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Introduction, aim

Present trends for Lagrange (and ALE) hydro schemes give
preference to time (and even space) centering of all
conservative quantities

• CAVEAT scheme: [Addessio, Baugardner, Dukowicz, Johnson, Kashiwa,
Rauenzahn, Zemach, 1990]

• Compatible-Hydro scheme: [Caramana, Burton, Shashkov, Whalen 1998]

• GLACE scheme: [Després, Mazeran, 2003]

• EUCCLHYD scheme: [Maire, 2004, 2007]

Notations:

“VNR” (Von Neumann–Richtmyer, 1D) ≡ “Wilkins” (2D)
≡ “SGH” (Staggered Grid Hydro) ≡ “STS” (Space and Time Staggered)

“CSTS” = Conservative Space and Time Staggered
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Introduction, aim

Most widely known distortion: shock levels and velocities
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However:

• time and space staggered schemes are extremely practical and widely used
([von Neumann–Richtmyer 1950], [Wilkins 1964], [Pracht 1975]. . . )

• yet, little research effort spent on such schemes (hopeless? old fashioned?
focus on Q & anti-hourglassing?. . . )

• there is no theorem or proof that conservativity cannot be achieved

• and hints are actually that total energy can be exactly conserved ([Trulio &
Trigger 1960], [Burton 1991])
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Introduction, aim

Here, reexamine, extend, and assess conservative modified STS
schemes

I. Write a modified STS scheme with following properties:

• same calculation structure as the STS (1, 2, or 3D)

• second order in time and space as the STS

• exactly conservative in mass, momentum, and total energy

• under all conditions (regardless of time step changes)

• with a kinetic energy defined by a positive definite quadratic form of velocity

(rules out Trulio & Trigger’s Ec =
∑

i miu
n+1/2

i u
n−1/2

i )

• and, if possible, second order entropic (bonus, demands energy conservation)

II. Basic tests of impact on:

• energy conservation

• jump conditions

• constraints on time step

• mesh behavior in 2D
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Local continuous system of equations

We solve compressible Euler’s equations:

dx

dt
= u semi-Lagrangian configuration (1a)

dρ

dt
= −ρ∇ · u mass conservation (1b)

ρ
du

dt
= −∇(p + q) momentum conservation (1c)

ρ
de

dt
= −(p + q) ∇ · u internal energy evolution (1d)

p = EOS(ρ, e) system closure (1e)

where u is velocity, ρ density, p pressure, q artificial viscosity and e internal energy

A. Claisse | CEA | PAGE 6/39



“Historical” space and time discretization

System (1) writes:



xn+1
p = xnp + u

n+1/2
p ∆tn+1/2 (2a)

mn+1
c = mn

c (2b)

mp(u
n+1/2
p − u

n−1/2
p ) =

∑
c∈C(p)

(p + q)nc
∂Vc
∂xp

∣∣n ∆tn+1/2+∆tn−1/2

2
(2c)

en+1
c −enc

∆tn+1/2 = − (p+q)
n+1/2
c

∆tn+1/2

(
1

ρn+1
c
− 1
ρnc

)
(2d)

pn+1
c = EOS(ρn+1

c , en+1
c ) (2e)

where:

• c cell labels, p node labels

• ∆tn+1/2 time step between tn and tn+1

• ∂Vc
∂xp

∣∣n corner vectors

• p
n+1/2
c = 1

2
(pnc + pn+1

c )

• mp =
∑

c∈C(p)

1
|C(p)|mc n-1 n n+ 1

i-1

i

i+ 1

Dtn+ 1�2
: xi

n

: ui
n+ 1�2

: @e, pD i+ 1�2
n
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Conservative Space and Time Discretization

n-1 n n+ 1 n+ 2

i-1

i

i+ 1

i+ 2
Consistency demands that action A (= time inte-
gral of energy) be built from kinetic and internal
energies discretized over the STS grid:

En
i =

∑
c

mce
n
c

E
n+1/2

k =
∑
p

1
2
mp(u

n+1/2
p )2

A =
∑
n

1
2

(∆tn−1/2 + ∆tn+1/2)En
i + ∆tn−1/2E

n−1/2

k

• This is a form of “space-time finite volumes approach” (second-order accurate)

• A least action variational principle yields the only possible momentum
equation: turns out be identical to the original STS scheme

• Now, from there, total energy conservation can be deduced so as to be
compatible with the discretization of action: turns out there is only one
possible scheme (for the given formula of Ek )
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Conservative Space and Time Discretization

Kinetic energy equation

The momentum equation:

mp(u
n+1/2
p − u

n−1/2
p ) =

∑
c∈C(p)

