
|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 
4 Sept 2013 |  1 Fung – MULTIMAT 2013   LA-UR-13-26809 

Considerations for computational performance 
of algorithms for hydrocodes on advanced* architectures 

Los Alamos National Laboratory 

with R. T. Aulwes, M. T. Bement, C. R. Ferenbaugh, T. M. Kelley, 

M. A. Kenamond, B. R. Lally, E. G. Lovegrove, E. M. Nelson, and D. M. Powell 

MULTIMAT 2013: San Francisco  
2-6 September 2013 

J. Fung 



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 
4 Sept 2013 |  2 Fung – MULTIMAT 2013   LA-UR-13-26809 

Motivation 

§  Emerging computer architectures pose memory constraints that may 
affect performance of existing algorithms and codes. 

§  What are design techniques that we may employ for performance? 

§  What can we do with existing algorithms (on existing architectures)? 
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Outline 

§  Threading 
–  Diffusion matrix assembly 

§  Vectorization – arcane or unfamiliar? 
–  Reaction rates 
–  Gradient kernel 

§  Cache blocking 
–  Hydro subkernels 
–  Diffusion kernels 
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Consider a mimetic diffusion discretization for 
unstructured meshes.   

§  Enforces an adjoint relationship between 
the discrete operators DIV and GRAD 

§  Works with convex, non-intersecting 
meshes 

§  Second-order accurate in space for quad 
meshes 

§  Symmetric, positive-definite matrix 
 

Solve for fluxes: 

Update scalars: 

Threading 

Shashkov and Steinberg, 1996 

Derived from inner 
product 
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Traverse the stencil and store connectivity ahead of time.  
Then attempt to thread over face loops. 
 
§  Simple retrieval and insertion of matrix values 

§  However, no appreciable speedup over on-the-fly value retrieval 

§  Determine row sizes for compressed sparse row (CSR) matrix storage format 

§  Allow modularization of boundary conditions  
–  Stay tuned – this can be used for kernel and subkernel design 

§  If the mesh connectivity is static, this only needs to be done once 

Threading 
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OpenMP threading leads to about 6-8X speedup. 
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However, the performance bottleneck is the linear 
solve, not the matrix assembly! 
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Linear solve 
(Intel MKL) 

Threading can improve performance. 
What else can we do? 

Threading 
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The Intel MIC is an example of emerging computer 
architecture. 
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Intel MIC presents a prototype for emerging 
architectures that we can study today. 

§  Current parallelism methodologies (MPI, threading) will help with emerging 
architectures.  

§  Note:  the Intel L1, L2 cache sizes for the Intel MIC are 32KB and 512 KB, 
respectively.  This is structurally similar to what we have today (i.e. Sandy Bridge) 
–  What about nontraditional (or forgotten/ignored) methodologies such as 

cache utilization and vectorization? 

Intel MIC 
(emerging) 

Today 
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What is vectorization? 

Vectorization 
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Issues confronting vectorization. 

1.  Independent calculations amenable to SIMD 
–  vector math, vector operations 

2.  Vector loads and stores 
3.  Latency of operations, memory transfers 

–  dependencies between operations 
–  pipelines, independent execution units 
–  out of order vs in order 

4.  Loop and subroutine overhead 
5.  Alignment of data 

–  relative to memory address space and to cache lines 
–  relative to other data in order to avoid unnecessary 

shuffles, cache spills and register spills 
6.  Locality of data 

–  cache, registers 

Wow.  We now scale 
the algorithmic complexity 
way down to study these 
concepts. 

Vectorization 
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Zone center calculation is a simple example that raises 
vectorization questions and challenges. 

Eliminating a common subexpression reduces number of additions but introduces a 
loop carried dependency. 

 

void ZoneCenters21A(const int nz1, const int vs1, 
  const double *xv, double *xz){ 
  for(int i=0;i<nz1;++i) 
    xz[i]=(xv[i]+xv[i+1]+xv[vs1+i]+xv[vs1+i+1])*0.25; 
} 

3 additions, 
1 multiply 
per zone, 
vectorizes 

void ZoneCenters21B(const int nz1, const int vs1, 
  const double *xv, double *xz){ 
  double xl=xv[0]+xv[vs1]; 
  for(int i=0;i<nz1;++i){ 
    double xr=xv[i+1]+xv[vs1+i+1]; 
    xz[i]=(xr+xl)*0.25; 
    xl=xr; // carry 
  } 
} 

2 additions, 1 multiply 
per zone, compiler 
does NOT vectorize 

Vectorization 
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One can still vectorize this loop 
with the loop carried dependency. 

