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Introduction (why do you care?) 

• Remapping is required for 
Lagrange+remap ALE hydrodynamics 

– Complete Lagrange cycle 

– Move or “relax” the mesh points, usually to 
improve mesh quality 

– Remap physics state to the relaxed mesh 

– Repeat 

 

• Typical ALE 2nd-order remap is based on 
swept-face remap (advection) 

– Flux material across faces between donor and 
acceptor cells 

– Flux volumes limited to some fraction of donor cell 
volume 

 

• Exact intersection remap is better 
– Fluxes across corners are included, improving 

accuracy for general flow 

– Not limited by swept face flux volume, decreasing 
cycles to solution 

 

• Doesn’t have to be prohibitively expensive 
– Presented method is O(n) time 
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Method overview 

• Remap requires intersection of pre-relaxed mesh A with relaxed mesh B 

• Overlay of both meshes generates intersection polygons 

• Each polygon is the intersection of a mesh A (donor) zone with a mesh B 

(acceptor) zone 

• Each polygon represents a flux from the donor zone to the acceptor zone 

• Remap fields by subtracting fluxes from donors and adding to acceptors 

 
Mesh A 

Mesh B 
Intersection Intersection 

Mesh A 

Mesh B 



5 

2nd Order Remapping 

• 2nd-order remapping of a volume-weighted intensive field 𝑓 

 

• Requires integration over the intersection polygon of a linear 

reconstruction of field 𝑓(𝐱) based on known donor zone 

centered field 𝑓(𝐱𝑐) at known donor zone centroid 𝐱𝑐 

 

 

• Where 𝐆 = 𝑮𝒙, 𝑮𝒚  is the limited gradient of the field 

 

• Choose your favorite limited gradient method 

𝑓 𝐱 = 𝑓 𝐱𝑐 + 𝐆 ⋅ (𝐱 − 𝐱𝑐) 
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2nd Order Remapping 

• Extensive flux 𝐹 from donor zone to acceptor zone is the integral of 

the linear field 𝑓(𝐱) over the intersection polygon volume 𝑉 

 

 

 

 

 

 

 

 

 

 

 

• Forms of 𝐽0, 𝐽𝑥, 𝐽𝑦 depend on Cartesian vs. cylindrical geometry 

• Integrals 𝐽0, 𝐽𝑥, 𝐽𝑦 can be re-used to remap all fields 

𝐹 =  𝑓 𝐱 𝑑𝑉

𝑉

=  𝑓 𝐱𝑐 + 𝐆 ⋅ 𝐱 − 𝐱𝑐 𝑑𝑉

𝑉

 

𝐹 = 𝑓 𝐱𝑐  1 𝑑𝑉

𝑉

+ 𝐆 ⋅  𝐱 𝑑𝑉

𝑉

− 𝐆 ⋅ 𝐱𝑐  1 𝑑𝑉

𝑉

 

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐆 ⋅ 𝐉 

𝐽0 = 𝑉 =  1 𝑑𝑉

𝑉

, 𝐉 = 𝐽𝑥, 𝐽𝑦 , 𝐽𝑥 =  𝑥 𝑑𝑉

𝑉

, 𝐽𝑦 =  𝑦 𝑑𝑉

𝑉

 

Constant in 𝑉 

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐺𝑥𝐽𝑥 + 𝐺𝑦𝐽𝑦 

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐺𝑟𝐽𝑟 + 𝐺𝑧𝐽𝑧 

Cartesian 

Cylindrical 
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2nd Order Remapping 

• Integrals are various moments of area 

 

• Cartesian (𝑑𝑉 = 𝑑𝑥𝑑𝑦): 

 

 

• Cylindrical (𝑑𝑉 = 𝑟 𝑑𝑟𝑑𝑧): 

𝐽0 = 𝑉 = 𝐴 = 1 𝑑𝑥𝑑𝑦 , 𝐽𝑥 = 𝑥 𝑑𝑥𝑑𝑦 , 𝐽𝑦 = 𝑦 𝑑𝑥𝑑𝑦 

𝐽0 = 𝑉 = 1 𝑟 𝑑𝑟𝑑𝑧 , 𝐽𝑟 = 𝑟 𝑟 𝑑𝑟𝑑𝑧 , 𝐽𝑧 = 𝑧 𝑟 𝑑𝑟𝑑𝑧 
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2nd Order Remapping 

