
1

Exact intersection remapping of multi-material

domain-decomposed polygonal meshes

M. A. Kenamond, D. E. Burton

X-Computational Physics

Los Alamos National Laboratory

Multimat 2013

International Conference on Numerical Methods for Multi-Material Fluid Flows

San Francisco, September 2-6, 2013

Acknowledgements:

U.S. DOE LANL LDRD & ASC programs

S. Doebling, T. Gianakon

LA-UR-13-26794

2

Outline

• Introduction

• eXact method overview

• 2nd-order remap

• Edge tracking and polygon generation

• Multi-material remap with VOF

• Results

– Accuracy

– Performance

– Examples

• Summary, Conclusions and Future work

3

Introduction (why do you care?)

• Remapping is required for
Lagrange+remap ALE hydrodynamics

– Complete Lagrange cycle

– Move or “relax” the mesh points, usually to
improve mesh quality

– Remap physics state to the relaxed mesh

– Repeat

• Typical ALE 2nd-order remap is based on
swept-face remap (advection)

– Flux material across faces between donor and
acceptor cells

– Flux volumes limited to some fraction of donor cell
volume

• Exact intersection remap is better
– Fluxes across corners are included, improving

accuracy for general flow

– Not limited by swept face flux volume, decreasing
cycles to solution

• Doesn’t have to be prohibitively expensive
– Presented method is O(n) time

 L
o

g
 I
n

te
rn

a
l
e
n

e
rg

y

Radius

 L
o

g
 I
n

te
rn

a
l
e
n

e
rg

y

Radius

Exact Intersection

Swept Face

CCH ALE Sedov Blast Wave

4

Method overview

• Remap requires intersection of pre-relaxed mesh A with relaxed mesh B

• Overlay of both meshes generates intersection polygons

• Each polygon is the intersection of a mesh A (donor) zone with a mesh B

(acceptor) zone

• Each polygon represents a flux from the donor zone to the acceptor zone

• Remap fields by subtracting fluxes from donors and adding to acceptors

Mesh A

Mesh B
Intersection Intersection

Mesh A

Mesh B

5

2nd Order Remapping

• 2nd-order remapping of a volume-weighted intensive field 𝑓

• Requires integration over the intersection polygon of a linear

reconstruction of field 𝑓(𝐱) based on known donor zone

centered field 𝑓(𝐱𝑐) at known donor zone centroid 𝐱𝑐

• Where 𝐆 = 𝑮𝒙, 𝑮𝒚 is the limited gradient of the field

• Choose your favorite limited gradient method

𝑓 𝐱 = 𝑓 𝐱𝑐 + 𝐆 ⋅ (𝐱 − 𝐱𝑐)

6

2nd Order Remapping

• Extensive flux 𝐹 from donor zone to acceptor zone is the integral of

the linear field 𝑓(𝐱) over the intersection polygon volume 𝑉

• Forms of 𝐽0, 𝐽𝑥, 𝐽𝑦 depend on Cartesian vs. cylindrical geometry

• Integrals 𝐽0, 𝐽𝑥, 𝐽𝑦 can be re-used to remap all fields

𝐹 = 𝑓 𝐱 𝑑𝑉

𝑉

= 𝑓 𝐱𝑐 + 𝐆 ⋅ 𝐱 − 𝐱𝑐 𝑑𝑉

𝑉

𝐹 = 𝑓 𝐱𝑐 1 𝑑𝑉

𝑉

+ 𝐆 ⋅ 𝐱 𝑑𝑉

𝑉

− 𝐆 ⋅ 𝐱𝑐 1 𝑑𝑉

𝑉

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐆 ⋅ 𝐉

𝐽0 = 𝑉 = 1 𝑑𝑉

𝑉

, 𝐉 = 𝐽𝑥, 𝐽𝑦 , 𝐽𝑥 = 𝑥 𝑑𝑉

𝑉

, 𝐽𝑦 = 𝑦 𝑑𝑉

𝑉

Constant in 𝑉

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐺𝑥𝐽𝑥 + 𝐺𝑦𝐽𝑦

𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐺𝑟𝐽𝑟 + 𝐺𝑧𝐽𝑧

Cartesian

Cylindrical

7

2nd Order Remapping

• Integrals are various moments of area

• Cartesian (𝑑𝑉 = 𝑑𝑥𝑑𝑦):