How can we express this algorithm in code so the compiler gets it 
and generates optimal machine code? 
 

So we expect the zone center calculation to take 2 clock cycles per vector 
of 4 zones.  This is my estimate of peak performance. 
§  Recall pipelines with 1 result per clock cycle per unit. 

§  Recall the 1 multiplication should be concurrent with an addition. 

§  Assuming 2 vector reads and 1 vector write per 2 clock cycles is okay. 

VECTOR xl=xv[0:3]+xv[vs1:vs1+3]; 
for(int i=0;i<nz1-7;i+=4){ 
  VECTOR xl_next=xv[i+4:i+7]+xv[vs1+i+4:vs1+i+7]; 
  VECTOR xr=VECTOR(xl[1:3],xl_next[0]); 
  xz[i+0:i+3]=(xr+xl)*0.25; 
  xl=xl_next; // carry 
} 

Pseudo code 
with vectors of 
4 ignoring 
cleanup at end 
of loop. 

Vectorization 



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 
4 Sept 2013 |  14 Fung – MULTIMAT 2013   LA-UR-13-26809 

The vectorized zone-center calculation works. 

vectorized 
24.0 + 0.684 nz 

Vectorization 
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Vectorization results 
on an Intel x86/64 architecture with SSE2. 
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Performance when data is already in cache, 
on an Intel Core i7-920 2.66 GHz. 

Vectorization 
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A simple gradient kernel “vectorizes”. 

Vectorization 

scalar 

vector 

Timing for gradient calculation over square or rectangular meshes 

44 ops/point. 
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Cache blocking, or tiling, is a memory management 
technique for performance. 
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Cache blocking 

Profile your code! 
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Array layout in memory matters. 
Check mapping into 32 kB 8-way set associative cache.  

10 arrays do not fit 
in 8 slots! 

B (gcc) 
A (gcc) 

bc1 (vectorized) 

256 
zones 

Cache blocking 

Reaction rate calculations 
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Performance is better with data in L1 cache. 
Can we extend good performance to data in L2 and beyond? 

A (gcc) 

stride 604 

B (gcc) 

stride 404 vector 

scalar 

Cache blocking 

Reaction rate calculations 
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Another challenge is getting the data  
into L1 cache as needed. 
 

log 

log + 5x exp 

theoretical min 

Performance depends not just on sub-tile 
size, but also on relative alignment of arrays, 
presumably with respect to cache. 

Reaction rate calculation on 8192 zones, using vectorized subroutines, subtiled 

Cache blocking 
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Let’s examine one step in cell-centered hydro 
to explore cache blocking. 

§  Move data to cache, and keep it there.  Do as much physics 
as you can before moving to the next set of data. 

sideAreaNormals 

cornerVelocities 

cornerUnitNormals 

cornerDissipationVectors 

impedances 

cornerPressures 

sideAdotN 

Cache blocking 
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Example: a prototypical kernel from CCH 
exhibits a performance tradeoff with tile size. 

§  Cell-centered hydro: corner velocity calculation 

•  Peak cycles per iteration = cpi = 4  
(2 cycles/store, 2 stores/iteration) 

•  Iterations per zone = ipz = 8 
(x&y, 4 corners) 

•  Number of zone rows = nzr = 1024 
•  Number of zone columns (sub-tile size) = 

nzc = variable 
•  Number of zones = nz = nzc*nzr 
•  Number of subtile repeat iterations 

nsri = 1000 
•  Peak number of cycles 

nc = cpi*ipz*nsri*nzr*nzc = 
4*8*1000*1024*nzc = 32768000*nzc 

•  Peak runtime = pt = nc/10.4e9 
•  Peak cycles/zone w/ AVX 

pcpz = cpi*ipz*nsri = 2*8*1000 = 16000 
•  Actual cycles/zone w/ AVX = acpz = 2.6e9/

runtime/(cpi*ipz*nsri*nzr*nzc) 

Cache blocking 

Percent peak versus tile size 

cornerVelocities 
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Back to our diffusion discretization, matrix assembly memory 
layout and tile size contribute to performance. 