• Discrete integral for polygon 𝑝 with 𝑛 edges is sum of discrete edge 

integrals 

 

 

• Discrete integrals for edge 𝑒 with endpoints 𝐱1 and 𝐱2 are: 

– Cartesian: 

 

 

 

 

– Cylindrical: 

𝐽𝑝 =  𝐽𝑒

𝑛

𝑒=1

 

𝐽0 =
1

2
(𝑥1 + 𝑥2)(𝑦2 − 𝑦1) 

𝐽𝑥 =
1

6
(𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2)(𝑦2 − 𝑦1) 

𝐽𝑦 =
1

6
(𝑦1

2 + 𝑦1𝑦2 + 𝑦2
2)(𝑥1 − 𝑥2) 

𝐽0 =
1

6
(𝑟1

2 + 𝑟1𝑟2 + 𝑟2
2)(𝑧2 − 𝑧1) 

𝐽𝑟 =
1

12
(𝑟1 + 𝑟2)(𝑟1

2 + 𝑟2
2)(𝑧2 − 𝑧1) 

𝐽𝑧 =
1

24
(𝑟1

2 3𝑧1 + 𝑧2 + 𝑟2
2 3𝑧2 + 𝑧1 + 2𝑟1𝑟2(𝑧1 + 𝑧2))(𝑧2 − 𝑧1) 
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2nd Order Remapping 

• Compute relaxed mesh zone volumes 

• Compute edge integrals 

• Sum to polygon to get 𝐽0, 𝐽𝑥 , 𝐽𝑦 

• For each field 

– Compute limited gradient 𝐆 

– Compute flux 𝐹 for each polygon 

– Subtract flux from donor, add to acceptor 

– Convert new extensive value back to intensive form if necessary 

• But we still need to determine the intersection polygons 
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Edge tracking and polygon generation 

• Want to intersect every edge in donor mesh with acceptor mesh 

edges (and vice versa) with O(n) time complexity 

– Edges broken into segments at intersection points 

– Resulting segments bound intersection polygons 

– Segment geometry required to remap fields 

 

• This method is an improvement to Miller and Burton method 

– They perturbed one mesh in order to avoid exact point-point, point-edge, 

or edge-edge coincidence 

– Works perfectly…most of the time 

– Not 100% robust 

 

• This method: 

– Uses an advancing front algorithm (Burton et al, LA-UR 12-20613) 

– Requires no perturbation 
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Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



12 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



13 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



14 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



15 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



16 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



17 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



18 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



19 

Edge tracking: Advancing wavefront 

• In order to track an edge in mesh A 

through mesh B, we need to know 

where it starts in mesh B 

– Pick a point in mesh A 

– Determine where it is in mesh B 

• Single KD-tree log(n) search 

– All connected edges now know 

where they start 

– Track these edges through mesh B 

– All endpoints now know where they 

are 

– All edges connected to these 

endpoints now know where they start 

– Repeat until all edges have been 

tracked 

• Repeat but track mesh B edges 

through mesh A 



20 

Edge tracking: Segment generation 

• We must track each edge from its start to end and generate 

segments at each intersection 

 

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from 

start point 𝑝1 to end point 𝑝2 

 

• At each intersection, a mesh A segment is generated 

 

• For each mesh A segment, we must store: 

– Start and end coordinates 𝐱1 and 𝐱2 

– Which zone 𝑧𝐵 in mesh B the segment tracks through 

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of 

𝑒𝐴 

• Each segment bounds two intersection polygons 

–  𝑧𝐵 ∩ 𝑧𝐿 

–  𝑧𝐵 ∩ 𝑧𝑅 

• Two types of segments 

– Donor mesh edge segments 

– Acceptor mesh edge segments 

 

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2 

 

𝑝2 

𝑝1 

𝑒𝐴 
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3 segments 
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𝑝2 
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𝑧𝐿 
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3 segments 
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Edge tracking 
• The start, intersection and end conditions while edge 

tracking are the key to the method 

 

• Three conditions are possible for the start point of a 

segment: 

– Starts within a zone 

– Starts exactly on an edge (between its endpoints) 

– Starts exactly on a point 

 

• Three types of intersection are possible 

– Edge-edge intersection 

– Exact edge-point intersection 

– Exactly collinear edges (special but common case) 

