An intersection based ALE scheme (xALE) for cell centered hydrodynamics (CCH)

D.E. Burton, M.A. Kenamond, N.R. Morgan, T.C. Carney, M.J. Shashkov

X-Computational Physics Division
Los Alamos National Laboratory

Multimat 2013
International Conference on Numerical Methods for Multi-Material Fluid Flows
San Francisco, September 2-6, 2013

Acknowledgements:
U.S. DOE LANL LDRD \& ASC programs
S. Doebling, T. Gianakon

Abstract

We extend a cell-centered hydrodynamics method (CCH) [1] on unstructured polyhedral cells to a secondorder cell- centered arbitrary Lagrange-Eulerian (ALE) formulation. The method splits the operations into a Lagrange step followed by mesh relaxation and an intersection based remap called xALE. Unlike swept face methods common in Eulerian and ALE schemes [4], intersection methods naturally couple across cell corners. We applied an efficient second-order method of remapping cell centered variables from one unstructured grid to another, based upon seminal work of Dukowicz and Ramshaw (D\&R) [2, 3, 8]. The intersection method was later extended to unstructured polygonal grids [5], multiple dimensions [7], and interface reconstruction [6]. Here, we adapt it in a CCH ALE context.
Intersection remap methods have advantages, but are commonly perceived to be computationally expensive. This need not be the case. A new marching front scheme was used to eliminate grid searching. As a result, the computational effort to perform a full intersection remap scales linearly with the number of zones, as opposed to the $\mathbf{N} \log \mathbf{N}$ scaling typical of intersection based methods. The computational efficiency of the method allows it to also be used in an advection mode in which a relatively small remap is done every cycle. However, unlike swept face methods, there is no inherent time step limitation, and the advection need not be constrained to nearest neighbor cells.
We compare the new remap method with a traditional swept face scheme for several test problems using CCH for the underlying Lagrange step. We identify mesh numerical artifacts in swept face results that are not present in the remap method.

References

[1] D.E. Burton, T.C. Carney, N. R. Morgan, S.K. Sambastivan, and M.J. Shashkov. A cell-centered Lagrangian Godunov-like method for solid dynamics. Comput. Fluids, http://dx.doi.org/10.1016/j.compfluid.2012.09.008, 2012.
[2] J.K. Dukowicz. Conservative rezoning (remapping) for general quadrilateral meshes. J.Comput.Phys.,54:411-424,1984.
[3] J.K. Dukowicz, M.C. Cline, and F.S.Addessio. A general topology method. J.Comput.Phys., 82:2963,1989.
[4] C.W. Hirt, A.Amsden, and J.L.Cook.An arbitrary Lagrangian Eulerian computing method for all flowspeeds.J.Comput.Phys.,14:227253, 1974.
[5] D.S. Miller, D.E. Burton, , and J.S. Oliviera. Efficient second order remapping on arbitrary two dimensional meshes. Technical Report UCID-ID-123530, available from the authors, Lawrence Livermore National Laboratory, March 1996.
[6] S.J. Mosso and D.E Burton. Two and three-dimensional interface reconstruction in unstructured meshes. Technical Report LA-UR-00-3522, Los Alamos National Laboratory, October 2000. NECDC, Oakland, October 23-27, 2000.
[7] S.J. Mosso, D.E Burton, and A.K. Harrison. A second-order, two and three dimensional remap method. Technical Report LA-UR-98-5353, Los Alamos National Laboratory, October 1998. NECDC, Las Vegas, October 25-30, 1998.
[8] J.D.Ramshaw. Simplified second-order rezoing algorithm for generalized two-dimensional meshes. J.Comput.Phys.,67:214222,1986.

Outline \& highlights

- xALE \& eXact intersection remap Computational cost $\sim n$
- Conservation equations
Alternative equations
- Monotonicity schemes
FCT for arbitrary remap
- Sources of error
New approach to internal energy
- Solids
- Multi-material formulation
Multi-material nodal solve
VOF
- Thoughts to take away

Los Alamos
NATIONAL LABORATORY
EST. 1943

xALE is a cell-centered ALE scheme based on an eXact intersection remap of disparate grids

Swept face advection uses face-centered fluxes

Common in Eulerian \& ALE schemes, but does not couple across corners \& can violate ancillary relations (e.g. Geometrical Conservation Law - GCL),

Intersection based remap uses second-order integration from intersection to intersection

Remap methods are more generally useful

- Not constrained to incremental advection between adjacent cells
- Larger time steps
- Corner coupling
- Second-order integration
- Satisfy ancillary relations

But are perceived to be computationally expensive

- This need not be the case

If remap is to be used in an incremental (ALE) mode, it needs to scale linearly with the number of cells - we have found a way to do it!