Cache blocking 

With full matrix storage, 
performance gets worse 
with the zone count. 

With sparse matrix storage, 
performance is much better, 

but the tile geometry becomes important. 
12 secs per zone! 5 microsecs per zone 

number of zones number of zones 
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matrix assembly for: 
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In the flux formulation, a subkernel of the matrix assembly 
demonstrates a different tradeoff with tile size. 

The subkernel displays a sensitivity to mesh geometry 
and memory alignment that can affect performance by about 40%. 

Cache blocking 

fixed # rows fixed # cols 
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thread 

Can we combine threading and vectorization? 

thread thread thread 

thread thread thread thread 

Combining threading with vectorization 
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Consider our point-centered gradient of a zone-
centered field. 

 for(int i=0; i<tmp; ++i){         // Omit the first and last point in row j. 

            pareai = 0.5/((0.5*(px[i+ip2]+px[i+ip1])-px[i+ip0])*(py[i+ip2] - py[i+ip1]) + 

                          (0.5*(px[i+ip3]+px[i+ip2])-px[i+ip0])*(py[i+ip3] - py[i+ip2]) + 

                          (0.5*(px[i+ip4]+px[i+ip2])-px[i+ip0])*(py[i+ip4] - py[i+ip3]) + 

                          (0.5*(px[i+ip1]+px[i+ip3])-px[i+ip0])*(py[i+ip1] - py[i+ip4])); 

            pgradx[i+ip0] = ((py[i+ip2] - py[i+ip1]) * zfield[i+iz1] + 

                             (py[i+ip3] - py[i+ip2]) * zfield[i+iz2] + 

                             (py[i+ip4] - py[i+ip3]) * zfield[i+iz3] + 

                             (py[i+ip1] - py[i+ip4]) * zfield[i+iz4]   ) * pareai; 

            pgrady[i+ip0] = ((px[i+ip1] - px[i+ip2]) * zfield[i+iz1] + 

                             (px[i+ip2] - px[i+ip3]) * zfield[i+iz2] + 

                             (px[i+ip3] - px[i+ip4]) * zfield[i+iz3] + 

                             (px[i+ip4] - px[i+ip1]) * zfield[i+iz4]   ) * pareai; 

        } 
§  Total raw operations per vector of points: 

–  Multiplies:     18 
–  Divides:        1 
–  Adds/Subtracts: 29 
–  Loads / Stores:          14 / 2 

Combining threading with vectorization 
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Vectorization and threading are in conflict  
for this test algorithm. 

§ Vectorizes well only in 
serial or with 2 or 4 
threads.  However, our 
threading domains are 
specified in direct 
competition with vector 
domains. 
 
Stay tuned! 

Combining threading with vectorization 
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What is the ideal situation? 

Code developers decompose their algorithms into a flexible 
subroutines that 
 
§  work in parallel across cores and nodes (threads and MPI), 
§  vectorize, 
§  use distinct floating point units concurrently, 
§  fill the floating point pipelines, 
§  to compute their results nearly as fast as theoretically possible 
§  on blocks of data that fit in L1 or L2 cache. 

 
Flexible means the subroutines can be rearranged, replaced, called 
with different arguments (counts, strides or data layout, data 
pointers), and/or extended for memory management. 
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Software-hardware performance optimization can take 
place across the “landscape”. 

processing software task task construct storage 
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Concluding remarks 

§  We have a lot of work to do! 
§  We have explored the performance of prototypical algorithms in light of 

threading, vectorization, and cache blocking. 
–  Unstructured mesh algorithms accelerated through threading. 
–  Simple algorithms, gradient methods, and diffusion routines highlight 

benefits of vectorization and cache blocking, while presenting new (or old) 
challenges in memory layout and management. 

§  Some algorithms trivially admit to *some* acceleration through these 
techniques, especially techniques in isolation. 
–  Other algorithms require care or redesign in their memory layout. 
–  Combining techniques also requires care.  
–  Subdivide algorithms into subkernels and profile! 

§  Performance profiling may help characterize memory dependencies on 
acceleration through cache blocking, enabling acceleration through careful 
organization of memory (with minimal change to code), even for complex 
algorithms. 
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