• Cylindrical (𝑑𝑉 = 𝑟 𝑑𝑟𝑑𝑧):

𝐽0 = 𝑉 = 𝐴 = 1 𝑑𝑥𝑑𝑦 , 𝐽𝑥 = 𝑥 𝑑𝑥𝑑𝑦 , 𝐽𝑦 = 𝑦 𝑑𝑥𝑑𝑦

𝐽0 = 𝑉 = 1 𝑟 𝑑𝑟𝑑𝑧 , 𝐽𝑟 = 𝑟 𝑟 𝑑𝑟𝑑𝑧 , 𝐽𝑧 = 𝑧 𝑟 𝑑𝑟𝑑𝑧

8

2nd Order Remapping

• Discrete integral for polygon 𝑝 with 𝑛 edges is sum of discrete edge

integrals

• Discrete integrals for edge 𝑒 with endpoints 𝐱1 and 𝐱2 are:

– Cartesian:

– Cylindrical:

𝐽𝑝 = 𝐽𝑒

𝑛

𝑒=1

𝐽0 =
1

2
(𝑥1 + 𝑥2)(𝑦2 − 𝑦1)

𝐽𝑥 =
1

6
(𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2)(𝑦2 − 𝑦1)

𝐽𝑦 =
1

6
(𝑦1

2 + 𝑦1𝑦2 + 𝑦2
2)(𝑥1 − 𝑥2)

𝐽0 =
1

6
(𝑟1

2 + 𝑟1𝑟2 + 𝑟2
2)(𝑧2 − 𝑧1)

𝐽𝑟 =
1

12
(𝑟1 + 𝑟2)(𝑟1

2 + 𝑟2
2)(𝑧2 − 𝑧1)

𝐽𝑧 =
1

24
(𝑟1

2 3𝑧1 + 𝑧2 + 𝑟2
2 3𝑧2 + 𝑧1 + 2𝑟1𝑟2(𝑧1 + 𝑧2))(𝑧2 − 𝑧1)

9

2nd Order Remapping

• Compute relaxed mesh zone volumes

• Compute edge integrals

• Sum to polygon to get 𝐽0, 𝐽𝑥 , 𝐽𝑦

• For each field

– Compute limited gradient 𝐆

– Compute flux 𝐹 for each polygon

– Subtract flux from donor, add to acceptor

– Convert new extensive value back to intensive form if necessary

• But we still need to determine the intersection polygons

10

Edge tracking and polygon generation

• Want to intersect every edge in donor mesh with acceptor mesh

edges (and vice versa) with O(n) time complexity

– Edges broken into segments at intersection points

– Resulting segments bound intersection polygons

– Segment geometry required to remap fields

• This method is an improvement to Miller and Burton method

– They perturbed one mesh in order to avoid exact point-point, point-edge,

or edge-edge coincidence

– Works perfectly…most of the time

– Not 100% robust

• This method:

– Uses an advancing front algorithm (Burton et al, LA-UR 12-20613)

– Requires no perturbation

11

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

12

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

13

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

14

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

15

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

16

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

17

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

18

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

19

Edge tracking: Advancing wavefront

• In order to track an edge in mesh A

through mesh B, we need to know

where it starts in mesh B

– Pick a point in mesh A

– Determine where it is in mesh B

• Single KD-tree log(n) search

– All connected edges now know

where they start

– Track these edges through mesh B

– All endpoints now know where they

are

– All edges connected to these

endpoints now know where they start

– Repeat until all edges have been

tracked

• Repeat but track mesh B edges

through mesh A

20

Edge tracking: Segment generation

• We must track each edge from its start to end and generate

segments at each intersection

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from

start point 𝑝1 to end point 𝑝2

• At each intersection, a mesh A segment is generated

• For each mesh A segment, we must store:

– Start and end coordinates 𝐱1 and 𝐱2

– Which zone 𝑧𝐵 in mesh B the segment tracks through

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of

𝑒𝐴

• Each segment bounds two intersection polygons

– 𝑧𝐵 ∩ 𝑧𝐿

– 𝑧𝐵 ∩ 𝑧𝑅

• Two types of segments

– Donor mesh edge segments

– Acceptor mesh edge segments

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2

𝑝2

𝑝1

𝑒𝐴

21

Edge tracking: Segment generation

• We must track each edge from its start to end and generate

segments at each intersection

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from

start point 𝑝1 to end point 𝑝2

• At each intersection, a mesh A segment is generated

• For each mesh A segment, we must store:

