A Stable and Accurate Method for Tetrahedral Elastic-Plastic Computations

Brian Carnes bcarnes@sandia.gov

Sandia National Laboratories Albuquerque, NM

Sept 2-6, 2013 MULTIMAT 2013 SAND2013-7265C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000,

Solids on Tets

Acknowledgements

• Duke University: (algorithms for solids and fluid/solid coupling)

- Prof. Gugliemo Scovazzi
- Xianyi Zeng
- Sandia Labs: (interface to Trilinos/STK, multi-physics coupling)
 - Dave Hensinger
- Rensselaer Polytechnic Institute: (interface to FMDB library for adaptivity)
 - Prof. Mark Shephard
 - Ryan Molecke
 - Dan Ibanez

< 回 > < 三 > < 三 >

Contents

- Motivation
- Overview of VMS for solids
- Examples
 - Linear elasticity verification
 - Dynamic: Taylor bar, bending beam
 - Quasistatic: compression, tension
 - Impact Test in Complex Geometry
- Summary and future work

Motivation: Tetrahedral Meshes

- Solid mechanics on hex meshes: mixed staggered Q1/Q0 formulation
 - continuous linear kinematic variables
 - discontinuous piece-wise constant stresses
 - requires various hourglass controls (e.g. Belytschko-Flanagan)
 - mesh generation very time consuming
- Tet meshes for solids:
 - use of automated fast meshing
 - ease of use for mesh adaptivity
 - ease of coupling with other physics (thermal, electromagnetic)

Overview of Recent Research

- Swansea: Bonet, Burton, Marriot, Hassan, (P1/P1-projection)
- Sandia: Dohrman, Key, Heinstein, Bochev, (P1/P1-projection)
- TU Munich-Sandia: Gee, Wall, Dohrman, (P1/P1+P1/P0-+proj.)
- LLNL: Puso, Solberg, (P1/P1+P1/P0-+proj.)
- RPI: Maniatty, Klaas, Liu, Shephard, Ramesh, (P1/P1-stabilized)
- Chorin's projection: Onate, Rojek, Taylor, Pastor (P1/P1)
- UPC Barcelona: Chiumenti, Cervera, Valverde, Codina (P1/P1-stabilized)
- UIUC: Nakshatrala, Masud, Hjelmstad, (P1/P1+bubble)
- Swansea II: Bonet, Gil, (P1/P1-stabilized)
- Berkeley/Pavia: Taylor, Auricchio, Lovadina, Reali, (Mixed enhanced)
- UCSD/University of Padua: Krysl, Micheloni, Boccardo (Mixed enhanced)
- Caltech: Thoutireddy, Ortiz, Molinari, Repetto, Belytschko (Composite Tets)

Finite Elements: Fluids and Solids

- Our approach to solids is an extension of the VMS-stabilized hydro approach ¹
- All variables are nodal except deviatoric stress and internal material state variables, which are based at quadrature points
- P1-based tets enable use of one-point quadrature (as in uniform gradient hexes)

¹G. Scovazzi, J. Comput. Phys., Vol 231 (24), 2012, pp. 8029_8069<u></u> → (= →) = →) へ

Carman	Candia
Carnes	Sandia

Governing Equations (Mixed Form)

 Solve for {d, v, σ̄, p} satisfying mass/momentum conservation, Cauchy stress decomposition, and velocity definition:

$$\rho J = \rho_0, \quad \rho \dot{v} = \nabla \cdot \sigma + \rho \cdot b, \quad \sigma = p I + \bar{\sigma}, \quad d = v.$$
(1)

- Assume σ
 is a function of the kinematics (strains, strain rates), state variables, the history of σ
 , etc.
- In the linear case we consider the **mixed** system for displacement
 (u) and pressure (p):

$$\rho \ddot{u} - \nabla \cdot \overline{\varepsilon}(u) - \nabla p = f$$
$$p - \kappa \nabla \cdot u = 0$$

where $\overline{\varepsilon}(u)$ is the deviatoric strain tensor.