(p + q)nc
∂Vc
∂xp

∣∣n ∆tn+1/2+∆tn−1/2

2

multiplied by 1
2

(
u
n+1/2
p + u

n−1/2
p

)
, we obtain the kinetic energy equation:

1
2
mp
[
(u

n+1/2
p )2 − (u

n−1/2
p )2

]
=

∑
c∈C(p)

(p + q)nc
∂Vc
∂xp

∣∣n · u
n+1/2
p +u

n−1/2
p

2
∆tn+1/2+∆tn−1/2

2
(3)
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Conservative Space and Time Discretization

Internal energy equation

We use the same “energy tally” argument as [Burton, 91]:

• internal energy equation must match the kinetic energy equation
→ only flux terms are left

• right hand sides of kinetic and internal energies must be opposite up to both
space and time index rearrangements

mc (en+1
c − enc )

=
∑

p∈P(c)

− 1
2

[
(p + q)n+1

c
∂Vc
∂xp

∣∣∣n+1
+ (p + q)nc

∂Vc
∂xp

∣∣∣n] · un+1/2
p ∆tn+1/2

second order accuracy in time

+ 1
4

(p + q)nc
∂Vc
∂xp

∣∣∣n · (u
n+1/2
p − u

n−1/2
p ) (∆tn+1/2 −∆tn−1/2) (4)

rearrangement of the remaining terms of (3)
compatible with causality: no time indices beyond n + 1
small and cancels for constant ∆t
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Conservative Space and Time Discretization

Internal energy equation

We use the same “energy tally” argument as [Burton, 91]:

• internal energy equation must match the kinetic energy equation
→ only flux terms are left

• right hand sides of kinetic and internal energies must be opposite up to both
space and time index rearrangements

mc (en+1
c − enc )

=
∑

p∈P(c)

− 1
2

[
(p + q)n+1

c
∂Vc
∂xp

∣∣∣n+1
+ (p + q)nc

∂Vc
∂xp

∣∣∣n] · un+1/2
p ∆tn+1/2

second order accuracy in time

+ 1
4

(p + q)nc
∂Vc
∂xp

∣∣∣n · (u
n+1/2
p − u

n−1/2
p ) (∆tn+1/2 −∆tn−1/2) (4)

- rearrangement of the remaining terms of (3)
- compatible with causality: no time indices beyond n + 1
- small and cancels for constant ∆t
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Conservative Space and Time Discretization

The internal energy equation (4) differs from its version in the STS schemes by 3
important features:

• artificial viscosity is now time centered as pressure (previously suggested by
[Trulio & Trigger, 62])

• the volume variations which produce the pressure work are described by the
scalar products of corner vectors and displacements: ∂Vc

∂xp
· up

• a novel corrective term is required when the time step fluctuates

Moreover, there is a minor additional computational time.
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Conservative Space and Time Discretization

Numerical example: plane 1D Noh’s test case

Comparison between: STS, CSTS and cell-centered (GLACE order 2) schemes

Density profiles at final time t = 0.6, CFL= 0.5
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Conservative Space and Time Discretization

Total energy conservation

Adding (3) and (4) and summing over cells and nodes yields

∑
p

1
2
mp

[
(u

n+1/2
p )2 − (u

n−1/2
p )2

]
+
∑
c

mc (en+1
c − enc )

=
∑
p

∑
c∈C(p)

− 1
2

[
(p + q)n+1

c
∂Vc
∂xp

∣∣n+1 · un+1/2
p ∆tn+1/2

−(p + q)nc
∂Vc
∂xp

∣∣n · un−1/2
p ∆tn−1/2

]
where the right hand side appears to be a flux term in time
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Conservative Space and Time Discretization

Total energy conservation

The conserved numerical energy can thus be written as:

E
n−1/2

Tot. = E
n−1/2

Kin. + E
n−1/2

Int. =
∑
p

1
2
mp(u

n−1/2
p )2

positive definite quadratic form

+
∑
c

[
mce

n
c + (p + q)nc

∑
p∈P(c)

∂Vc
∂xp

∣∣n · un−1/2
p

∆tn−1/2

2

]

internal energy backward reconstructed at tn−1/2

or

E
n−1/2

Tot. = En
Tot. = En

Kin. + En
Int. =

∑
c

mce
n
c

+
∑
p

[
1
2
mp(u

n−1/2
p )2 + u

n−1/2
p ·

∑
c∈C(p)

(p + q)nc
∂Vc
∂xp

∣∣n ∆tn−1/2

2

]
- non positive definite quadratic form

- kinetic energy forward reconstructed at tn

A. Claisse | CEA | PAGE 17/39



Conservative Space and Time Discretization

Total energy conservation
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E
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∑
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2
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n−1/2
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∑
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n
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∂Vc
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2
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E
n−1/2