Our new scheme tracks edges of each mesh through the other to find the geometrical information needed for remap

Edges must be broken into segments contained within each cell

This is easily done if the cell containing one end is known

Only the cell faces of the containing cell need be searched for intersections*

At the end of this operation, the terminating cell is also known

[^0]

The second-order remap scheme of Dukowicz \& Ramshaw (DR) reduces to a sum of surface fluxes on face segments

Dukowicz, et al, 1984
Ramshaw, 1985, 1986
Miller, Burton, Oliviera 1996
Mosso, Burton, Harrison 1998
Mosso, Burton 2000

A quantity to be remapped ρ is the divergence of some

$$
\rho=\nabla \cdot \mathbf{f}
$$ non-unique function f

Ramshaw proposed in XY (RZ is similar)

$$
\begin{aligned}
\mathbf{f}_{x}=\frac{1}{2} \mathbf{x} a & +\frac{1}{3} \mathbf{x}(\mathbf{x} \cdot \mathbf{b})+\frac{1}{4} \mathbf{x}(\mathbf{x x}: \mathbf{c})+\ldots \\
a & =\rho_{z}-\mathbf{x}_{z} \cdot \nabla \rho \\
\mathbf{b} & =\nabla \rho \\
\mathbf{c} & =0 \quad(X Y)
\end{aligned}
$$

Then the second-order remap quantity can be written as a surface integral

$$
\begin{aligned}
\Delta M & =\int_{\partial V} \rho d v=\oint_{\partial z} d \mathbf{n} \cdot \mathbf{f} \\
& \rightarrow \sum_{i}^{\partial V} \int_{i} d \mathbf{n} \cdot \mathbf{f}=\sum_{i}^{\partial V} F_{i}
\end{aligned}
$$

The flux across each segment is given by

$$
\begin{aligned}
F_{i} & =\int_{i} d \mathbf{N} \cdot \mathbf{f}=\left(\mathbf{N} \cdot \mathbf{x}_{1}\right)[a A+\mathbf{b} \cdot \mathbf{B}+\mathbf{c}: \mathbf{C}+\ldots] \\
A & =\frac{1}{2} \int_{0}^{1} d s=\frac{1}{2} \\
\mathbf{B} & =\frac{1}{3} \int_{0}^{1} d s \mathbf{x}=\frac{1}{3 \cdot 2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) \\
\mathbf{C} & =\frac{1}{4} \int_{0}^{1} d s \mathbf{x} \mathbf{x}=\frac{1}{4 \cdot 3}\left[\mathbf{x}_{1} \mathbf{x}_{1}+\mathbf{x}_{2} \mathbf{x}_{2}+\frac{1}{2}\left(\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{x}_{2} \mathbf{x}_{1}\right)\right]
\end{aligned}
$$

Discrete form of conservative remap equations for disparate grids no assumptions of similar connectivity

$$
\begin{gathered}
d(\text { onor }) \leftarrow i \rightarrow a(\text { cceptor }) \\
(\rho \varphi)_{x}=(\rho \varphi)_{d}+\left(\mathbf{x}-\mathbf{x}_{d}\right) \cdot \nabla^{L}(\rho \varphi) \\
\Delta^{i} V=\int_{i} d V \\
\mathbf{J}^{i}=\int_{i} \mathbf{x} d V-\mathbf{x}_{d}^{i} \Delta^{i} V \\
\tau^{i} \\
\begin{array}{c}
\text { The Dukowicz-Ramshaw } \\
\text { equations are used only to } \\
\text { calculate these integrals }
\end{array}
\end{gathered}
$$

Conserved quantities

Volume
$V_{a}=\sum_{i}^{a} \Delta^{i} V$
Mass mass flux
$\Delta^{i} M=\rho_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L} \rho$
$\rho_{a}=\frac{1}{V_{a}} \sum_{i}^{a} \Delta^{i} M$

Momentum

$$
\begin{aligned}
\Delta^{i} \mathbf{U} & =(\rho \mathbf{u})_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}(\rho \mathbf{u}) \\
\mathbf{u}_{a} & =\frac{1}{M_{a}} \sum_{i}^{a} \Delta^{i} \mathbf{U}
\end{aligned}
$$