Linear Elasticity: Static Case

- Stabilization for linear elasticity is very similar to Stokes flow
- Incompressible case:
 - P1/P0 locking (as in P1 displacement formulation)
 - P1/P1 checkerboard instability for pressure
- Solution for P1/P1: Hughes/Franca/Balestra stabilization (1986): enrich the velocity/displacement (*u*) with a residual-based term

$$u = u_h + u', \quad u' = -\tau \frac{h^2}{2\mu} (-\nabla p_h - \nabla \cdot \epsilon(u_h) - f)$$

- Stabilization derives from the additional pressure Laplacian
- This is now called Variational Multiscale (VMS) stabilization

Linear Elasticity: Dynamic Case

- The Hughes/Franca/Balestra stabilization extends naturally to time-dependent Stokes/Navier-Stokes flows
- We could not find an appropriate τ that worked for linear dynamics
- The issue appears to be the different character of the PDEs:
 - elliptic: Stokes (velocity/pressure)
 - elliptic: elasticity (displacement/pressure)
 - parabolic: time-dependent Stokes
 - hyperbolic: time-dependent elasticity
- Our solution is to formulate the pressure equation in rate form: which pairs naturally with the momentum equation:

$$\kappa^{-1}\dot{p} - \nabla \cdot v = 0$$

$$\rho \dot{v} - \nabla p = \nabla \cdot \overline{\varepsilon}(u) + f$$

< 回 > < 三 > < 三 >

Linear Elasticity: Dynamic VMS

- The stabilization then is analogous to what is used for the linear acoustic wave equation
- We add in subgrid scales $\{v', p'\}$ defined using residuals

$$v = v_h + v', \quad v' = -\tau \rho^{-1} (\rho \dot{v}_h - \nabla p_h - \nabla \cdot \bar{\epsilon}(u_h) - \rho \cdot b)$$

$$p = p_h + p', \quad p' = -\tau (\dot{p}_h - \kappa \nabla \cdot v_h)$$

- The resulting pressure Laplacian and velocity div-div terms provide stabilization
- The use of residuals provides consistency and thus accuracy

Linear Elasticity: Verification

- We verified the linear elastic case under various options:
 - static/dynamic,
 - quad/tri/hex/tet,
 - compressible/nearly incompressible,
 - structured/unstructured grids
- Plots of manufactured solutions for pressure:

Compressible (left) and nearly incompressible (right)

Carnes (Sanc

Linear Elasticity: Verification

- Verification test: analytic pressure/velocity/displacement with valid solution in the incompressible limit (here ν = 0.4995)
- Expected convergence rates are order 2 except for pressure which is order 1.5.

0	(O 1) -)
Carnes (Sandia)

A (10) A (10) A (10)

Nonlinear Dynamics: Hyper-elasticity

• We concentrate on mixed formulations using a pressure:

$$\sigma = pI + \bar{\sigma}$$

• Pressure is assumed a function of the volumetric part of the deformation gradient:

$$p \equiv \kappa \, U'(J) \tag{2}$$

where J = det(F), *F* is the deformation gradient, *U* is an energy function and κ is the bulk modulus (e.g. $U(J) = \frac{1}{2}(J-1)^2$)

• Deviatoric stress is defined in terms of J and $b = F F^T$ using another energy function, for example using a neo-Hookean law

$$\bar{\sigma} = \mu J^{-5/3} \, \bar{b}$$

Nonlinear Dynamics: J₂ Plasticity

- For plasticity, the pressure often remains a function of J
- The deviatoric stress is computed through an associative flow rule, with inclusion of constraints and plastic strain
- We have implemented a simple plasticity model ² using linear hardening and a product factorization of the total deformation:

$$F = F^e F^p$$

- Extensions to other models (e.g. hypo-elasticity) should be possible provided that
 - we have separate models for $\bar{\sigma}$ and p, and
 - the pressure remains a function only of J

²JC Simo, CMAME (1992), pp. 61-102

Pressure Evolution Equation and VMS

• The nonlinear pressure equation in an evolution form:

$$\dot{p} = \frac{\partial}{\partial t} \{ \kappa U'(J) \} = \kappa U''(J) \dot{J}$$
$$= \kappa U''(J) \{ J \nabla \cdot v \}$$
$$= \tilde{\kappa}(J) \nabla \cdot v.$$

• We have defined an effective bulk modulus that varies as the material undergoes volume change.

$$\tilde{\kappa}(J) \equiv \kappa \, U''(J) \, J$$

• VMS stabilization proceeds as in the linear case using a v' term

Carnes I	(Sandia)
Oarries I	(Oanula,

Nonlinear Examples Using Tet Meshes

Dynamic

- Taylor bar impact (elastic-plastic)
- Bending beam (hyper-elastic)
- Quasistatic (run in dynamic mode)
 - Billet in compression (elastic-plastic)
 - Cylindrical bar in uniaxial tension (elastic-plastic)
- Impact test in complex geometry

< 6 k

Taylor Bar

- Length/Radius: 3.24/0.32cm, density: 8930
- Elastic-plastic material (E=117.0e9, ν =0.35, σ_{γ} =0.4e9, H=0.1e9)
- Zero normal velocity at wall, initial velocity 227m/s

