Local convex-Hull preserving second-order extension for cellcentered ALE schemes

2013 MultiMat - San Francisco | Hoch P., Labourasse E.

03 September 2013

cea Outline

(1) Objectives
(2) (INtrinsic) a Posteriori ITerAtive LImitation: (IN)-APITALI
(3) Remap
(4) Hydrodynamic coupling
(5) Numerical tests
(6) Conclusion

Summary/Objectives

1) Second-order or higher centered scheme using local reconstruction (gradient or higher-order terms) are made local bound preserving [HAL]*[MOOD]\# for scalar quantities (or component wise) with a post-process on arbitrary mesh connectivity
```
* [HAL] P. Hoch," An arbitrary Lagrangian-Eulerian strategy to solve compressible flows", Technical
Report, CEA. HAL :hal-00366858.Available
at \(:<\) http \(: / /\) hal.archives-ouvertes.fr/docs/00/36/68/58/PDF/ale2d.pdf>,2009.
```

\#[MOOD] S.Clain, S. Diot, R Loubère, "A high-order finite volume method for systems of conservation laws-Multi-Dimensional Optimal Order Detection (MOOD)", J. of Comput. Physics, 230, pp 4028-4050,2011
2) On other hand, $[\mathrm{VIP}]^{\%}$ uses an intrinsic definition of vector limitation using a convex-Hull of neighboor values giving admissibility criteria for the linear reconstruction.
${ }^{\%}$ [VIP] G. Luttwak, F. Falkovitz," Slope Limiting for vectors : a novel limiting algorithm", Numerical Methods in Fluids, 65, 2011.

We essentially want to couple 1) and 2).

Cea Convex-Hull characterization of data $\left\{\mathbf{v}_{j}\right\}_{j=1}^{M}$

initial-hull - convex-hull

Characterization

$$
\mathbf{v}_{j} \in \mathbb{R}^{d}, \quad \operatorname{Cvx} H\left(\left\{\mathbf{v}_{j}\right\}\right)=\left\{\sum_{j} \lambda_{j} \mathbf{v}_{j}, \quad \lambda_{j} \in \mathbb{R}^{+} \sum_{j} \lambda_{j}=1\right\} .
$$

(1) Definition is invariant wrt uniform rotation/translation.
(2) Useful convex-Hull relationship :
(a) $\operatorname{CvxH}\left(\left\{v^{*}+\left\{v_{j}\right\}\right\}\right) \subset \operatorname{CvxH}\left(\left\{v^{*}+\operatorname{CvxH}\left(\left\{v_{j}\right\}\right)\right\}\right)$.
(b) If dimension $\mathrm{d}=1, \operatorname{Cvx} H\left(\left\{v_{j}\right\}\right)=\left[\min _{j}\left(v_{j}\right), \max _{j}\left(v_{j}\right)\right]$.
(c) If $\mathrm{d}=2$, but one dimensional symmetry, same as (b) for non-constant component.

cea Connectivity Neighborhood definition

For cell data, there are many choices :
(1) cell/edge: Neigh_e(c)
(2) cell/node: Neigh_s(c), cell/face in three dimension.

Neigh(c) is a generic cell neighborhood of cell c (in practice Neigh_s(c)).

cea Local Convex-Hull Preservation : LCHP (stability)

Let us consider a generic scheme S discretizing the evolution of a vector field \mathbf{u}, acting on a mesh \mathcal{M}^{n}, eventually depending on Δt^{n}. $S\left(\mathcal{M}^{n}, \mathcal{M}^{n+1}, R^{\mathrm{u}}(x)\right)$ is defined by it's (cell) reconstruction $R^{\mathbf{u}}(x)$.

Definition

For a given neighborhood of cell $c, \operatorname{Neigh}(c)$, we say that if

$$
\mathbf{u}_{C}^{n+1} \in \operatorname{Cvx} H\left(\left\{\mathbf{u}_{c}^{n},\left\{\mathbf{u}_{c^{\prime}}^{n}\right\}_{c^{\prime} \subset \operatorname{Neigh}(c)}\right\}\right)
$$

S verifies Local Convex-Hull Preservation (LCHP).

