{x}_{gi}^{k,Lag}|| \le d_i$

Black: generators at time step kBlue: generators after the Lagrangian step

Remark

• The algorithm is invariant under translation, rigid body rotation and uniform compression

Equi-distribution principle

Given a monitor function $\phi(\mathbf{x}) > 0$ defined on a 2D domain Ω , a partition $\bigcup_{i=1}^{N_g} \Omega_i = \Omega$, equi-distribution principle requires

$$\Phi_i \equiv \int_{\Omega_i} \phi(\mathbf{x}) d\mathbf{x} = \frac{1}{N_g} \int_{\Omega} \phi(\mathbf{x}) d\mathbf{x}, \ i = 1 \dots N_g,$$
(1)

where N_g is the number of generators.

H-adaptation

Given bounds Φ_{\min} and Φ_{\max} , the approximate equi-distribution principle is

$$\Phi_{\min} \le \Phi_i \le \Phi_{\max}, \ i = 1 \dots N_g. \tag{2}$$

At the end of a hydro step, Φ_i evaluated with the updated monitor function may not be in bounds anymore. We do the following operations such that (2) is maintained for all cells:

- Insert new generators
- Delete old generators
- Relocate generators

W. Bo (LANL)

H-adaptation

H-adaptation

- Construct a monitor function
- $\bullet\,$ H-adaptation: refinement, local smoothing, coarsening, local smoothing $\ldots\,$

Monitor function $\phi = |\sin(\pi x)\sin(\pi y)| + 0.001$, domain $[0, 1] \times [0, 1]$. Left: The color represents $\Phi_i = \int_{\Omega_i} \phi(\mathbf{x}) d\mathbf{x}$. Right: The x coordinates of generators' centroids vs. Φ_i .

Monitor function

Monitor function

- $\phi(\mathbf{x}) = \max(c_1 ||\nabla \rho(\mathbf{x})||^2, c_2 ||\nabla \mathbf{u}(\mathbf{x})||^2, c_3 ||\nabla E(\mathbf{x})||^2)$. ρ density, \mathbf{u} velocity, E total energy
- Avoid too large or too small cells

$$ilde{\phi}(\mathbf{x}) \leftarrow \min\left(\max\left(\phi(\mathbf{x}), \phi_{\min}\right), \phi_{\max}\right)$$

- $c_1, c_2, c_3, \phi_{\min}, \phi_{\max}$ are constants which depend on problems
- To avoid fast change of mesh size, $\tilde{\phi}(\mathbf{x})$ is smoothed. The smoothed monitor function $\hat{\phi}(\mathbf{x})$ satisfies $||\nabla \hat{\phi}(\mathbf{x})|| < 1$ almost everywhere

Refinement and coarsening

- Mark the vertex p for insertion if $\max_{i \in \mathcal{P}(p)} \Phi_i > \Phi_{\max}$ and the generators $i : \forall i \in \mathcal{P}(p)$ is not flagged
- Mark the generator *i* for deletion if $\Phi_i < \Phi_{\min}$ and *i* is not flagged
- Generators near the inserted/deleted generators are locally smoothed

 Mark

Insert

Smooth

Flag

Delete

Smooth

W. Bo (LANL)

Adaptive ReALE

Local smoothing

Q. Du *et.al.* Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, 1999

Algorithm: Lloyd-like iterations Given $\{\mathbf{x}_{ai}^0\}, \ \Omega = \bigcup \Omega_i^0$ for n=0:nmax do for $i : \mathbf{x}_{ai}^n$ is flagged do $\mathbf{x}_{ci}^n = \int_{\Omega^n} \mathbf{x} \mathrm{d}x / \int_{\Omega^n} \mathrm{d}x$ $\mathbf{x}_{mi}^n = \int_{\Omega_i^n} \phi(\mathbf{x})^2 \mathbf{x} \mathrm{d}x / \int_{\Omega_i^n} \phi(\mathbf{x})^2 \mathrm{d}x$ $\omega_i^n = \min(||\mathbf{x}_{ai}^n - \mathbf{x}_{ci}^n|| / ||\mathbf{x}_{mi}^n - \mathbf{x}_{ci}^n||, 1)$ $\mathbf{x}_{di}^n = \omega_i^n \mathbf{x}_{mi}^n + (1 - \omega_i^n) \mathbf{x}_{ci}^n$ Relocate generator *i*: $\mathbf{x}_{ai}^{n+1} = \mathbf{x}_{di}^{n}$ end for Generate Voronoi mesh $\Omega = \bigcup \Omega_i^{n+1}$ $\mathcal{E}^{n+1} = \sum_{i} \int_{\Omega_i^{n+1}} ||\mathbf{x} - \mathbf{x}_{gi}^{n+1}||^2 \mathrm{d}\mathbf{x}$ exit the loop if $|\mathcal{E}^{n+1} - \mathcal{E}^n|/\mathcal{E}^n < \epsilon$ end for

Remark

• \mathcal{E}^n is decreasing monotonically

for n=1:nmax do	
for vertex p do	\triangleright Mark for refinement, flag generators
Mark p if $\max_{i \in \mathcal{P}(p)} \Phi_i > \Phi_{\max}$ and $i : \forall i \in \mathcal{P}(p)$	$\in \mathcal{P}(p)$ is not flagged
Flag the nearby generators of p	
end for	
for vertex p do	▷ Refinement
Insert a generator in p if p is marked	
end for	
Local smoothing	\triangleright Local smoothing
for generator i do	▷ Mark for coarsening, flag generators
Mark the generator i if $\Phi_i < \Phi_{\min}$ and i is	not flagged
Flag the nearby generators of i	
end for	
for generator i do	▷ Coarsening
Delete the generator i if i is marked	
end for	
Local smoothing	\triangleright Local smoothing
Break the loop if no generators are inserted or	deleted
end for	

Test problems

- Sod's shock tube
- Sedov blastwave
- Single material triple point problem

Adaptive ReALE

- The parameters of monitor functions depend on test problems
- Mesh convergence criterion in smoothing $|\mathcal{E}^{n+1} \mathcal{E}^n|/\mathcal{E}^n < 10^{-4}$
- Comparison with ReALE: the number of generators of ReALE = highest resolution of adaptive ReALE
- Second order conservative remap

W. Bo (LANL)

Adaptive ReALE

MULTIMAT 2013 12 / 19

Sod's shock tube - convergence

Figure 1 : Left: Density, high resolution = 3800 Right: L_1 density error

MULTIMAT 2013 13 / 19

highest resolution = 7260, **Top** ReALE, **Bottom** adaptive ReALE

Sedov blastwave - comparison with ReALE

highest resolution = 32580

Sedov blastwave - convergence

We need to further investigate the convergence of ReALE when the number of generators is large.

W. Bo (LANL)

Single material triple point problem

 $\gamma = 1.4$ for all three regions, highest resolution = 14200, specific internal energy

Single material triple point problem

Figure 3 : Left: Number of inserted, deleted and total generators **Right**: Number of iterations of global smoothing per step

Conclusions

- Insert and delete generators according to a given monitor function
- Local and global smoothing is through dynamic Lloyd-like iterations
- On test problems, adaptive ReALE shows higher accuracy than ReALE

Perspectives

- The convergence of ReALE when the number of generators is large
- Monitor function with less or no parameters
- Performance: In the current implementation, A global Voronoi tessellation is performed after insertion, deletion and smoothing. Local edge swapping may be more efficient in these cases.