

Lawrence Berkeley National Laboratory

Adaptive Embedded Boundary Discretizations for Multimaterial Simulation

Hans Johansen, Phillip Colella, Dan Graves

hjohansen@lbl.gov Applied Numerical Algorithms Group, Computational Research Division

MultiMat 2013, SF September 5th, 2013

Talk outline

- Finite volume cut cell background, idealism
- Embedded boundary examples
- Higher-order approaches?
- A little algebra pros/cons of least squares
- Futures and conclusions

ANAG and Chombo

Applied Numerical Algorithms Group (ANAG) at LBNL,

Phil Colella, group lead, http://crd.lbl.gov/anag

- Applications-driven fundamental research in PDE discretization and solvers
- **Development and deployment of high-performance software** for numerical methods using locally-structured grids, particles.
- Collaboration with DOE science and technology areas on algorithms and software.
- → Cross-linkage: emerging science collaborations motivate algorithm and software research, software supports algorithms research, algorithms feed back into software.

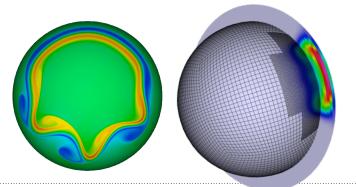
Chombo: A Software Toolkit for Structured-Grid Applications, http://chombo.lbl.gov

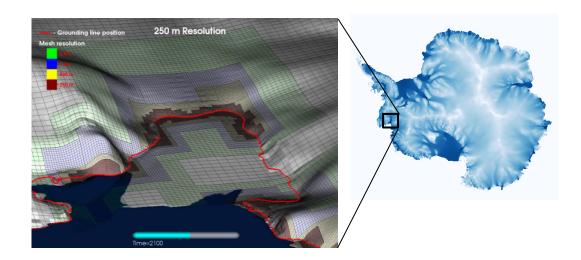
- Supports a wide variety of applications in a common software framework.
- Provides applications scientists with **open-source high-performance components** for developing complex applications with high-performance scalable implementations.
- **Parallel performance** (200k+ processors) with low-level details hidden from the applications developer using a layered software architecture.

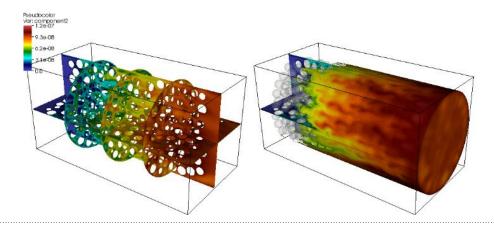
"Makes the easy things harder, but impossible things possible."

ANAG Algorithms Research

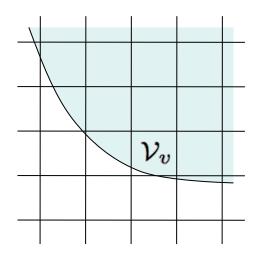
- High-order, finite-volume methods, space-time AMR algorithms
- Multiscale models for complex fluids, phase space, multi-physics
- Embedded boundary for complex geometries, mapped multiblock for high-order methods.
- Fast solvers that minimize communication, memory access.
- "Mathematical engineering" for science and software on HPC platforms.







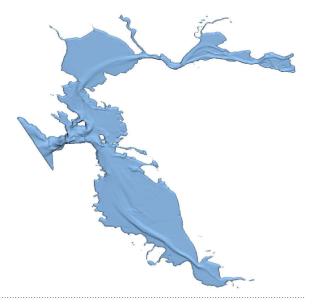
"EB" Chombo: Finite Volume for Cut Cells



Operator: defined from divergence theorem on a "cut cell"

$$\int_{\mathcal{V}_{v}} \nabla \cdot \boldsymbol{F} dV = \sum_{f \in f(v)_{\mathcal{F}_{f}}} \int_{\mathcal{F}} \boldsymbol{F} \cdot \boldsymbol{n}_{f} dA$$
$$\nabla \cdot \beta(\nabla u) = \rho, \quad \boldsymbol{F}(u) = \beta(\nabla u)$$
$$\frac{\partial u}{\partial t} = \nabla \cdot \rho(\nabla u), \quad \boldsymbol{F}(u) = \rho(\nabla u)$$
$$\frac{\partial u}{\partial t} + \nabla \cdot \boldsymbol{F}(u) = S(u), \quad \boldsymbol{F}(u) \text{ is given.}$$

SF Bay digital elevation map [Ligocki et al, 2008]



Why cut cells?