In the same spirit of Luttwak and Falkovitz for spatial reconstruction (not sufficient to obtain time stability LCHP ..), LCHP is a natural extension for vector to scalar local bound preservation.

cea
 First-order remapping scheme

Remap with grid velocity $\mathbf{u}^{\mathbf{g}}:$ for $\mathbf{Q}=1, \rho, \rho \mathbf{u}, \rho E$

$$
\frac{d}{d t} \int_{c} Q d x=\int_{\partial c} Q\left(\mathbf{u}^{\mathbf{g}} \cdot \mathbf{n}\right) d s
$$

The flux on edges between cells c and c^{\prime} is denoted $F_{c c^{\prime}}$ and is given by any of the three schemes :
(1) Swept:

$$
F_{c c^{\prime}}^{s w e p t}=\delta V^{c c^{\prime}} Q^{c c^{\prime}}=\max \left(0, \delta V^{c c^{\prime}}\right) Q_{c^{\prime}}+\min \left(0, \delta V^{c c^{\prime}}\right) Q_{c} .
$$

(2) Self-intersection:

$$
F_{c c^{\prime}}^{s \text { self }}=\sum_{k=1}^{n b / m t\left(c c^{\prime}\right)} \delta V_{k}^{c c^{\prime}} Q_{k}^{c c^{\prime}}, \delta V_{k}^{c c^{\prime}} Q_{k}^{c c^{\prime}}=\max \left(0, \delta V_{k}^{c c^{\prime}}\right) Q_{c^{\prime}}+\min \left(0, \delta V_{k}^{c c^{\prime}}\right) Q_{c}
$$

(3) Exact Intersection.

Properties : First order remapping scheme

$c^{+}=\left\{c^{\prime} \subset \operatorname{Neigh}(c), \delta V_{c c^{\prime}}>0\right\}, c^{-}=\left\{c^{\prime} \subset \operatorname{Neigh}(c), \delta V_{c c^{\prime}}<0\right\}, \nu_{c}=\frac{\sum_{c^{\prime} \in c}-\left|\delta V_{c c^{\prime}}\right|}{|c|^{n}}$.
(1) DGCL:

$$
\begin{equation*}
|c|^{n+1}=|c|^{n}+\sum_{c^{\prime} \in c^{+}}\left|\delta V_{c c^{\prime}}\right|-\sum_{c^{\prime} \in c^{-}}\left|\delta V_{c c^{\prime}}\right| \text {, with } \nu_{c} \leq 1 \tag{1}
\end{equation*}
$$

(2) Density: ρ

$$
\begin{equation*}
|c|^{n+1} \rho_{c}^{n+1}=|c|^{n} \rho_{c}^{n}+\sum_{c^{\prime} \in c^{+}}\left|\delta V_{c c^{\prime}}\right| \rho_{c^{\prime}}^{n}-\sum_{c^{\prime} \in c^{-}}\left|\delta V_{c c^{\prime}}\right| \rho_{c}^{n} \tag{2}
\end{equation*}
$$

is ConVex ComBination (CVCB) due to (1)
(3) Momentum : $\rho \mathbf{u}$

$$
\begin{equation*}
|c|^{n+1}(\rho \mathbf{u})_{c}^{n+1}=|c|^{n}(\rho \mathbf{u})_{c}^{n}+\sum_{c^{\prime} \in c^{+}}\left|\delta V_{c c^{\prime}}\right|(\rho \mathbf{u})_{c^{\prime}}^{n}-\sum_{c^{\prime} \in c^{-}}\left|\delta V_{c c^{\prime}}\right|(\rho \mathbf{u})_{c}^{n} \tag{3}
\end{equation*}
$$

also (CVCB) and $u_{c}^{n+1} \in \operatorname{CvxH}\left(\left\{u_{c}^{n},\left\{u_{c^{\prime}}^{n}\right\} ; c^{\prime} \in c^{+}\right\}\right)$due to (1)(2).
(4) Total Energy : ρE same stability as (3) for (massic) scalar quantity.