– Start and end coordinates 𝐱1 and 𝐱2

– Which zone 𝑧𝐵 in mesh B the segment tracks through

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of

𝑒𝐴

• Each segment bounds two intersection polygons

– 𝑧𝐵 ∩ 𝑧𝐿

– 𝑧𝐵 ∩ 𝑧𝑅

• Two types of segments

– Donor mesh edge segments

– Acceptor mesh edge segments

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2

𝑝2

𝑝1

𝑒𝐴

3 segments

22

Edge tracking: Segment generation

• We must track each edge from its start to end and generate

segments at each intersection

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from

start point 𝑝1 to end point 𝑝2

• At each intersection, a mesh A segment is generated

• For each mesh A segment, we must store:

– Start and end coordinates 𝐱1 and 𝐱2

– Which zone 𝑧𝐵 in mesh B the segment tracks through

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of

𝑒𝐴

• Each segment bounds two intersection polygons

– 𝑧𝐵 ∩ 𝑧𝐿

– 𝑧𝐵 ∩ 𝑧𝑅

• Two types of segments

– Donor mesh edge segments

– Acceptor mesh edge segments

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2

𝑝2

𝑝1

𝑒𝐴

3 segments

𝑧𝐵
𝐱2

𝐱1

23

Edge tracking: Segment generation

• We must track each edge from its start to end and generate

segments at each intersection

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from

start point 𝑝1 to end point 𝑝2

• At each intersection, a mesh A segment is generated

• For each mesh A segment, we must store:

– Start and end coordinates 𝐱1 and 𝐱2

– Which zone 𝑧𝐵 in mesh B the segment tracks through

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of

𝑒𝐴

• Each segment bounds two intersection polygons

– 𝑧𝐵 ∩ 𝑧𝐿

– 𝑧𝐵 ∩ 𝑧𝑅

• Two types of segments

– Donor mesh edge segments

– Acceptor mesh edge segments

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2

𝑝2

𝑝1

𝑒𝐴

𝑝2

𝑝1

𝑧𝑅

𝑧𝐿

Left

Right

3 segments

𝑧𝐵
𝐱2

𝐱1

24

Edge tracking: Segment generation

• We must track each edge from its start to end and generate

segments at each intersection

• Each edge 𝑒𝐴 in mesh A is tracked through mesh B from

start point 𝑝1 to end point 𝑝2

• At each intersection, a mesh A segment is generated

• For each mesh A segment, we must store:

– Start and end coordinates 𝐱1 and 𝐱2

– Which zone 𝑧𝐵 in mesh B the segment tracks through

– The mesh A zones 𝑧𝐿 and 𝑧𝑅 that are on the left and right side of

𝑒𝐴

• Each segment bounds two intersection polygons

– 𝑧𝐵 ∩ 𝑧𝐿

– 𝑧𝐵 ∩ 𝑧𝑅

• Two types of segments

– Donor mesh edge segments

– Acceptor mesh edge segments

• Fluxes to/from 𝑧𝑅 are negative due to reversed 𝐱1 and 𝐱2

𝑝2

𝑝1

𝑒𝐴

𝑝2

𝑝1

𝑧𝑅

𝑧𝐿

Left

Right

3 segments

𝑧𝐵
𝐱2

𝐱1

𝑧𝐵
𝑧𝑅

𝑧𝐿

25

Edge tracking
• The start, intersection and end conditions while edge

tracking are the key to the method

• Three conditions are possible for the start point of a

segment:

– Starts within a zone

– Starts exactly on an edge (between its endpoints)

– Starts exactly on a point

• Three types of intersection are possible

– Edge-edge intersection

– Exact edge-point intersection

– Exactly collinear edges (special but common case)

• Three conditions are possible for the end point of a

segment:

– Ends within a zone

– Ends exactly on an edge (between its endpoints)

– Ends exactly on a point

• The “trick” is to identify the exact cases
– Finite precision computers aren’t exact

– This introduces possible inconsistencies or even geometrically

impossible situations

– Zero tolerances: “The road to hell is paved with tolerances.”