 

• Three conditions are possible for the end point of a 

segment: 

– Ends within a zone 

– Ends exactly on an edge (between its endpoints) 

– Ends exactly on a point 

 

• The “trick” is to identify the exact cases 
– Finite precision computers aren’t exact 

– This introduces possible inconsistencies or even geometrically 

impossible situations 

– Zero tolerances: “The road to hell is paved with tolerances.” 
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Edge tracking: Edge intersection 

• Intersecting a pair of edges, 𝑒𝐴 from mesh A and 𝑒𝐵 from mesh B 

• Identify which side 𝑠 each endpoint of one edge is relative to the other 

edge: left, right, or exactly on 

• Use cross products 

 

 

 

 

 

• 𝑠 = 0 means (𝐛 × 𝐚) is exactly zero 

• Four values: 

–  𝑠1 : which side of 𝑒𝐵 point 𝑝1 is on 

–  𝑠2 : which side of 𝑒𝐵 point 𝑝2 is on 

–  𝑠1 : which side of 𝑒𝐴 point 𝑝1 is on 

–  𝑠2 : which side of 𝑒𝐴 point 𝑝2 is on 

 

𝑝1 

𝑝2 

𝑝𝑖 

𝐚 = 𝐱𝑝2 − 𝐱𝑝1 

𝐛𝑖 = 𝐱𝑝𝑖 − 𝐱𝑝1 

𝑠 =  

−1 ∶ (𝐛 × 𝐚) < 0
0 ∶ (𝐛 × 𝐚) = 0
+1 ∶ (𝐛 × 𝐚) > 0

 

𝐛 

𝐚 

Left Right 

𝑝1 

𝑝2 𝑝1 

𝑝2 

𝑒𝐴 𝑒𝐵 
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Edge tracking: Edge-edge intersection 

• Endpoints of both edges are on 

opposite sides of the other edge 

  𝑠1 = −𝑠2, 𝑠1 = −𝑠2 

 

• Compute intersection location 𝐱𝑖𝑛𝑡 

– Must use the same exact math 

regardless of tracking mesh A 

through mesh B or mesh B 

through mesh A 

– Otherwise finite precision will bite 

you 

 

 

 

• Remainder of 𝑒𝐴 tracks through zone 

on 𝑠2 side of 𝑒𝐵 

𝑝1 

𝑝2 

𝑝2 

Left Right 

𝑝1 

Left 

Right 

𝐱𝑖𝑛𝑡 = 𝐱1 + 𝑢𝐚 

𝑢 = min (1,
𝐛1× 𝐚

𝐛1× 𝐚 + 𝐛2× 𝐚
) 

𝑒𝐴 

𝑒𝐵 
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Edge tracking: Edge ends on edge 

• Endpoint of 𝑒𝐴 is exactly on 𝑒𝐵, 

𝑒𝐵 endpoints 𝑝1 and 𝑝2 on 

opposite sides of 𝑒𝐴 

–  𝑠1 ≠ 0, 𝑠2 = 0, 𝑠1 = −𝑠2 

 

• Intersection point is at 𝑝2 

 

 

• Other mesh A edges starting at 

𝑝2 begin exactly on 𝑒𝐵 

𝑝1 

𝑝2 
𝑝2 

Left Right 

𝑝1 
𝐱𝑖𝑛𝑡 = 𝐱2 𝑒𝐴 

𝑒𝐵 
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Edge tracking: Edge-point intersection 

• Edge 𝑒𝐴 exactly intersects endpoint of 𝑒𝐵 

–  𝑠1 = −𝑠2 

– and 𝑠1 ≠ 0, 𝑠2 = 0 

– or 𝑠2 ≠ 0, 𝑠1 = 0  

 

• Intersection point is at 𝑝2 

 

 

• Remainder of 𝑒𝐴 tracks from point 𝑝2 

𝑝1 

𝑝2 
𝑝2 

Left Right 

𝑝1 
𝐱𝑖𝑛𝑡 = 𝐱2 

𝑒𝐴 

𝑒𝐵 



31 

Edge tracking: Coincident points 

• Edge 𝑒𝐴 endpoint 𝑝2 exactly on one 

of the endpoints of 𝑒𝐵 

–  𝑠2 = 0, 

– and 𝑠2 ≠ 0, 𝑠1 = 0, 𝐱1 = 𝐱2 

– or  𝑠1 ≠ 0, 𝑠2 = 0, 𝐱2 = 𝐱2  

 