- Conservative discretizations important for physics
- AMR effective for smaller number of boundary cells
- Move/refine boundary without "global regridding"
- Regular grid calculations very scalable, optimized
- Compatible with mapped grids, too (for accuracy)

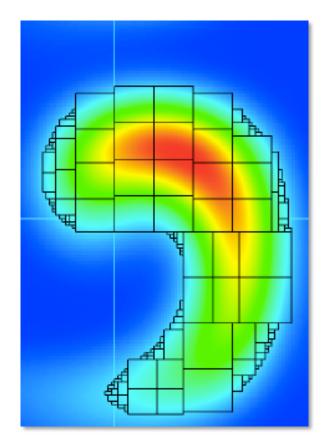
"EB" Chombo: AMR Finite Volume for Cut Cells

Hyperbolic: FV discretizations important for coupling

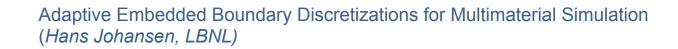
- Conservative convection-diffusion-reaction
- Accurate jump conditions (shock speeds, fluid-solid coupling, moving boundaries, etc.)
- Non-linear fluxes use limiters, min/max preservation
- → Primary issue is explicit time-stepping for "small cells"

Parabolic: discretization in time, space ("method of lines")

- Conservative convection-diffusion-reaction
- Fast solvers available (such as multi-grid, FMM)
- "Small cell" problem expressed in matrix conditioning
- \rightarrow Primary issue is stability for operator (eg. PD matrix)



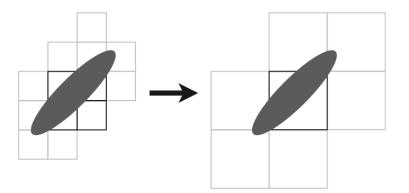
Stiff CDR AMR example [Zhang, HJ 2012]



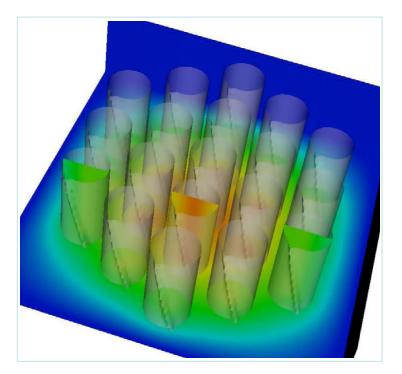
"MF" Chombo for Multimaterial

Material interfaces with flux-balance conditions:

- "Jump" conditions important for multi-fluid physics
- Boundary refinement requires additional, but local data structures (like octree)
- Regular grid calculations still very scalable, optimized for threading / vector processors

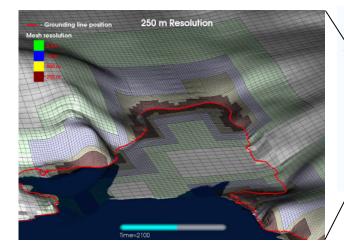


Support for sub-grid scale grid connectivity, data structures [Crockett et al 2011]



Multi-material heat transfer problem using AMR embedded boundary approach [Crockett et al 2011]

In progress: Multimaterial Moving Interfaces



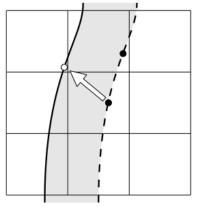
Ice sheet grounding line [Cornford et al 2012]

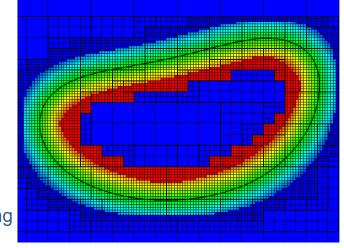
Track interfaces with conservation in mind