Let a "second-order" scheme for a volumic quantity $\mathbf{f}^{v} \in \mathbb{R}^{d \geq 1}$:
$\mathbf{f}^{\mathfrak{v} n+1}=S\left(\mathcal{M}^{n}, \mathcal{M}^{n+1}, R^{\mathrm{fv}}(x)_{c}=\mathbf{f}^{\mathfrak{v}}{ }_{c}+\alpha_{c}^{(i)}\left(\nabla \mathbf{f}^{\vee}\right)_{c}\left(x-x_{c}\right)\right)$
$\forall c$, the sequence $\alpha_{c}^{(i)}, i \in N n \subset \mathbb{N}$ is such that :
(1) $\alpha_{c}^{(0)}=1$.
(2) $0 \leq \alpha_{c}^{(i+1)} \leq \alpha_{c}^{(i)}$.
(3) Nn is a finite set.

LCHP enforcement : if cell c does not verify (LCHP) criteria for (4)
(a) In cell $c: \alpha_{c}^{(i)}$ is multiplied by $\kappa_{1}^{(i)}<1$.
(b) In the neighborhood $c^{\prime} \in \operatorname{Neigh}(c): \alpha_{c^{\prime}}^{(i)}$ is multiplied by $\kappa_{2}^{(i)} \leq 1$.
(c) $i \rightarrow i+1$ and re-evaluate (4).

Cea Remarks

(1) Existence: \exists at least a sequence verifying (LCHP). For instance $\alpha_{c}^{(1)}=0, \forall c$.
(2) Aim/Goal : Construct a sequence "as close to 1 as possible" to obtain better accuracy (APITALI sequence contains a distance measure to unlimited gradient) ... Challenging.
(3) Interpretation: Iterative projector onto CvxH .
(4) For scalar value, APITALI "reduces" to MOOD with $\operatorname{card}\{\mathrm{Nn}\}=2$.
In this case, if cell does not verify (LCHP), $\alpha_{c}^{(1)}=0, \alpha_{c^{\prime}}^{(1)}=0$: it acts like an instant diminution of the polynomial degree's.
(5) In practice $\left(\nabla \mathbf{f}^{v}\right)_{c}$ is preliminarily limited with a VIP procedure, in order to reduce the number of APITALI iterations, but it is not theoretically mandatory.

Massic (scalar/vector) quantity

For the remapping of a weighted quantity of type $(\rho f), f=E$ or $f=\mathbf{u}$, LCHP must be applied to f :
(1) Use previous APITALI principle on $f^{\vee}=\rho$, let $\nabla^{\infty} \rho$ be the final gradient such that ρ_{c}^{n+1} is LCHP.
(2) Construct an APITALI sequence $\beta_{c}^{(i)}$ on the following scheme:

$$
\left\{\begin{array}{l}
\mathbf{f}_{c}^{n+1}:=\frac{(\rho f)^{n+1}}{\rho_{c}^{n+1}} . \tag{5}\\
\mathbf{f}_{c}^{n+1}=S\left(\mathcal{M}^{n}, \mathcal{M}^{n+1}, R^{\rho}(x)_{c}, R^{\mathfrak{f}}(x)_{c}=\mathbf{f}_{c}+\frac{\rho_{c}}{\rho_{c}+\nabla \infty \rho_{c}\left(x-x_{c}\right.} \beta_{c}^{(i)} \nabla \mathbf{f}_{c}\left(x-x_{c}\right)\right)
\end{array}\right.
$$