• Intersection point is at 𝑝2 

 

 

• Other mesh A edges starting at 𝑝2 

begin exactly on 𝑝1or 𝑝2 

 

𝑝1 

𝑝2, 𝑝2 

𝑝1 

𝐱𝑖𝑛𝑡 = 𝐱2 

𝑒𝐴 

𝑒𝐵 

𝑝2 

𝑝2, 𝑝1 

𝑝1 

𝑒𝐴 

𝑒𝐵 
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Edge tracking: Collinear edge intersection 

• Many possible combinations 

• If 𝑠 = 0 for start and end of 

segment, edges are exactly 

collinear 

• The zone through which the 

segment tracks is ambiguous 

• Force consistent selection of 

zone 

– If tracking mesh A through mesh B, 

segment tracks through 𝑒𝐵 right 

zone 

– If tracking mesh B through mesh A, 

segment tracks through mesh A 

zone that is on left side of 𝑒𝐵 

• Generates a degenerate 

polygon that can be culled later 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 
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𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 
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Edge tracking: Collinear edge intersection 

• Many possible combinations 
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collinear 
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𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 
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Edge tracking: Collinear edge intersection 

• Many possible combinations 
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collinear 
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𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 

𝑝1 

𝑝2 

𝑝2 

𝑝1 
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Edge tracking: Start conditions 

• While tracking edge 𝑒𝐴, the start 

condition for each new segment 

is known: in zone, on edge, on 

point 

• On point 𝑝𝐵: 

– Determine whether 𝑒𝐴 tracks 

through adjacent zone 𝑧𝐵 or edge 

𝑒𝐵 

– Re-evaluate 𝑒𝐴 with new start 

condition 

• On edge 𝑒𝐵: 

– Determine whether 𝑒𝐴 is collinear 

with 𝑒𝐴 or tracks through one of 

its adjacent zones 𝑧𝐿 or 𝑧𝑅 

– If not collinear, re-evaluate 𝑒𝐴 

with new start condition 

𝑝𝐵 

𝑝2 

𝑝1 

𝑝2 

𝑝1 

𝑧𝐵 𝑒𝐵 𝑝𝐵 

𝑝2 

𝑝1 
𝑒𝐵 

𝑝2 

𝑝1 

Left 

Right 

𝑧𝐿 

𝑧𝑅 
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Edge tracking: Through zones 

• Segments are only generated for collinear 

edges or when tracking through a zone 𝑧𝐵 

• Intersect 𝑒𝐴 with all edges bounding 𝑧𝐵 except 

entry edges 

• Temporarily store every intersection 

– Type of intersection (edge or point) 

– Intersected index 𝑒𝐵 or 𝑝𝐵 

– Intersection coordinates 𝐱𝑖𝑛𝑡 

– Parametric 𝑢 value 

– Whether 𝑒𝐴 terminates or not 

• If intersections found, choose intersection with 

minimum 𝑢 value 

– Generate segment for 𝑒𝐴 tracking through 𝑧𝐵  

– Use stored intersection information to continue 

tracking 

• If no intersection found, edge terminates within 

𝑧𝐵, done tracking 𝑒𝐴  
– Other mesh A edges starting at 𝑝2 will begin tracking 

within zone 𝑧𝐵 

𝑝1 

𝑧𝐵 𝑧𝐵 

𝑧𝐵 𝑧𝐵 

𝑧𝐵 

𝑧𝐵 

𝑧𝐵 
𝑝2 

𝑧𝐵 𝑧𝐵 

Segment Start 

Segment End 
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Remapping using polygons or segments 

• Polygon fluxes are required for remapping multi-

material donor zones 

– VOF interface reconstructions must be considered 

– Covered in a few slides 

 

• Segment fluxes can be used for remapping single-

material donor zones 

 

• Flux equation valid for segments or polygons 

– 𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐆 ⋅ 𝐉 

– 𝑓 𝐱𝑐 , 𝐱𝑐, and 𝐆 are donor zone values 

– 𝐹 is a flux added to the acceptor zone 

– 𝐽0 and 𝐉 can be segment or polygon values 

 