26

Edge tracking: Edge intersection

• Intersecting a pair of edges, 𝑒𝐴 from mesh A and 𝑒𝐵 from mesh B

• Identify which side 𝑠 each endpoint of one edge is relative to the other

edge: left, right, or exactly on

• Use cross products

• 𝑠 = 0 means (𝐛 × 𝐚) is exactly zero

• Four values:

– 𝑠1 : which side of 𝑒𝐵 point 𝑝1 is on

– 𝑠2 : which side of 𝑒𝐵 point 𝑝2 is on

– 𝑠1 : which side of 𝑒𝐴 point 𝑝1 is on

– 𝑠2 : which side of 𝑒𝐴 point 𝑝2 is on

𝑝1

𝑝2

𝑝𝑖

𝐚 = 𝐱𝑝2 − 𝐱𝑝1

𝐛𝑖 = 𝐱𝑝𝑖 − 𝐱𝑝1

𝑠 =

−1 ∶ (𝐛 × 𝐚) < 0
0 ∶ (𝐛 × 𝐚) = 0
+1 ∶ (𝐛 × 𝐚) > 0

𝐛

𝐚

Left Right

𝑝1

𝑝2 𝑝1

𝑝2

𝑒𝐴 𝑒𝐵

27

Edge tracking: Edge-edge intersection

• Endpoints of both edges are on

opposite sides of the other edge

 𝑠1 = −𝑠2, 𝑠1 = −𝑠2

• Compute intersection location 𝐱𝑖𝑛𝑡

– Must use the same exact math

regardless of tracking mesh A

through mesh B or mesh B

through mesh A

– Otherwise finite precision will bite

you

• Remainder of 𝑒𝐴 tracks through zone

on 𝑠2 side of 𝑒𝐵

𝑝1

𝑝2

𝑝2

Left Right

𝑝1

Left

Right

𝐱𝑖𝑛𝑡 = 𝐱1 + 𝑢𝐚

𝑢 = min (1,
𝐛1× 𝐚

𝐛1× 𝐚 + 𝐛2× 𝐚
)

𝑒𝐴

𝑒𝐵

28

Edge tracking: Edge-edge intersection

• Endpoints of both edges are on

opposite sides of the other edge

 𝑠1 = −𝑠2, 𝑠1 = −𝑠2

• Compute intersection location 𝐱𝑖𝑛𝑡

– Must use the same exact math

regardless of tracking mesh A

through mesh B or mesh B

through mesh A

– Otherwise finite precision will bite

you

• Remainder of 𝑒𝐴 tracks through zone

on 𝑠2 side of 𝑒𝐵

𝑝1

𝑝2

𝑝2

Left Right

𝑝1

Left

Right

𝐱𝑖𝑛𝑡 = 𝐱1 + 𝑢𝐚

𝑢 = min (1,
𝐛1× 𝐚

𝐛1× 𝐚 + 𝐛2× 𝐚
)