Taylor Bar: Pressure Convergence

Note: unstructured grids fill space more evenly and resolve better than structured meshes derived from hex elements

	4	미 🛛 🗸 🗇 🖌 🤆 홈 🗸 🖉 🕨	2	୬୯୯
Carnes (Sandia)	Solids on Tets	MULTIMAT 20	13	18 / 40

Taylor Bar: Force and Length History

Convergence of axial reaction force and final bar length:

A b

Taylor Bar: Zero Pressure Isosurface

- Zero pressure isosurfaces: regions with no volume change
- We are able to resolve these surfaces very smoothly

Pressure and zero pressure iso-contours at final time

Carman /	C	· • ·
Carnes (Sanu	ia)

A b

Bending Beam

- Length/Width: 6/1.4m, density: 1.1e3
- Elastic neo-Hookian material (E=1.7e7, ν=0.45)
- Fixed end, driven by initial x-velocity profile

Versions of initial velocity and geometry

	Carnes ((Sandia)
--	----------	----------

< 回 > < 三 > < 三 >

Bending Beam: Pressure

Carnes (Sandia)

Solids on Tets

MULTIMAT 2013 22 / 40

2

Bending Beam: Force History

- We run on four uniform (unstructured) tet meshes (m_0-m_3)
- Convergence of reaction forces (*x*, *y*) at fixed surface:

Billet in Compression: Pressure

- Length/Radius: 1.5/1.0cm, density: 1e5
- Elastic-plastic material (E=384.62e9, ν =0.423, σ_y =1e9, H=3e9)
- Quasistatic approx. using dynamics (fictitious density, velocity)
- Top: dirichlet uniform velocity, bottom: zero normal displacement

Pressure contours for three meshes (25% compression)

	(O I! -)
Carnes (Sandia)
	(Ganana)

Bar in Tension: Pressure

- Length/Radius: 5.33/0.641cm, density: 1e5
- Elastic-plastic material (*E*=80.2e9, ν=0.29, σ_ν=0.45e9, *H*=0.13e9)
- Quasistatic approx. using dynamics (fictitious density, velocity)
- Top: zero normal displacement, bottom: dirichlet uniform velocity

Pressure contours for three meshes (0.4cm extension)

Corpool	Condial	
Games	Salua	

Impact Test in Complex Geometry

- Length/Radius: 32/3.24mm, density: 8930
- Elastic-plastic material (E=117.0e9, ν =0.35, σ_y =0.4e9, H=0.1e9)
- Zero normal velocity at wall, initial uniform x-velocity 100m/s

Initial Geometry

Carnes ((Sandia)
Carries (Janua

Impact Test: Meshes

Carnes (Sandia)

MULTIMAT 2013 27 / 40

э

イロト イヨト イヨト イヨト

Impact Test: Meshes

Carnes (Sandia)

Solids on Tets

MULTIMAT 2013 28 / 40

э

Impact Test: Meshes

Carnes (Sandia)

Solids on Tets

MULTIMAT 2013 29 / 40

э

Impact Test: Deformation & Pressure

Campage	Canal	:->
Carnes I	Sano	121
041100	Cana	

Image: A mathematical states in the second states in the second

Impact Test: Deformation & Pressure

~	(O)	
(arnee)	Sand	121
Callies I	Janu	lai

Image: A mathematical states in the second states in the second

Impact Test: Deformation & Pressure

Carnes ((Sandia)

Image: A matrix and a matrix

Impact Test: Velocity & Pressure

Plot on half-domain:

Velocity magnitude

Pressure

< 6 b

Impact Test: Velocity & Pressure

Plot on half-domain:

Velocity magnitude

Pressure

< 17 ▶

MULTIMAT 2013 34 / 40

Impact Test: Velocity & Pressure

Plot on half-domain:

Velocity magnitude

Pressure

Impact Test: Zero Pressure Isosurfaces

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Impact Test: Zero Pressure Isosurfaces

Carnes (Sandia)

Solids on Tets

MULTIMAT 2013 37 / 40

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Impact Test: Zero Pressure Isosurfaces

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Impact Test: Plastic Strain

Plastic strain (left) and subgrid scale velocity (right)

< 🗇 🕨

Summary and Ongoing Work

Current status

- Finite deformation solid mechanics capability for tet meshes
- Method is stable and accurate (based on VMS)
- Compatible with VMS-based nodal hydrocode (we have a separate fluid/solid coupling module)

Ongoing work

- Additional formal code verification
- Performance improvements
- Comparisons with hex-based solid mechanics codes
- Publications on solids and fluid/solid coupling

< 回 > < 回 > < 回 >