 

 

• Must construct polygons from segments 

𝐽𝑝 =  𝐽𝑒

𝑛

𝑒=1
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Polygon generation 

• Two types of segments 

– Donor mesh edge segments 

• 𝑧𝐵 from acceptor mesh 

• 𝑧𝐿 and 𝑧𝑅 from donor mesh 

• Contribute to 𝑧𝐿 ∩ 𝑧𝐵 and 𝑧𝑅 ∩ 𝑧𝐵 

– Acceptor mesh edge segments 

• 𝑧𝐵 from donor mesh 

• 𝑧𝐿 and 𝑧𝑅 from acceptor mesh 

• Contribute to 𝑧𝐵 ∩ 𝑧𝐿 and 𝑧𝐵 ∩ 𝑧𝑅 

 

• Identify all segments intersecting the same 

donor and acceptor zone pair 

– These define the boundary of the same intersection 

polygon 

 

• Construct polygon from segments 

– Order vertices counter-clockwise 

𝑧𝐵 
𝑧𝑅 

𝑧𝐿 

𝑝1 

𝑝2 
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Pure material sub-polygons 

• Interfaces are reconstructed in multi-material zones 

(using J. Mosso code) 
 

• Interface reconstruction (IR) module computes and 

stores interfaces (line and outward normal) 
 

• Pure material sub-polygons obtained by cutting 

intersection polygon with interfaces 

– IR module returns remainder polygon after each cut 

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon 

– 𝐽 values for cut-off polygon recovered 

 

 

 

– N-1 cuts for N-material zone 

– Repeat for each cut 

– Nth material sub-polygon is remainder of cut N-1 
 

• Only the sub-polygon 𝐽 values are needed 
 

• Remap is still 2nd-order 

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1 

2 

3 1st cut 

2nd cut 

Donor Mesh 
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Parallelization 
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Results: Accuracy 

• Remap of linear field 

– Should recover the linear field 

 

• Remap of non-linear field 

– Should converge at 2nd order with increasing 

resolution 

 

• Cartesian and polygonal meshes 

– Demonstrate generality 
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Results: Accuracy 

• Cartesian and polygonal meshes 

• Linear field: 𝑓 𝑥, 𝑦 = 2𝑥 + 3𝑦 + 4 

• Laplacian relaxer 

• Force correct 𝐆 = 2,3  in boundary zones 

• Remap errors are O(E-14) 

• Also demonstrates that mesh can be 

relaxed more than a zone size 

– Limitation for swept-face advection 

Mesh type 
L1 Relative 

Error 

L2 Relative 

Error 

Cartesian 5.959E-15 1.198E-14 

Polygonal 3.006E-14 5.602E-14 
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Results: Accuracy 

• Non-linear field 

– 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 + 1 

 

• Random perturbation relaxer 

 

• Convergence rates: 

– Cartesian: 2.04 

– Polygonal: 2.11  

 

 

2.04 

Cartesian Mesh 

2.11 

Polygonal Mesh 
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Results: Performance 

• Should observe O(n) time complexity 

• Increasing mesh resolution 

– Cartesian meshes 

– Polygonal meshes 

#Edges 
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Cartesian 

#Edges 
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Results: Vortex problem 

200x100  

400x200 

100x50 

100x50 

XY 

RZ 

• Exact remapper integrated with CCH (xALE) 

– 2D Cartesian (XY) and Cylindrical (RZ) 
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Summary and Conclusions 

• 2D exact intersection remap 
– Alternative to swept face advection or directional splitting 

– No limit on relaxer displacements 

– Polygonal meshes 

 

• No perturbations or tolerances required 
– Must handle special start, end, and intersection cases 

• On point, on edge, collinear edges 

– Robust 

• So far, so good 

 

• O(n) time complexity 
– Advancing wavefront guarantees that edge start 

conditions are known 

– Only one log(n) search required 

 

• 2nd-order spatial accuracy 

 

• Multi-material remapping with VOF 
2.04 
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Future Work 

• Parallelism 

 

• Remap point- and/or corner-centered fields (SGH) 

 

• Interface reconstruction work 

– Moment of Fluids (MOF) 

– Automatic material ordering 

 

• ReALE 

 

• 3D 

 

• Investigate performance improvements 
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