𝐚

𝐛2

𝐛1

𝐱𝑖𝑛𝑡

𝑒𝐴

𝑒𝐵

29

Edge tracking: Edge ends on edge

• Endpoint of 𝑒𝐴 is exactly on 𝑒𝐵,

𝑒𝐵 endpoints 𝑝1 and 𝑝2 on

opposite sides of 𝑒𝐴

– 𝑠1 ≠ 0, 𝑠2 = 0, 𝑠1 = −𝑠2

• Intersection point is at 𝑝2

• Other mesh A edges starting at

𝑝2 begin exactly on 𝑒𝐵

𝑝1

𝑝2
𝑝2

Left Right

𝑝1
𝐱𝑖𝑛𝑡 = 𝐱2 𝑒𝐴

𝑒𝐵

30

Edge tracking: Edge-point intersection

• Edge 𝑒𝐴 exactly intersects endpoint of 𝑒𝐵

– 𝑠1 = −𝑠2

– and 𝑠1 ≠ 0, 𝑠2 = 0

– or 𝑠2 ≠ 0, 𝑠1 = 0

• Intersection point is at 𝑝2

• Remainder of 𝑒𝐴 tracks from point 𝑝2

𝑝1

𝑝2
𝑝2

Left Right

𝑝1
𝐱𝑖𝑛𝑡 = 𝐱2

𝑒𝐴

𝑒𝐵

31

Edge tracking: Coincident points

• Edge 𝑒𝐴 endpoint 𝑝2 exactly on one

of the endpoints of 𝑒𝐵

– 𝑠2 = 0,

– and 𝑠2 ≠ 0, 𝑠1 = 0, 𝐱1 = 𝐱2

– or 𝑠1 ≠ 0, 𝑠2 = 0, 𝐱2 = 𝐱2

• Intersection point is at 𝑝2

• Other mesh A edges starting at 𝑝2

begin exactly on 𝑝1or 𝑝2

𝑝1

𝑝2, 𝑝2

𝑝1

𝐱𝑖𝑛𝑡 = 𝐱2

𝑒𝐴

𝑒𝐵

𝑝2

𝑝2, 𝑝1

𝑝1

𝑒𝐴

𝑒𝐵

32

Edge tracking: Collinear edge intersection

• Many possible combinations

• If 𝑠 = 0 for start and end of

segment, edges are exactly

collinear

• The zone through which the

segment tracks is ambiguous

• Force consistent selection of

zone

– If tracking mesh A through mesh B,

segment tracks through 𝑒𝐵 right

zone

– If tracking mesh B through mesh A,

segment tracks through mesh A

zone that is on left side of 𝑒𝐵

• Generates a degenerate

polygon that can be culled later

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

33

Edge tracking: Collinear edge intersection

• Many possible combinations

• If 𝑠 = 0 for start and end of

segment, edges are exactly

collinear

• The zone through which the

segment tracks is ambiguous

• Force consistent selection of

zone

– If tracking mesh A through mesh B,

segment tracks through 𝑒𝐵 right

zone

– If tracking mesh B through mesh A,

segment tracks through mesh A

zone that is on left side of 𝑒𝐵

• Generates a degenerate

polygon that can be culled later

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

34

Edge tracking: Collinear edge intersection

• Many possible combinations

• If 𝑠 = 0 for start and end of

segment, edges are exactly

collinear

• The zone through which the

segment tracks is ambiguous

• Force consistent selection of

zone

– If tracking mesh A through mesh B,

segment tracks through 𝑒𝐵 right

zone

– If tracking mesh B through mesh A,

segment tracks through mesh A

zone that is on left side of 𝑒𝐵

• Generates a degenerate

polygon that can be culled later

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

35

Edge tracking: Collinear edge intersection

• Many possible combinations

• If 𝑠 = 0 for start and end of

segment, edges are exactly

collinear

• The zone through which the

segment tracks is ambiguous

• Force consistent selection of

zone

– If tracking mesh A through mesh B,

segment tracks through 𝑒𝐵 right

zone

– If tracking mesh B through mesh A,

segment tracks through mesh A

zone that is on left side of 𝑒𝐵

• Generates a degenerate

polygon that can be culled later

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

𝑝1

𝑝2

𝑝2

𝑝1

36

Edge tracking: Start conditions

• While tracking edge 𝑒𝐴, the start

condition for each new segment

is known: in zone, on edge, on

point

• On point 𝑝𝐵:

– Determine whether 𝑒𝐴 tracks

through adjacent zone 𝑧𝐵 or edge

𝑒𝐵

– Re-evaluate 𝑒𝐴 with new start

condition

• On edge 𝑒𝐵:

– Determine whether 𝑒𝐴 is collinear

with 𝑒𝐴 or tracks through one of

its adjacent zones 𝑧𝐿 or 𝑧𝑅

– If not collinear, re-evaluate 𝑒𝐴

with new start condition

𝑝𝐵

𝑝2

𝑝1

𝑝2

𝑝1

𝑧𝐵 𝑒𝐵 𝑝𝐵

𝑝2

𝑝1
𝑒𝐵

𝑝2

𝑝1

Left

Right

𝑧𝐿

𝑧𝑅

37

Edge tracking: Through zones

• Segments are only generated for collinear

edges or when tracking through a zone 𝑧𝐵

• Intersect 𝑒𝐴 with all edges bounding 𝑧𝐵 except

entry edges

• Temporarily store every intersection

– Type of intersection (edge or point)