Remarks

(1) (5) comes from $\nabla(a b)=b \nabla a+a \nabla b$ and $R^{f}(x)=\frac{R^{\rho f}(x)}{R^{\rho(x)}}$.. non linear reconstruction (see VanderHeyden and Kashiwa (JCP 1998)).
(2) \exists at least a sequence verifying (LCHP). For instance $\beta_{c}^{(1)}=0, \forall c$.
(3) Aim/Goal : (same f^{\vee}) Construct a sequence "as close to 1 as possible".
4) Mood cannot maintain high-order due to linear reconstruction.

cea
 Practical issues

(1) Due to DGCL error ($\left.\varepsilon^{\text {machinery }}\right)$, the test of being inside CvxH must be true up to this $\varepsilon^{\text {machinery }}$.
(2) In the sequel, the sequence $\alpha_{c}^{(i)}$ (also $\beta_{c}^{(i)}$) are constructed by : $\alpha_{c}^{(i+1)}(\nabla \mathbf{Q})_{c}:=\nabla \mathbf{Q}_{c}^{(i+1)}\left(=\alpha_{c}^{(i)} \nabla \mathbf{Q}_{c}^{(i)} ..\right)$

$$
\left\{\begin{array}{l}
\frac{\alpha_{c}^{(i+1)}}{\alpha_{c}^{(i)}}=\kappa_{1}=0.5, \quad \text { if } i<l^{*} \\
\alpha_{c}^{(i+1)}=0, \quad \text { else. }
\end{array}\right.
$$

(same for $c^{\prime}: \kappa_{2}=\kappa_{1}$.)
(3) $\operatorname{card}(\mathrm{Nn})=20$ (Maximum Number of Iteration after what $\alpha_{c}^{(i)}=0$ for c not LCHP (and $\left.c^{\prime}\right)$.)
(4) I^{*} is user defined. In practice we use $I^{*}=\operatorname{card}(N n)-1$.

Figure : Comparison between APITALI (convergence to LHCP in 4 iter) and vanishing gradient after first iteration $\left(I^{*}=1\right), \operatorname{card}(\mathrm{Nn})=20$ for both

cea
 Rezone+Remap : Recipes of case tests

Initial cartesian grid, smooth data, smooth cyclic rezone :

$$
\mathbf{u}^{\mathbf{g}}=c(t)\binom{\sin (5 \pi x) \cos (5 \pi y)}{\cos (5 \pi x) \sin (5 \pi y)}\left(\begin{array}{l}
\rho \\
u_{x} \\
u_{y} \\
E
\end{array}\right)=\left(\begin{array}{l}
4+c 1 \sin (4 \pi x)^{2} \\
c 1 \sin (4 \pi x) \cos (4 \pi y) \\
c 1 \sin (4 \pi y) \cos (4 \pi x) \\
5+\exp (\pi x)
\end{array}\right)
$$

L1 error:

nx	density (ρ)	x-velocity $\left(u_{x}\right)$	y-velocity $\left(u_{y}\right)$	massic energy (E)
51	0.2752	0.3951	0.4071	0.0872
101	0.1104	0.1075	0.1160	0.0259
201	0.0281	0.0269	0.0292	0.0066
401	0.0070	0.0067	0.0073	0.0016

Second order for all quantities (APITALI sequence acts on very few cells and converge in at most two iterations).

Second-order extension for the Lagrangian hydrodynamics

Lagrange step of the Lagrange+Remap algorithm :

- Cell-centered schemes (Glace ${ }^{\ddagger}$ or Eucclhyd ${ }^{\mathbb{I}}$).
- Second order Runge-Kutta time integration.
- Least-squares procedure for the gradients of the spatial MUSCL reconstruction.
- Barth-Jespersen ${ }^{b}$ limiter for pressure 2nd-order extension.
- VIP\%,* limiter for velocity $2 n d-o r d e r ~ e x t e n s i o n ~(c f ~ n e x t ~ s l i d e) . ~ . ~$
\ddagger B. Després and C. Mazeran, Arch. Rational Mech. Anal., 2005.
『T P.-H. Maire, R. Abgrall, J. Breil and J. Ovadia, SIAM J. Sci. Comput., 2007.
${ }^{b}$ T. J. Barth and D. C. Jespersen, AIAA Paper 89-0366, 1989.
${ }^{\%}$ G. Luttwak and J. Falkovitz, Int. J. Numer. Meth. Fluids, 2010.
* M. Kucharik, M. Shashkov, ECCOMAS, 2012.

