
| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 1 Fung – MULTIMAT 2013 LA-UR-13-26809

Considerations for computational performance
of algorithms for hydrocodes on advanced* architectures

Los Alamos National Laboratory

with R. T. Aulwes, M. T. Bement, C. R. Ferenbaugh, T. M. Kelley,

M. A. Kenamond, B. R. Lally, E. G. Lovegrove, E. M. Nelson, and D. M. Powell

MULTIMAT 2013: San Francisco
2-6 September 2013

J. Fung

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 2 Fung – MULTIMAT 2013 LA-UR-13-26809

Motivation

§  Emerging computer architectures pose memory constraints that may
affect performance of existing algorithms and codes.

§  What are design techniques that we may employ for performance?

§  What can we do with existing algorithms (on existing architectures)?

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 3 Fung – MULTIMAT 2013 LA-UR-13-26809

Outline

§  Threading
–  Diffusion matrix assembly

§  Vectorization – arcane or unfamiliar?
–  Reaction rates
–  Gradient kernel

§  Cache blocking
–  Hydro subkernels
–  Diffusion kernels

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 4 Fung – MULTIMAT 2013 LA-UR-13-26809

Consider a mimetic diffusion discretization for
unstructured meshes.

§  Enforces an adjoint relationship between
the discrete operators DIV and GRAD

§  Works with convex, non-intersecting
meshes

§  Second-order accurate in space for quad
meshes

§  Symmetric, positive-definite matrix

Solve for fluxes:

Update scalars:

Threading

Shashkov and Steinberg, 1996

Derived from inner
product

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 5 Fung – MULTIMAT 2013 LA-UR-13-26809

Traverse the stencil and store connectivity ahead of time.
Then attempt to thread over face loops.

§  Simple retrieval and insertion of matrix values

§  However, no appreciable speedup over on-the-fly value retrieval

§  Determine row sizes for compressed sparse row (CSR) matrix storage format

§  Allow modularization of boundary conditions
–  Stay tuned – this can be used for kernel and subkernel design

§  If the mesh connectivity is static, this only needs to be done once

Threading

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 6 Fung – MULTIMAT 2013 LA-UR-13-26809

OpenMP threading leads to about 6-8X speedup.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30

R
un

 t
im

e
(n

or
m

al
iz

ed
)

Threads

25x25

100x100

250x250

Stencil traversal
and matrix
assembly

Threading

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 7 Fung – MULTIMAT 2013 LA-UR-13-26809

However, the performance bottleneck is the linear
solve, not the matrix assembly!

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

R
un

 t
im

e
(n

or
m

al
iz

ed
)

Threads

25x25

100x100

250x250

Stencil traversal
and matrix
assembly

Linear solve
(Intel MKL)

Threading can improve performance.
What else can we do?

Threading

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 8 Fung – MULTIMAT 2013 LA-UR-13-26809

The Intel MIC is an example of emerging computer
architecture.

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 9 Fung – MULTIMAT 2013 LA-UR-13-26809

Intel MIC presents a prototype for emerging
architectures that we can study today.

§  Current parallelism methodologies (MPI, threading) will help with emerging
architectures.

§  Note: the Intel L1, L2 cache sizes for the Intel MIC are 32KB and 512 KB,
respectively. This is structurally similar to what we have today (i.e. Sandy Bridge)
–  What about nontraditional (or forgotten/ignored) methodologies such as

cache utilization and vectorization?

Intel MIC
(emerging)

Today

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 10 Fung – MULTIMAT 2013 LA-UR-13-26809

What is vectorization?

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 11 Fung – MULTIMAT 2013 LA-UR-13-26809

Issues confronting vectorization.

1.  Independent calculations amenable to SIMD
–  vector math, vector operations

2.  Vector loads and stores
3.  Latency of operations, memory transfers

–  dependencies between operations
–  pipelines, independent execution units
–  out of order vs in order

4.  Loop and subroutine overhead
5.  Alignment of data

–  relative to memory address space and to cache lines
–  relative to other data in order to avoid unnecessary

shuffles, cache spills and register spills
6.  Locality of data

–  cache, registers

Wow. We now scale
the algorithmic complexity
way down to study these
concepts.

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 12 Fung – MULTIMAT 2013 LA-UR-13-26809

Zone center calculation is a simple example that raises
vectorization questions and challenges.

Eliminating a common subexpression reduces number of additions but introduces a
loop carried dependency.

void ZoneCenters21A(const int nz1, const int vs1,
 const double *xv, double *xz){
 for(int i=0;i<nz1;++i)
 xz[i]=(xv[i]+xv[i+1]+xv[vs1+i]+xv[vs1+i+1])*0.25;
}

3 additions,
1 multiply
per zone,
vectorizes

void ZoneCenters21B(const int nz1, const int vs1,
 const double *xv, double *xz){
 double xl=xv[0]+xv[vs1];
 for(int i=0;i<nz1;++i){
 double xr=xv[i+1]+xv[vs1+i+1];
 xz[i]=(xr+xl)*0.25;
 xl=xr; // carry
 }
}

2 additions, 1 multiply
per zone, compiler
does NOT vectorize

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 13 Fung – MULTIMAT 2013 LA-UR-13-26809

One can still vectorize this loop
with the loop carried dependency.