– Intersected index 𝑒𝐵 or 𝑝𝐵

– Intersection coordinates 𝐱𝑖𝑛𝑡

– Parametric 𝑢 value

– Whether 𝑒𝐴 terminates or not

• If intersections found, choose intersection with

minimum 𝑢 value

– Generate segment for 𝑒𝐴 tracking through 𝑧𝐵

– Use stored intersection information to continue

tracking

• If no intersection found, edge terminates within

𝑧𝐵, done tracking 𝑒𝐴
– Other mesh A edges starting at 𝑝2 will begin tracking

within zone 𝑧𝐵

𝑝1

𝑧𝐵 𝑧𝐵

𝑧𝐵 𝑧𝐵

𝑧𝐵

𝑧𝐵

𝑧𝐵
𝑝2

𝑧𝐵 𝑧𝐵

Segment Start

Segment End

38

Remapping using polygons or segments

• Polygon fluxes are required for remapping multi-

material donor zones

– VOF interface reconstructions must be considered

– Covered in a few slides

• Segment fluxes can be used for remapping single-

material donor zones

• Flux equation valid for segments or polygons

– 𝐹 = 𝑓 𝐱𝑐 − 𝐆 ⋅ 𝐱𝑐 𝐽0 + 𝐆 ⋅ 𝐉

– 𝑓 𝐱𝑐 , 𝐱𝑐, and 𝐆 are donor zone values

– 𝐹 is a flux added to the acceptor zone

– 𝐽0 and 𝐉 can be segment or polygon values

• Must construct polygons from segments

𝐽𝑝 = 𝐽𝑒

𝑛

𝑒=1

39

Polygon generation

• Two types of segments

– Donor mesh edge segments

• 𝑧𝐵 from acceptor mesh

• 𝑧𝐿 and 𝑧𝑅 from donor mesh

• Contribute to 𝑧𝐿 ∩ 𝑧𝐵 and 𝑧𝑅 ∩ 𝑧𝐵

– Acceptor mesh edge segments

• 𝑧𝐵 from donor mesh

• 𝑧𝐿 and 𝑧𝑅 from acceptor mesh

• Contribute to 𝑧𝐵 ∩ 𝑧𝐿 and 𝑧𝐵 ∩ 𝑧𝑅

• Identify all segments intersecting the same

donor and acceptor zone pair

– These define the boundary of the same intersection

polygon

• Construct polygon from segments

– Order vertices counter-clockwise

𝑧𝐵
𝑧𝑅

𝑧𝐿

𝑝1

𝑝2

40

Pure material sub-polygons

• Interfaces are reconstructed in multi-material zones

(using J. Mosso code)

• Interface reconstruction (IR) module computes and

stores interfaces (line and outward normal)

• Pure material sub-polygons obtained by cutting

intersection polygon with interfaces

– IR module returns remainder polygon after each cut

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon

– 𝐽 values for cut-off polygon recovered

– N-1 cuts for N-material zone

– Repeat for each cut

– Nth material sub-polygon is remainder of cut N-1

• Only the sub-polygon 𝐽 values are needed

• Remap is still 2nd-order

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1

2

3 1st cut

2nd cut

Donor Mesh

41

Pure material sub-polygons

• Interfaces are reconstructed in multi-material zones

(using J. Mosso code)

• Interface reconstruction (IR) module computes and

stores interfaces (line and outward normal)

• Pure material sub-polygons obtained by cutting

intersection polygon with interfaces

– IR module returns remainder polygon after each cut

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon

– 𝐽 values for cut-off polygon recovered

– N-1 cuts for N-material zone

– Repeat for each cut

– Nth material sub-polygon is remainder of cut N-1

• Only the sub-polygon 𝐽 values are needed

• Remap is still 2nd-order

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1

2

3 1st cut

2nd cut

Donor Mesh

42

Pure material sub-polygons

• Interfaces are reconstructed in multi-material zones

(using J. Mosso code)

• Interface reconstruction (IR) module computes and

stores interfaces (line and outward normal)

• Pure material sub-polygons obtained by cutting

intersection polygon with interfaces

– IR module returns remainder polygon after each cut

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon

– 𝐽 values for cut-off polygon recovered

– N-1 cuts for N-material zone

– Repeat for each cut

– Nth material sub-polygon is remainder of cut N-1

• Only the sub-polygon 𝐽 values are needed

• Remap is still 2nd-order

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1

2

3 1st cut

2nd cut

Donor Mesh

43

Pure material sub-polygons

• Interfaces are reconstructed in multi-material zones

(using J. Mosso code)