outline

The Goal is to compute $\mathbf{u}_{c s}^{\mathcal{R}}$ the reconstruction at the vertex s of the cell c velocity \mathbf{u}_{c}, to "feed" the Rieman invariant:

$$
\forall c, \forall n, p_{c s}^{*}-p_{c s}^{\mathcal{R}}+\alpha_{c}\left(\mathbf{u}_{s}^{*}-\mathbf{u}_{c s}^{\mathcal{R}}\right) \cdot \mathbf{n}_{c s}=0
$$

$\mathbf{u}_{c s}^{\mathcal{R}}$ is computed as

$$
\mathbf{u}_{c s}^{\mathcal{R}}=\mathbf{u}_{c}+\mathbf{w}_{c s},
$$

where $\mathbf{w}_{c s}=\mathcal{P}_{C v \times H(c s)}\left(\nabla \mathbf{u}_{c} \cdot\left(\mathbf{x}_{s}-\mathbf{x}_{c}\right)\right)$ is the reconstructed and limited gap from \mathbf{u}_{c} to $\mathbf{u}_{c s}^{\mathcal{R}}$.
$\mathcal{P}_{\mathrm{CvxH}(c s)}(\mathbf{v})$ operates a "limitation" of \mathbf{v} with respect to the convex-Hull CvxH(cs).
if $\mathcal{P}_{C_{v x H}(c s)}(\mathbf{v})=\mathbf{0}, \forall \mathbf{v}, \forall c, \forall s$, the scheme is first-order in space.

For each zone c and each vertex s, we define $\mathrm{CvxH}(c s)$ as follow :

$$
\operatorname{CvxH}(c s)=\operatorname{CvxH}\left(\left\{\mathbf{u}_{c^{\prime}}-\mathbf{u}_{c} ; c^{\prime} \in \operatorname{Neigh}_{s}(c)\right\}\right)
$$

Stencil for $\mathrm{CvxH}(c s)$

Example of $\mathrm{CvxH}^{(c s)}$
This way the convex-Hull is "centered" in \mathbf{u}_{c}, and $\mathcal{P}_{\mathrm{CvxH}(c s)}(\mathbf{v})=\mathbf{0}$ gives the first-order scheme.

limitation procedure

We call $\overline{\mathbf{v}}_{c s}$ the projection of \mathbf{v} on $\partial C_{v x H}(c s)$. Let define : $\mathcal{H}_{c s}(\mathbf{v})=\left\{\begin{array}{l}\mathbf{v} \text { if } \mathbf{v} \in C_{v x H}(c s), \\ \overline{\mathbf{v}}_{c s} \text { else. }\end{array}\right.$

examples of projection

We take

$$
\mathcal{P}_{C v x H(c s)}(\mathbf{v})=\varphi(r) \mathcal{H}_{c s}(\mathbf{v})
$$

with $r=\frac{\left|\overline{\mathbf{v}}_{c s}\right|}{|\mathbf{v}|}$.
In general we simply use $\varphi(r)=1$, recovering the classical Barth-Jespersen limiter for scalar. Any usual fonction φ can also be used to recover the corresponding limiter for scalar quantities.

The whole reconstruction procedure is rotationally invariant.
(1) 2D Sod on polar grid
(2) 2D Noh problem on a Cartesian grid.
(3) 2D-axysimetric instability problem.

cea Sod on polar mesh

Cylindrical Noh problem on a 50×50 Cartesian grid

ALE with APITALI

- Lagrange step with Eucclhyd and VIP
- Remap step with VIP and APITALI

Because of nearly zero initial internal energy, this case is challenging for ALE.