Tot. = En
Tot. = En

Kin. + En
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c

mce
n
c

+
∑
p

[
1
2
mp(u

n−1/2
p )2 + u

n−1/2
p ·

∑
c∈C(p)

(p + q)nc
∂Vc
∂xp

∣∣n ∆tn−1/2

2

]
- non positive definite quadratic form

- kinetic energy forward reconstructed at tn
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Conservative Space and Time Discretization
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Conservative Space and Time Discretization
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Conservative Space and Time Discretization
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Conservative Space and Time Discretization

Total energy conservation

The conserved numerical energy can thus be written as:

E
n−1/2

Tot. = E
n−1/2

Kin. + E
n−1/2

Int. =
∑
p

1
2
mp(u

n−1/2
p )2

positive definite quadratic form

+
∑
c

[
mce

n
c + (p + q)nc

∑
p∈P(c)

∂Vc
∂xp

∣∣n · un−1/2
p

∆tn−1/2

2

]

internal energy backward reconstructed at tn−1/2

• internal energy, backward reconstructed to half-integer time indices

mce
n−1/2
c = mce

n
c + (p + q)nc

∑
p∈P(c)

∂Vc
∂xp

∣∣n · un−1/2
p

∆tn−1/2

2

• evolution equation of internal energy:

mc (e
n+1/2
c − e

n−1/2
c ) =

∑
p∈P(c)

−(p + q)nc
∂Vc
∂xp

∣∣n · (u
n+1/2
p +u

n−1/2
p )

2
(∆tn+1/2+∆tn−1/2)

2
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Entropy condition

Order one artificial viscosity

From internal energy evolution equation of e
n−1/2
c , entropy condition de + pdV > 0

becomes

−qnc
∑

p∈P(c)

∂Vc
∂xp

∣∣n · (u
n+1/2
p +u

n−1/2
p )

2
≥ 0 for any cell c

→ order two and implicit

Order one in time approximation (usual STS schemes):

qnc will be an explicit clipped functional of
{

u
n−1/2
p

}
, instead of

{
1
2

(u
n+1/2
p + u

n−1/2
p )

}

qnc = Q
c

({
u
n−1/2
p

})
=

∣∣∣∣∣∣∣∣∣
Qc
({

u
n−1/2
p

})
if Qc

({
u
n−1/2
p

}) ∑
p∈P(c)

∂Vc
∂xp

∣∣n · un−1/2
p < 0

0 if Qc
({

u
n−1/2
p

}) ∑
p∈P(c)

∂Vc
∂xp

∣∣n · un−1/2
p ≥ 0

Qc can be any convenient sensible formula (scalar, tensor, TVD, hyper-viscous. . . )
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Second order entropy condition

Order two predicted–corrected artificial viscosity

• no guarantee that order one explicit q complies with entropy condition

• what about singularities and large (variable) ∆t?

• significant improvement can be obtained with predicted–corrected q which
requires computing the momentum equation twice:

mp(u
∗n+1/2
p − u

n−1/2
p ) =

∑
c∈C(p)

(pnc + q
n−1/2
c ) ∂Vc

∂xp

∣∣n ∆tn+1/2+∆tn−1/2

2

where q
n−1/2
c = Q

c

({
u
n−1/2
p

})
predicted (5a)

mp(u
n+1/2
p − u

n−1/2
p ) =

∑
c∈C(p)

(pnc + qnc ) ∂Vc
∂xp

∣∣n ∆tn+1/2+∆tn−1/2

2

where qnc = Q
c

({
1
2

(u
∗n+1/2
p + u

n−1/2
p )

})
corrected (5b)
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Second order entropy condition

Order two predicted–corrected artificial viscosity

• to preserve energy conservation a correction in the enc equation is required

mc (en+1
c − enc )

=
∑

p∈P(c)

− 1
2

[
(pn+1

c + q
n+1/2
c ) ∂Vc

∂xp

∣∣n+1
+ (p + q)nc

∂Vc
∂xp

∣∣n] · un+1/2
p ∆tn+1/2

− 1
2

(qnc − q
n−1/2
c ) ∂Vc

∂xp

∣∣n · un−1/2
p ∆tn−1/2

+ 1
4

(p + q)nc
∂Vc
∂xp

∣∣n · (u
n+1/2
p − u

n−1/2
p ) (∆tn+1/2 −∆tn−1/2) (6)

The en+1
c expression now does not involve qn+1

c (replaced by available q
n+1/2
c ).