How can we express this algorithm in code so the compiler gets it
and generates optimal machine code?

So we expect the zone center calculation to take 2 clock cycles per vector
of 4 zones. This is my estimate of peak performance.
§  Recall pipelines with 1 result per clock cycle per unit.

§  Recall the 1 multiplication should be concurrent with an addition.

§  Assuming 2 vector reads and 1 vector write per 2 clock cycles is okay.

VECTOR xl=xv[0:3]+xv[vs1:vs1+3];
for(int i=0;i<nz1-7;i+=4){
 VECTOR xl_next=xv[i+4:i+7]+xv[vs1+i+4:vs1+i+7];
 VECTOR xr=VECTOR(xl[1:3],xl_next[0]);
 xz[i+0:i+3]=(xr+xl)*0.25;
 xl=xl_next; // carry
}

Pseudo code
with vectors of
4 ignoring
cleanup at end
of loop.

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 14 Fung – MULTIMAT 2013 LA-UR-13-26809

The vectorized zone-center calculation works.

vectorized
24.0 + 0.684 nz

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 15 Fung – MULTIMAT 2013 LA-UR-13-26809

Vectorization results
on an Intel x86/64 architecture with SSE2.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

ZC21 VME3 INDAA INTAB

C
LO

C
K

 C
Y

C
LE

S/
Z

O
N

E

SUBROUTINE
Scalar Vector Theoretical Best

Performance when data is already in cache,
on an Intel Core i7-920 2.66 GHz.

Vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 16 Fung – MULTIMAT 2013 LA-UR-13-26809

A simple gradient kernel “vectorizes”.

Vectorization

scalar

vector

Timing for gradient calculation over square or rectangular meshes

44 ops/point.

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 17 Fung – MULTIMAT 2013 LA-UR-13-26809

Cache blocking, or tiling, is a memory management
technique for performance.

338

339

337

386

387

301
302

385

340

277

Cache blocking

Profile your code!

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 18 Fung – MULTIMAT 2013 LA-UR-13-26809

Array layout in memory matters.
Check mapping into 32 kB 8-way set associative cache.

10 arrays do not fit
in 8 slots!

B (gcc)
A (gcc)

bc1 (vectorized)

256
zones

Cache blocking

Reaction rate calculations

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 19 Fung – MULTIMAT 2013 LA-UR-13-26809

Performance is better with data in L1 cache.
Can we extend good performance to data in L2 and beyond?

A (gcc)

stride 604

B (gcc)

stride 404 vector

scalar

Cache blocking

Reaction rate calculations

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 20 Fung – MULTIMAT 2013 LA-UR-13-26809

Another challenge is getting the data
into L1 cache as needed.

log

log + 5x exp

theoretical min

Performance depends not just on sub-tile
size, but also on relative alignment of arrays,
presumably with respect to cache.

Reaction rate calculation on 8192 zones, using vectorized subroutines, subtiled

Cache blocking

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 21 Fung – MULTIMAT 2013 LA-UR-13-26809

Let’s examine one step in cell-centered hydro
to explore cache blocking.

§  Move data to cache, and keep it there. Do as much physics
as you can before moving to the next set of data.

sideAreaNormals

cornerVelocities

cornerUnitNormals

cornerDissipationVectors

impedances

cornerPressures

sideAdotN

Cache blocking

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 22 Fung – MULTIMAT 2013 LA-UR-13-26809

Example: a prototypical kernel from CCH
exhibits a performance tradeoff with tile size.

§  Cell-centered hydro: corner velocity calculation

•  Peak cycles per iteration = cpi = 4
(2 cycles/store, 2 stores/iteration)

•  Iterations per zone = ipz = 8
(x&y, 4 corners)

•  Number of zone rows = nzr = 1024
•  Number of zone columns (sub-tile size) =

nzc = variable
•  Number of zones = nz = nzc*nzr
•  Number of subtile repeat iterations

nsri = 1000
•  Peak number of cycles

nc = cpi*ipz*nsri*nzr*nzc =
4*8*1000*1024*nzc = 32768000*nzc

•  Peak runtime = pt = nc/10.4e9
•  Peak cycles/zone w/ AVX

pcpz = cpi*ipz*nsri = 2*8*1000 = 16000
•  Actual cycles/zone w/ AVX = acpz = 2.6e9/

runtime/(cpi*ipz*nsri*nzr*nzc)

Cache blocking

Percent peak versus tile size

cornerVelocities

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 23 Fung – MULTIMAT 2013 LA-UR-13-26809

Back to our diffusion discretization, matrix assembly memory
layout and tile size contribute to performance.

Cache blocking

With full matrix storage,
performance gets worse
with the zone count.

With sparse matrix storage,
performance is much better,

but the tile geometry becomes important.
12 secs per zone! 5 microsecs per zone

number of zones number of zones

tim
e

pe
r

zo
ne

tim
e

pe
r

zo
ne

matrix assembly for:

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 24 Fung – MULTIMAT 2013 LA-UR-13-26809

In the flux formulation, a subkernel of the matrix assembly
demonstrates a different tradeoff with tile size.