Total energy

$$
\begin{aligned}
\Delta^{i} T & =(\rho \tau)_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}(\rho \tau) \\
\tau_{a} & =\frac{1}{M_{a}} \sum_{i}^{a} \Delta^{i} T
\end{aligned}
$$

Stress

$\Delta^{i} \Sigma=(\sigma)_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}(\sigma)$
$\sigma_{a}=\frac{1}{V_{a}} \sum_{i}^{a} \Delta^{i} \Sigma$
$\mathbf{d}_{a}=$ constant

We are exploring an alternative. Unlike stress, elastic deformation is a conserved quantity

Keeping the resulting stress monotonic motivates consideration of synchronized FCT

The calculations presented use the canonical stress advection equation
 Stress is not a conserved quantity and there can be significant error at strong material discontinuities
 Internal and kinetic energy should not be individually conserved
 Only total energy should be conserved

Supplemental \& alternative quantities

$$
\begin{aligned}
& \text { Internal energy } \\
& \qquad \begin{aligned}
\Delta^{i} E & =(\rho e)_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}(\rho e) \\
e_{a} & =\frac{1}{M_{a}} \sum_{i}^{a} \Delta^{i} E
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Compliance } \\
& \begin{aligned}
& \gamma^{e} \simeq \mathbf{d}: \sigma \\
& \mathbf{d} \rightarrow \mathbf{I} \frac{1}{\mu^{2}}=\mathbf{I} \frac{1}{(\rho c)^{2}} \\
& \Delta^{i} \mathbf{D}=(\rho \mathbf{d})_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}(\rho \mathbf{d}) \\
& \mathbf{d}_{a}=\frac{1}{M_{a}} \sum_{i}^{a} \Delta^{i} \mathbf{D} \\
& \text { "Elastic" deformation } \\
& \Delta^{i} \Gamma=\left(\rho \gamma^{e}\right)_{d}^{i} \Delta^{i} V+\mathbf{J}^{i} \cdot \nabla^{L}\left(\rho \gamma^{e}\right) \\
& \gamma_{a}^{e}=\frac{1}{M_{a}} \sum_{i}^{a} \Delta^{i} \Gamma
\end{aligned}
\end{aligned}
$$

For a Sedov** blast wave, Lagrange CCH \& xALE (BJ*) results compare favorably, but Eulerian requires more resolution to capture the peak

Energy issues

Operated by Los Alamos National Security, LLC for NNSA

We identified key algorithmic sensitivities in both xALE (BJ) and swept consider a progression of algorithmic modifications

Equations for conserved quantities are straightforward, but the proper energy decomposition is less clear: 3 energy formulations

Advected internal energy
Common in ALE codes

e is monotonic - in principle
Problems in shocks because total energy is not conserved

Example: Sedov
Note: "KE fixup" improves the Sedov problem, but not the Noh problem

Comparison of 3 energy formulations using CCH and xALE (BJ) bounds preservation scheme out performs other schemes

Monotonicity

Operated by Los Alamos National Security, LLC for NNSA

We are working through a progression of monotonicity schemes FCT can be adapted to ALE remap of disparate grids

- CCH Lagrange hydro, but applicable to SGH
- eXact intersection method as described
- Remap between disparate grids
- Linear reconstruction of conserved variables thru the centroid
- Various internal energy options

$$
\begin{aligned}
\rho_{x} & =\rho_{d}+\left(\mathbf{x}-\mathbf{x}_{d}\right) \cdot \alpha \nabla \rho \\
(\rho \mathbf{u})_{x} & =(\rho \mathbf{u})_{d}+\left(\mathbf{x}-\mathbf{x}_{d}\right) \cdot \beta \nabla(\rho \mathbf{u}) \\
\mathbf{u}_{a} & =\frac{\int(\rho \mathbf{u})_{x} d V}{\int \rho_{x} d V}
\end{aligned}
$$

Unsynchronized: Most of our results are from the first 2 schemes

BJ Barth-Jespersen*

FCT Basic FCT**
Conserved variables are monotonic
Primitive variables are not guaranteed to be monotonic

Limiters for density \& other variables are not synchronized

To date, we have not observed this to be a problem, but are concerned about plasticity

[^1]
Comparison of monotonicity schemes on Sod problem the BJ \& basic FCT schemes may be "good enough"

The Convergent Sod problem is a variation of the

 "surrogate" Guderley problem* with a relatively small contact radius

The problem models a strong converging shock that reflects off the origin.
This is a CCH xALE (BJ+internal energy) calculation, showing velocity magnitude. Overall, the results are quite symmetric, but slight artifacts appear after shock reflection. How does this compare with other methods?