• Interface reconstruction (IR) module computes and

stores interfaces (line and outward normal)

• Pure material sub-polygons obtained by cutting

intersection polygon with interfaces

– IR module returns remainder polygon after each cut

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon

– 𝐽 values for cut-off polygon recovered

– N-1 cuts for N-material zone

– Repeat for each cut

– Nth material sub-polygon is remainder of cut N-1

• Only the sub-polygon 𝐽 values are needed

• Remap is still 2nd-order

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1

2

3 1st cut

2nd cut

Donor Mesh

44

Pure material sub-polygons

• Interfaces are reconstructed in multi-material zones

(using J. Mosso code)

• Interface reconstruction (IR) module computes and

stores interfaces (line and outward normal)

• Pure material sub-polygons obtained by cutting

intersection polygon with interfaces

– IR module returns remainder polygon after each cut

– Compute 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 for remainder polygon

– 𝐽 values for cut-off polygon recovered

– N-1 cuts for N-material zone

– Repeat for each cut

– Nth material sub-polygon is remainder of cut N-1

• Only the sub-polygon 𝐽 values are needed

• Remap is still 2nd-order

𝐽𝑤ℎ𝑜𝑙𝑒 = 𝐽𝑐𝑢𝑡𝑜𝑓𝑓 + 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

𝐽𝑐𝑢𝑡𝑜𝑓𝑓 = 𝐽𝑤ℎ𝑜𝑙𝑒 − 𝐽𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1

2

3 1st cut

2nd cut

Donor Mesh

45

Parallelization

46

Results: Accuracy

• Remap of linear field

– Should recover the linear field

• Remap of non-linear field

– Should converge at 2nd order with increasing

resolution

• Cartesian and polygonal meshes

– Demonstrate generality

47

Results: Accuracy

• Cartesian and polygonal meshes

• Linear field: 𝑓 𝑥, 𝑦 = 2𝑥 + 3𝑦 + 4

• Laplacian relaxer

• Force correct 𝐆 = 2,3 in boundary zones

• Remap errors are O(E-14)

• Also demonstrates that mesh can be

relaxed more than a zone size

– Limitation for swept-face advection

Mesh type
L1 Relative

Error

L2 Relative

Error

Cartesian 5.959E-15 1.198E-14

Polygonal 3.006E-14 5.602E-14

48

Results: Accuracy

• Non-linear field

– 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2 + 1

• Random perturbation relaxer

• Convergence rates:

– Cartesian: 2.04

– Polygonal: 2.11

2.04

Cartesian Mesh

2.11

Polygonal Mesh

E
rr

o
r

E
rr

o
r

𝚫𝐱 𝚫𝐱

49

Results: Performance

• Should observe O(n) time complexity

• Increasing mesh resolution

– Cartesian meshes

– Polygonal meshes

#Edges

T
ra

c
k

in
g

 T
im

e

Polygonal

Cartesian

#Edges

T
im

e
 p

e
r

E
d

g
e

Polygonal

Cartesian

50

Results: Vortex problem

200x100

400x200

100x50

100x50

XY

RZ

• Exact remapper integrated with CCH (xALE)

– 2D Cartesian (XY) and Cylindrical (RZ)

51

Summary and Conclusions

• 2D exact intersection remap
– Alternative to swept face advection or directional splitting

– No limit on relaxer displacements

– Polygonal meshes

• No perturbations or tolerances required
– Must handle special start, end, and intersection cases

• On point, on edge, collinear edges

– Robust

• So far, so good

• O(n) time complexity
– Advancing wavefront guarantees that edge start

conditions are known

– Only one log(n) search required

• 2nd-order spatial accuracy

• Multi-material remapping with VOF
2.04

52

Future Work

• Parallelism

• Remap point- and/or corner-centered fields (SGH)

• Interface reconstruction work

– Moment of Fluids (MOF)

– Automatic material ordering

• ReALE

• 3D

• Investigate performance improvements

53

Backup

This page intentionally left blank.

54

Backup

This page intentionally left blank.

55

Backup

This page intentionally left blank.