Without APITALI, ALE simulation quickly crashes due to overestimation of the velocity, causing negative internal energy after projection.

[^0]Initial conditions:

- For Ω_{1} :
$\rho_{1}=1, p_{1}=1, u_{1}=-10, R_{1}=0.55$.
- For $\Omega_{2}: \rho_{2}=0.125, p_{2}=1, u_{2}=0, R_{2}=$
0.45 .
- For Γ (perturbed interface) :
mode 6 (Legendre), amplitude $a_{0}=10^{-3}$.
Boundary Conditions :
Symmetry on the axis, $p=1$ on the surface of the sphere.
$\frac{\text { Meshing : }}{- \text { For } \Omega_{1} \text { : }}$
(M1) 30 slices, automatic refinement criteria
(ARC) for layers $\left(2.5 \times 10^{-3}\right)$.
- For Ω_{2} :
(M1) 15×15 square box, then 30 layers.
- (M2) : (M1) refined by a factor of 2 .
- (M3) : (M2) refined by a factor of 2 .
- (M4) : (M3) refined by a factor of 2 .

Parameters:

- Stopping time $t_{\text {sale }}=0.08$ (ALE),
$t_{\text {slag }}=0.04$ (Lagrangian).
- ARC disabled at $t=0.05$ when mixing between Ω_{1} and Ω_{2} allowed.
- Free ALE (no Lagrangian constraints - no criteria).
- Small amount of subzonal entropy ${ }^{\dagger}$ on the external boundary.

Cea 2D-axysimetric instability problem : maps

2D-axysimetric instability problem : mean

 flowRadius of the interface versus time :
(LAG \equiv Lagrangian with VIP limitation - ALE \equiv this method)

The mean flow is almost converged on the coarsest M1 mesh.

2D-axysimetric instability problem : convergence study on the $6^{\text {th }}$ mode

Normalized power $\left(a^{2} / a_{0}^{2}\right)$ of the $6^{\text {th }}$ mode versus time : (w / o APITALI \equiv this method without the maximum principle enforcement)

Convergence is almost achieved on the (M3) mesh until the interaction of the interface with the diverging shock.
The iterative enforcement of the maximum principle has almost no impact on the result, except on the robustness. analysis

Normalized power $\left(a^{2} / a_{0}^{2}\right)$ of the modes $2,4,6,8,10,12$ and 14 : (on the (M3) mesh)

All the amplitudes (except for mode 6) remain negligible until $t_{\text {slag }}$. The first harmonic (mode 12) is then by far the most amplified. Until $t_{\text {slag }}$, growth of mode 6 is very similar for LAG and ALE.

2D-axysimetric instability problem : effect of the rotational invariance

Normalized power $\left(a^{2} / a_{0}^{2}\right)$ of the $6^{\text {th }}$ mode versus time : (w / o VIP \equiv component by component limiter)

As expected, component by component limiter fails to predict the correct growth rate on the (M1) coarsest mesh...
...but do converge.

Conclusion and prospects

- Conclusion
- Design of an algorithm enforcing maximum principle on velocity, while remapping momentum.
- Algorithm takes benefit of convex-Hull concept and iterative a posteriori procedure (APITALI), time stability for each variable is obtained in an intrinsic way (scalar or vector data).
- Properly coupled with a rotational invariant Lagrange solver for Euler equations (using VIP limitation for vectors), the whole ALE algorithm is rotational invariant.
- The whole limitation procedure (Lagrange + Remap) extends naturally to higher-order fluxes.
- Relevant test problems show the benefit of the procedure.
- Prospects
- Application to higher-order ALE schemes.
- Extension to tensor limitation and 3D.

[^0]: † B. Després, E. Labourasse, J. Comput. Phys., 2012