A progression of algorithmic modifications highlights sensitivities in the Converging Sod problem

Increasing the resolution captures the feature

Taylor anvil demonstrates xALE (BJ) with a solid strain-hardening model - xALE \& Lagrange results are quite similar at $80 \mu \mathrm{~s}$

Multi-material

Operated by Los Alamos National Security, LLC for NNSA

In the finite volume method, the integrals are replaced by sums of fluxes about the perimeter of the cell

The fluxes represent time and spatial averages. Consider volume/continuity equation

$$
\begin{aligned}
M_{z} \dot{v}_{z} & =\oint_{z} d \mathbf{n} \cdot \mathbf{u} \\
& \rightarrow \sum_{i}^{z} \mathbf{N}^{i} \cdot \mathbf{u}_{p}^{i}
\end{aligned}
$$

in which the notation

$$
\sum_{i}^{z} \mathbf{N}^{i}=0
$$

implies the sum of iotas about the zone or cell, and the sum about points is

$$
\sum_{i}^{p} \mathbf{N}^{i}=0
$$

The data structures generalize to

The basic connectivity structure is called an "iota"
Variables are located relative to the iota
$\mathbf{u}_{z}^{i} \quad$ is the cell centered velocity relative to iota \boldsymbol{i}
$\sigma_{o}^{i k} \quad$ is the extrapolated stress tensor for species k and iota i
$\mathbf{N}^{i}=N^{i} \hat{\mathbf{n}}^{i}$ is the outward surface normal

The fundamental multi-material assumption is that inter-species drag forces are sufficient to completely couple the momenta

Then, all species " k " have the same velocity but different thermodynamic states

Mass \&
volume fractions

$$
\begin{aligned}
M_{z} & =\sum_{k}^{z} M_{z}^{k} \\
\sum_{k}^{z} \varphi_{z}^{k} & =1
\end{aligned}
$$

Here, we describe the

 Lagrange stepIn remap, species are treated independently, but momenta are accumulated to form a conservative bulk velocity

Momentum

$$
M_{z} \dot{\mathbf{u}}_{z}=\sum_{i, k}^{z} \varphi_{z}^{i k} \mathbf{N}_{i} \cdot \sigma_{p}^{i k}
$$

Closure model

Relaxes pressure

$$
\begin{aligned}
\delta_{z}^{k} V & =\ldots \\
\sum_{k, m}^{z} \delta_{z}^{k m} V & =0 \\
v_{z}^{k 1} & =\tilde{v}_{z}^{k 1}+\frac{\delta_{z}^{k} V}{M_{z}^{k}}
\end{aligned}
$$

\& adjusts energy

$$
\delta_{z}^{k} E=\ldots
$$

$$
\sum_{k, m}^{z} \delta_{z}^{k n} E=0
$$

$$
e_{z}^{k 1}=\tilde{e}_{z}^{k 1}+\frac{\delta_{z}^{k} E}{M_{z}^{k}}
$$

Total energy

$$
\begin{aligned}
M_{z}^{k} \dot{\tau}_{z}^{k} & =\sum_{i}^{z} \varphi_{z}^{i k} \mathbf{N}_{i} \cdot \sigma_{p}^{i k} \cdot \mathbf{u}_{p}^{i}+\sum_{m}^{z} \delta_{z}^{k m} E \\
& =M_{z}^{k} \dot{\tilde{\tau}}_{z}^{k}+\delta_{z}^{k} E
\end{aligned}
$$

In lieu of a composite EOS, we use a multi-species closure model currently a variation of the Tipton* scheme adapted for CCH

$$
\left.\begin{array}{lll}
\rho_{L}=1.0 \\
e_{L}=2.0 & \uparrow & \rho_{R}=0.12 \\
\gamma_{L}=2.0
\end{array} \quad \begin{array}{l}
\text { 50:50 mixture }
\end{array}\right)
$$

Performance on a 100 cell Sod problem**

[^2]
In the multi-material nodal solution*, all species contribute to a single momentum equation, but each has its own stress

The stress field is discontinuous, so we must explicitly enforce conservation of momentum

