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Introduction

What is a semi-analytic shock solution

@ Relevant PDE’s reduced to system of ODE’s and solved using a
standard solver with error control.
@ Provides rad-hydro benchmark solutions assuming certain physics
models.
@ Improve our theoretical understanding.
e Equilibrium Diffusion - Radiative shocks can be continuous for small
and large values of M.

@ Nonequilibrium Diffusion - A Zel'dovich spike may exist
independently of the embedded hydrodynamic shock.

o Radiative transfer - Anti-diffusive shocks exist for certain ranges of
M, which diffusion theory fails to model.
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Introduction

Previous approximate and semi-analytic solutions

@ Sen & Guess (1957)

@ Heaslet & Brown (1963)

@ Drake (2007)

@ Lowrie & Rauenzahn (2007)
@ Lowrie and Edwards (2008)
@ McClarren & Drake (2010)
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Introduction
Assumptions

@ The local material is sufficiently hot for radiation to affect the
hydrodynamics > 10° K.

@ Single material temperature.

@ Radiation can be treated in the geometric optics limit.
@ S, radiation model.

@ Grey opacities and an ideal-gas -law EOS

@ An infinite medium (thick-thick shocks).

@ Material is non-relativistic.
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The Radiation-Hydrodynamics Equations

RH equations and the EOS

The 1-D nondimensional steady-state lab-frame RH equations, correct
through O(3) with O(/3%) conservation corrections, are
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The Radiation-Hydrodynamics Equations

The Radiation Moment Equations

@ The radiation energy equation and momentum equations are
obtained by taking the zero’th and first angular moments,
respectively, of the grey transport equation:

OF,
87; = Sre ’
oP,

@ The radiation moment equation have three unknowns: E,, F;, and
P, and become closed under the assumption that P, = fE,, where
f is called the variable Eddington factor.

@ However, the transport equation must be solved for f.
@ This suggests a straightforward global iterative solution procedure.
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Global Solution Algorithm
Global Solution Algorithm

@ Begin with solution algorithm of Lowrie and Edwards.
@ Their model assumes grey diffusion (EF=1/3).

@ Replace their fixed EF with a VEF.
@ Overall solution process is iterative:

Assume VEF = 1/3.

Solve “reduced” RH equations (Euler plus rad energy and
momentum equations with assumed VEF dependence).

Use variables from rad-hydro solve to construct right side of
transport equation, Cudx !+ o¢l = q.

Perform sweep (invert left-hand side S, operator using ODE solver
with error control).

Construct VEF function from intensity solution.

Repeat until converged: two versions of E;, F,, and P, must agree.
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Reduced-System Solution Algorithm

Reduced-System Solution Algorithm

@ Define upstream conditions at x = —occ.

@ Derive downstream final conditions at x = +oc using continuity of
flux (Rankine-Hugoniot conditions).

@ Reduce system to two ODE'’s.

@ Start with upstream boundary condition, integrate from upstream
to downstream using starting trick.

@ Start with downstream boundary, integrate from downstream to
upstream using starting trick.

@ Connect two solutions to obtain total solution where radiative flux
and radiative intensity are continuous.
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Computational Results

M = 2 Comparison to nonequilibrium diffusion
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Computational Results

M = 3 Comparison to nonequilibrium diffusion
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Computational Results

Anti-diffusion
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Computational Results

Origin of Anti-diffusion

@ Anti-diffusion manifests itself in the shock structure as a
non-monotonic dependence of the radiation temperature
characterized by the attainment of values above the final
downstream equilibrium material temperature.

@ The radiative flux can be expressed as follows:

1 0P, 1 OfE, 1 [,0E of
Fi= o = o an = o o Eo)

@ Note that the flux can be directed along the gradient of E rather
than opposite the gradient of E if % iS opposite in sign to %—’i’ and
of sufficient magnitude. Thus radiation flows “uphill” rather than
“downhill”. This can never happen with the diffusion
approximation.
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Computational Results

Anti-diffusion versus M
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Computational Results

Angular Distribution at Shock
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Computational Results

Transmissive and Diffusive Regions

@ Transmissive:
e f>1/3, such that
o the radiation temperature is greater than the material temperature,
0>T,
e and the temperatures decay exponentially when moving toward the
equilibrium precursor state.
@ Diffusive:
e The Eddington approximation holds: f ~ 1/3.
e This results in equal material and radiation temperatures
(equilibrium), such that
e the precursor temperatures decay linearly moving away from the
embedded hydrodynamic shock.
o Sits between the embedded hydrodynamic shock and the
transmissive region.
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Computational Results

M = 3 Transmissive Region Only
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Computational Results

M = 5 Transmissive and Diffusive Regions
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Computational Results

M = 2 Comparison with Fully Relativistic IMC
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Computational Results

M = 3 Comparison with Fully Relativistic IMC
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Conclusions
Conclusions

@ Presented grey S, semi-analytic radiative shock solutions. These
solutions are a useful code-verification tool of RH codes that solve
the radiation transport equation.

@ Have confirmed anti-diffusion.

@ Have confirmed angular distributions peaked about ;1 = 0.
@ Have confirmed transmissive/diffusive regions.

@ Much more physical understanding remains to be extracted.
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Conclusions

Future Work

@ Incorporate frequency-dependent diffusion and
frequency-dependent transport.

@ Incorporate separate elecron and ion temperatures.
@ Investigate validity of various material-motion models for radiation.
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