- Front motion connected to fluxes / physics
- Dynamic AMR required to control error
- Move/refine boundary without "global regridding"
- Volume conservation vs. reactions, phase change

Higher-order AMR front tracking [Lee, HJ, work in progress]

Moving boundary INS [Miller et al 2012]





Adaptive Embedded Boundary Discretizations for Multimaterial Simulation (*Hans Johansen, LBNL*)

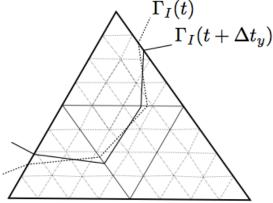
8

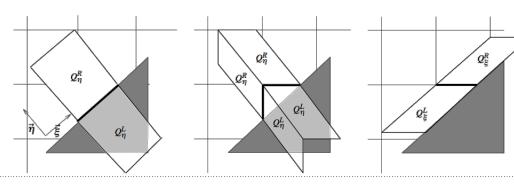
Difficulties with finite volume cut cells

Design criteria: (+AMR)

- Conservative: flux-based discretization
- Accuracy: $O(h^P)$ but ok with order P-1 near EB
- **Stability**: no "small cell problem," has stability characteristics of the differential operator
- **Consistency**: free stream preservation, polynomials
- **Simplification**: in the limit of full cells, low-memory regular discretization away from boundary
- **Usability**: for linear, non-linear, etc. problems in a framework that works for small or large problems

X-FEM DG for Stefan problem





H-box configuration [Helzel, Berger 2012]

Conservative fluxes using geometric moments

Fluxes: approximated by Taylor expansion on faces

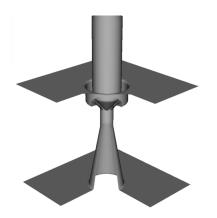
Parabolic fluxes: quadrature in time and on faces

$$\int_{t^n}^{t^{n+1}} \left(\int_{\mathcal{F}_f} \nabla \phi \cdot \boldsymbol{n}_f \, dA \right) dt = \sum_{s=1}^S \omega_s \sum_{d=1}^D \sum_{\boldsymbol{p}: |\boldsymbol{p}| < P} \frac{1}{\boldsymbol{p}!} \left[\phi^{(\boldsymbol{e}^d + \boldsymbol{p})}(t_s) \right]_{\boldsymbol{x} = \bar{\boldsymbol{x}}_f}$$
$$\boxed{m_{d,f}^{\boldsymbol{p}, t^n \to t^{n+1}}} \left(\int_{t^n}^{t^{n+1}} \int_{\mathcal{F}_f} n_d (\boldsymbol{x} - \bar{\boldsymbol{x}}_f)^{\boldsymbol{p}} \, dA \, dt + O(h^{\min(P,S) + D - 1}) \right)$$

Calculating geometric moments on cut cells

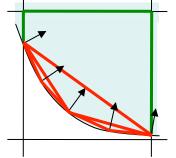
Moments: use divergence theorem to build a *P*th-order least-squares system for volumes, moments, and normals based on implicit functions [Ligocki, et al, 2008]

- This is EB's "grid generation," but localized to cut cells
- With constraints, reproduces "water tight" combinations of moments
- Least-squares residual errors: *h*-scaled in higher-order moments that matter less
- Easily generated from level sets, surface triangulation, or CSG (implicit functions)
- Same approach works for mapped grids as well



Exact face moments from intersections

Exact normals, gradients from implicit function



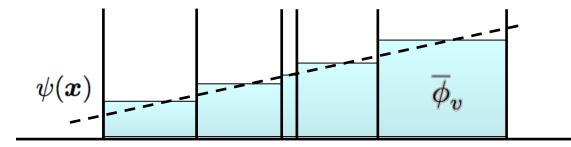
Subdivide for accuracy

Divergence theorem for volume / area moments

Least Squares Fit to Averages

Averages: approximated via a Taylor expansion for cell-average quantities and their derivatives (Note this is different than finite differences - point-wise).