Substitute the dissipation relation for each species k

$$
\hat{\mathbf{n}}^{i} \cdot \sigma_{p}^{i k}=\hat{\mathbf{n}}^{i} \cdot \sigma_{o}^{i k}+\mu_{c}^{i k}\left(\mathbf{u}_{p}-\mathbf{u}_{o}^{i}\right)\left|\hat{\mathbf{n}}^{i} \cdot \mathbf{a}_{c}^{i}\right|
$$

into the momentum conservation law
$0=\mathbf{u}_{p} \sum_{i, k}^{p} N^{i} \varphi_{z}^{i k} \mu_{c}^{i k}\left|\hat{\mathbf{n}}^{i} \cdot \hat{\mathbf{a}}_{c}^{i}\right|+\sum_{i, k}^{p} N^{i} \boldsymbol{\varphi}_{z}^{i k}\left[\hat{\mathbf{n}}^{i} \cdot \sigma_{o}^{i k}-\mu_{c}^{i k} \mathbf{u}_{o}^{i}\left|\hat{\mathbf{n}}^{i} \cdot \hat{\mathbf{a}}_{c}^{i}\right|\right]$
and solve for velocity directly

$$
\mathbf{u}_{p}=\frac{\sum_{i, k}^{p} N^{i} \boldsymbol{\varphi}_{z}^{i k}\left[\mu_{c}^{i k} \mathbf{u}_{o}^{i}\left|\hat{\mathbf{n}}^{i} \cdot \hat{\mathbf{a}}_{c}^{i}\right|-\hat{\mathbf{n}}^{i} \cdot \sigma_{o}^{i k}\right]}{\sum_{i, k}^{p} N^{i} \boldsymbol{\varphi}_{z}^{i k} \mu_{c}^{i k}\left|\hat{\mathbf{n}}^{i} \cdot \hat{\mathbf{a}}_{c}^{i}\right|}
$$

Calculate displacement

$$
\mathbf{x}_{p}^{1}=\mathbf{x}_{p}^{0}+d t \mathbf{u}_{p}
$$

and return to the dissipation relation to solve for the species stress components $\hat{\mathbf{n}}^{i} \cdot \sigma_{p}^{i k}$

> We do not assume a composite impedance in the nodal solution nor do we assume a composite EOS
> Doing so would lead to error in the species internal energy

[^3]
We are using an exact intersection VOF* treatment of material interfaces - Triple Point problem**

See Mack Kenamond's presentation for details of the VOF scheme

The triple point problem simulates a shock hitting a material discontinuity, producing vortical flow

CCH+xALE (BJ) full Eulerian (interface reconstruction \& null closure)
$\mathrm{t}=5.0$

There is no converged solution.
Roll up should increase with resolution, until Kelvin-Helmholtz instabilities develop
olors correspond to density on a quadratic scale from 0 to 3.

The order of the underlying hydro strongly affects the roll up

Order of underlying CCH hydro
had a marked effect,
roughly equivalent to doubling
the resolution

$2^{\text {nd }}$ order ALE
Null closure
100×50

Order of the ALE scheme had only a minor effect on the solution for this problem

Thoughts to take away

This presentation...

- Introduced an exact intersection remap scheme used with both single and multi-material cells and having computational cost \sim n
- Proposed an alternative to the canonical stress advection equation (elastic deformation/strain)
- Confirmed that, with bounds preservation of internal energy, the total energy based remap is superior to internal energy based remap
- Showed that major sources of error can be removed by using second-order remap and by enforcing total energy conservation
- Demonstrated Barth-Jespersen, basic FCT, and synchronized FCT methods for the remap of disparate grids (and not simply advection)
- Demonstrated application to solids
- Presented for multi-material cells:
- multi-material evolution equations
- multi-material nodal solution
- multi-material remap
- adaptation of the Tipton closure model to CCH
- VOF

- Los Alamos

[^0]: * See Mack Kenamond's presentation for details of the eXact line intersection method

[^1]: * Barth, Jespersen 1989 Zalesak 1979
 *** Schär, Smolarkiewicz 1996
 **** Liska, Shashkov, Vachal, Wendroff 2011

[^2]: - Transition to final state is essentially monotonic
 - Transient averages (not shown) are bounded by L\&R states

[^3]: * Despres, Mazeran 2005 Maire, Abgrall, Breil, Ovadia 2007
 Burton, Carney, Morgan, Sambasivan, Shashkov 2011 Burton, Carney, Morgan, Sambasivan 2013