• in this case, e
n−1/2
c equation is not modified since this equation uses only

corrected q

mc (e
n+1/2
c − e

n−1/2
c ) =

∑
p∈P(c)

−(pnc + qnc ) ∂Vc
∂xp

∣∣n · (u
n+1/2
p +u

n−1/2
p )

2
(∆tn+1/2+∆tn−1/2)

2
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CSTS scheme

This CSTS scheme (5) and (6) (with predicted-corrected artificial viscosity) is now:

• fully conservative in momentum and total energy

• second-order accurate in entropy production, and

• retains the locally implicit structure of original STS schemes (VNR or Wilkins)

A. Claisse | CEA | PAGE 27/39



Second order entropy condition

Numerical example: plane 1D Noh’s test case

Influence of CFL coefficient on STS and CSTS (without and with pred-corr q):

CFL= 0.6

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

de
ns

ity

x

STS
CSTS

CSTS with pred/corr
analytical solution

A. Claisse | CEA | PAGE 28/39



Second order entropy condition

Numerical example: plane 1D Noh’s test case

Influence of CFL coefficient on STS and CSTS (without and with pred-corr q):

CFL= 0.63
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Second order entropy condition

Numerical example: plane 1D Noh’s test case

Influence of CFL coefficient on STS and CSTS (without and with pred-corr q):

CFL= 0.83
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Second order entropy condition

Numerical example: plane 1D Noh’s test case

Influence of CFL coefficient on STS and CSTS (without and with pred-corr q):

Variable CFL (0.5 and 0.1)
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Outline

Continuous system of equations

“Historical” space and time discretization

• CSTS scheme

Conservative Space and Time Discretization

Kinetic energy equation
Internal energy equation
Numerical example: Noh 1D
Total energy conservation

Rewriting of the internal energy

Entropy condition

Order one artificial viscosity
Order two predicted–corrected artificial viscosity
Numerical example: Noh 1D

• Comments on the effective energy of the system

Numerical results

Sod
Noh 2D
Kidder
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Comments on the effective energy

enc on one hand:

• is effectively calculated by the scheme

• is used for pressure calculation (EOS)

• is not associated with a positive quadratic form of kinetic energy

• does not enforce entropic conditions

e
n−1/2
c on the other hand:

• is not calculated by the scheme

• is not used for pressure calculation (EOS)

• is associated with a positive quadratic form of kinetic energy

• does enforce entropic conditions

Both definitions are consistent up to the accuracy order of the scheme:

e = enc +O(∆x2) = e
n−1/2
c +O(∆x2) at given CFL condition
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Outline

Continuous system of equations

“Historical” space and time discretization

CSTS scheme

Conservative Space and Time Discretization

Kinetic energy equation
Internal energy equation
Numerical example: Noh 1D
Total energy conservation

Rewriting of the internal energy

Entropy condition

Order one artificial viscosity
Order two predicted–corrected artificial viscosity
Numerical example: Noh 1D

Comments on the effective energy of the system

• Numerical results

• Sod
• Noh 2D
• Kidder
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Numerical results

Generalities

• From now on, all results for CSTS scheme use predicted–corrected artificial
viscosity

• Linear artificial viscosity active in both expansion and compression: q1 = 0.5

• Quadratic artificial viscosity active in compression only: q2 = γ+1
4
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Numerical results

SOD’s test case: mesh [5000× 2]

Density profiles at final time t = 0.2, CFL = 0.25
(STS and CSTS schemes)
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Numerical results

Noh’s test case: 2D cylindrical

• cartesian mesh

• ρ = 1, p = 10−15, γ = 5
3

• CFL= 0.1

• no anti-hourglassing algorithm

• q’s length scale ≡ width of inertia
ellipsoid along radius

Density profiles at final time t = 0.6
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Numerical results

Kidder’s test case

Computation of the scheme’s order on the density profile

10 100
number of cells

10-5

10-4

10-3

L2  (|
∆ρ

|)

CSTS without viscosity (order = 2.0044)
CSTS with viscosity (order = 0.73)
STS without viscosity (order = 2.0076)
STS with viscosity (order = 0.731)
1/x2

3 meshes:
[20× 20], [40× 40], [80× 80]

EL2
(ρ) =

√∑
c

∆ρ2

∆ρ = (ρtheo − ρexp)
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Conclusion and perspectives

Conclusion

The CSTS scheme is:

• conservative for total energy

• only possible extension of usual STS schemes

• second order for the entropy condition

Simple numerical tests show:

• better shock capture (level and propagation)

• improved 2D robustness

• improved CFL margin

• reduced additional computational time: here 1% and 28% (without and with
pred/corr, no Newton on EOS)

Current works Acknowledgments
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• stability (CFL) analysis

• tests on complex EOS (shock separations. . . )
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