The subkernel displays a sensitivity to mesh geometry
and memory alignment that can affect performance by about 40%.

Cache blocking

fixed # rows fixed # cols

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 25 Fung – MULTIMAT 2013 LA-UR-13-26809

thread

Can we combine threading and vectorization?

thread thread thread

thread thread thread thread

Combining threading with vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 26 Fung – MULTIMAT 2013 LA-UR-13-26809

Consider our point-centered gradient of a zone-
centered field.

 for(int i=0; i<tmp; ++i){ // Omit the first and last point in row j.

 pareai = 0.5/((0.5*(px[i+ip2]+px[i+ip1])-px[i+ip0])*(py[i+ip2] - py[i+ip1]) +

 (0.5*(px[i+ip3]+px[i+ip2])-px[i+ip0])*(py[i+ip3] - py[i+ip2]) +

 (0.5*(px[i+ip4]+px[i+ip2])-px[i+ip0])*(py[i+ip4] - py[i+ip3]) +

 (0.5*(px[i+ip1]+px[i+ip3])-px[i+ip0])*(py[i+ip1] - py[i+ip4]));

 pgradx[i+ip0] = ((py[i+ip2] - py[i+ip1]) * zfield[i+iz1] +

 (py[i+ip3] - py[i+ip2]) * zfield[i+iz2] +

 (py[i+ip4] - py[i+ip3]) * zfield[i+iz3] +

 (py[i+ip1] - py[i+ip4]) * zfield[i+iz4]) * pareai;

 pgrady[i+ip0] = ((px[i+ip1] - px[i+ip2]) * zfield[i+iz1] +

 (px[i+ip2] - px[i+ip3]) * zfield[i+iz2] +

 (px[i+ip3] - px[i+ip4]) * zfield[i+iz3] +

 (px[i+ip4] - px[i+ip1]) * zfield[i+iz4]) * pareai;

 }
§  Total raw operations per vector of points:

–  Multiplies: 18
–  Divides: 1
–  Adds/Subtracts: 29
–  Loads / Stores: 14 / 2

Combining threading with vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 27 Fung – MULTIMAT 2013 LA-UR-13-26809

Vectorization and threading are in conflict
for this test algorithm.

§ Vectorizes well only in
serial or with 2 or 4
threads. However, our
threading domains are
specified in direct
competition with vector
domains.

Stay tuned!

Combining threading with vectorization

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 28 Fung – MULTIMAT 2013 LA-UR-13-26809

What is the ideal situation?

Code developers decompose their algorithms into a flexible
subroutines that

§  work in parallel across cores and nodes (threads and MPI),
§  vectorize,
§  use distinct floating point units concurrently,
§  fill the floating point pipelines,
§  to compute their results nearly as fast as theoretically possible
§  on blocks of data that fit in L1 or L2 cache.

Flexible means the subroutines can be rearranged, replaced, called
with different arguments (counts, strides or data layout, data
pointers), and/or extended for memory management.

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 29 Fung – MULTIMAT 2013 LA-UR-13-26809

Software-hardware performance optimization can take
place across the “landscape”.

processing software task task construct storage

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 30 Fung – MULTIMAT 2013 LA-UR-13-26809

Concluding remarks

§  We have a lot of work to do!
§  We have explored the performance of prototypical algorithms in light of

threading, vectorization, and cache blocking.
–  Unstructured mesh algorithms accelerated through threading.
–  Simple algorithms, gradient methods, and diffusion routines highlight

benefits of vectorization and cache blocking, while presenting new (or old)
challenges in memory layout and management.

§  Some algorithms trivially admit to *some* acceleration through these
techniques, especially techniques in isolation.
–  Other algorithms require care or redesign in their memory layout.
–  Combining techniques also requires care.
–  Subdivide algorithms into subkernels and profile!

§  Performance profiling may help characterize memory dependencies on
acceleration through cache blocking, enabling acceleration through careful
organization of memory (with minimal change to code), even for complex
algorithms.

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 31 Fung – MULTIMAT 2013 LA-UR-13-26809

References:

§  M. Shashkov and S. Steinberg, Solving Diffusion Equations with Rough Coefficients
in Rough Grids, Journal of Computational Physics, 129, pp. 383-405, (1996).

§  J. Hyman, M. Shashkov and S. Steinberg, The Numerical Solution of Diffusion
Problems in Strongly Heterogenous Non-Isotropic Materials, Journal of
Computational Physics, 132, pp. 130-148, (1997).

§  http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-
knights-corner

§  http://software.intel.com/en-us/articles/cache-blocking-techniques

§  http://software.intel.com/en-us/articles/vectorization-essential

§  http://www.hardwaresecrets.com/article/Inside-the-Intel-Sandy-Bridge-
Microarchitecture/1161/1

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 32 Fung – MULTIMAT 2013 LA-UR-13-26809

| Los Alamos National Laboratory |

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
4 Sept 2013 | 33 Fung – MULTIMAT 2013 LA-UR-13-26809

Backup slide 2