$$\overline{\phi}_v = \frac{1}{|\mathcal{V}_v|} \left(\sum_{\boldsymbol{p}: |\boldsymbol{p}| < P} \frac{1}{\boldsymbol{p}!} \partial^{\boldsymbol{p}} \phi(\boldsymbol{x}_0) \, m_v^{\boldsymbol{p}} \right) + O(h^P) \qquad \qquad m_v^{\boldsymbol{p}} = \int_{\mathcal{V}_v} (\boldsymbol{x} - \boldsymbol{x}_0)^{\boldsymbol{p}} \, d\mathcal{V}$$



Least Squares Fit to Averages

Averages: least-square approximation using a polynomial fit:

$$\min_{c} ||\Phi-\Psi||_{2,W} \,, ext{ where } ||\Phi-\Psi||_{2,W} \equiv \sum_{v} w_v \left(\overline{\phi}_v - \overline{\psi}_v
ight)^2 \,, \qquad \qquad \Psi = A \, c \,, ext{ where } A_{vp} = rac{m_v^{m p}(m x_0)}{m_v^{m 0}}$$

Averages: least-square approximation to calculate flux leads to a flux stencil

Least Squares Fit for Fluxes

• Fluxes: stencils specified by system derived from fit:

$$\int_{\mathcal{F}_f} \nabla \phi \cdot \boldsymbol{n}_f \, dA \approx \underbrace{\sum_{d=1}^D \sum_{\substack{\boldsymbol{k}: \boldsymbol{k} \ge \boldsymbol{e}^d \\ \boldsymbol{k} < P \boldsymbol{u} + \boldsymbol{e}^d}}_{\boldsymbol{k} < P \boldsymbol{u} + \boldsymbol{e}^d} k_d \, C_{\boldsymbol{k}} \, m_{d,f}^{\boldsymbol{k} - \boldsymbol{e}^d} + O(h^{P+D-1})$$
$$\equiv A_{v'}(\boldsymbol{k}, f) \, \langle \phi \rangle_{v'}$$

- Boundary conditions can be specified generally
 - **Dirichlet**, add to system for *C*:
 - Neumann, flux is specified (and can be added to system):

$$\int_{\mathcal{F}_f} g \, dA = \sum_{\boldsymbol{p}:|\boldsymbol{p}| < P} C_{\boldsymbol{p}} m_f^{\boldsymbol{p}}$$

$$\int_{\mathcal{F}_f} \nabla \phi \cdot \boldsymbol{n}_f \, dA = \int_{\mathcal{F}_f} g \, dA$$

Example: free stream preservation

• Free stream preservation for $\mathbf{F} = \phi \mathbf{u}$:

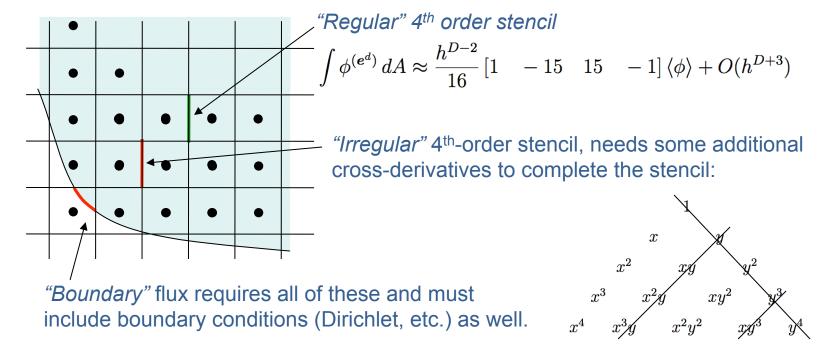
$$\nabla \cdot (\phi \mathbf{u}) = \phi (\nabla \cdot \mathbf{u}) + (\nabla \phi) \mathbf{u}^{0}$$
$$\nabla \cdot (\phi \mathbf{u}) = \sum_{k} C_{k} (x - \bar{x})^{k} \Big|_{\nabla \hat{\phi} = \mathbf{0}} (\nabla \cdot \mathbf{u})$$
$$\nabla \cdot (\phi \mathbf{u}) = C_{0} (\nabla \cdot \mathbf{u})$$

• For $\nabla \cdot \mathbf{u} = 0$:

$$\nabla \cdot \mathbf{u} = \frac{1}{V_{\mathbf{v}}} \sum_{d=1}^{D} \sum_{f \in \partial \mathbf{v}} n_d A_f \langle u_d \rangle_f = 0, \langle u_d \rangle_f \approx \frac{1}{A_f} \sum_{\mathbf{k}} m_f^{\mathbf{k}} \frac{1}{\mathbf{k}!} u_d^{(\mathbf{k})}$$

Least Squares Fit (cont.)

Stencil: sufficient points to make system full-rank



• All stencils automatically derived from least squares approach given set of neighbors that makes system full-rank

Least Squares Fits – Dirty Secrets

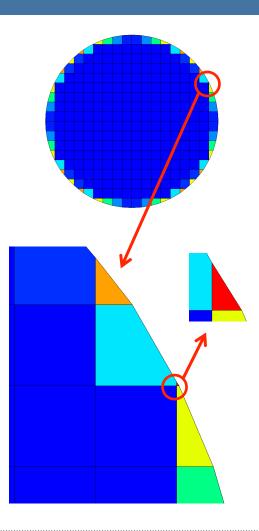
Stencils: N points, P polynomial coefficients:

- *N* > *P*
 - Coefficients are *over-determined*, 2-norm minimization
 - Stencils are *under-determined* additional degrees of freedom that don't change consistency
 - Can lead to down-winding, Runge phenomenon, etc.
 - Need criteria for selecting the correct stencil: sparsity (L1 norm minimization), stability (but without studying entire matrix?), etc.
- P > N
 - Stencils are *over-determined*, may not be 4th-order
 - Coefficients are <u>under-determined</u> need additional criteria to identify "best" choice
 - Leads to minimum Sobolev norm, WENO, other approximations

Results: 2D Laplacian, Dirichlet BC's

Truncation error for polynomials on a circle

h =	1/16	1/32	1/64	1/128	
$\min(\lambda)$	3.1e-2	4.2e-3	7.7e-4	4.5e-4	
Test	${\rm error~in}~ \Lambda\Delta\phi _1$				Order
$\phi = xy$	3.78e-14	2.45e-13	8.13e-13	2.55e-12	N/A
$\phi = 1 - r^4$	1.26e-13	7.15e-13	6.43e-12	9.61e-12	N/A
$\phi = r^2(1-r^4)$	9.15e-5	5.98e-6	3.83e-7	2.42e-8	3.96
Test	error in $ F(\phi) _1$				Order
$\phi = xy$	5.74e-14	2.28e-13	6.13e-13	8.85e-13	N/A
$\phi = 1 - r^4$	7.56e-13	1.15e-12	2.04e-12	2.61e-11	N/A
$\phi = r^2(1-r^4)$	2.86e-5	9.69e-7	2.99e-8	1.02e-9	4.93



Conclusions and Future Research

We have been researching a new, general cut-cell approach:

- Simple "grid generation" even with complex geometries
- 4th-order, but may be generalized to 6th or higher
- No "small cell problem," relatively insensitive to errors in geometry generation, boundary conditions

Active research areas:

- Good conditioning \rightarrow multigrid, fast parabolic solvers, time integrators (RKC)
- Limiters for non-linear hyperbolic problems
- Conditions that guarantee positive definiteness?
- Combine with moving boundary \rightarrow space-time moments
- Multi-physics flux matching conditions (multi-phase flow vs. porous media)

Lawrence Berkeley National Laboratory

U.S. DEPARTMENT OF ENERGY

Work supported by Office of Science, ASCR

Thank you!

Adaptive Embedded Boundary Discretizations for Multimaterial Simulation

Hans Johansen, Phillip Colella, Dan Graves hjohansen@lbl.gov Applied Numerical Algorithms Group

MultiMat 2013 September 5th, 2013