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Introduction

What is a semi-analytic shock solution

Relevant PDE’s reduced to system of ODE’s and solved using a
standard solver with error control.
Provides rad-hydro benchmark solutions assuming certain physics
models.
Improve our theoretical understanding.

Equilibrium Diffusion - Radiative shocks can be continuous for small
and large values ofM0.

Nonequilibrium Diffusion - A Zel’dovich spike may exist
independently of the embedded hydrodynamic shock.

Radiative transfer - Anti-diffusive shocks exist for certain ranges of
M0, which diffusion theory fails to model.
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Introduction

Previous approximate and semi-analytic solutions

Sen & Guess (1957)
Heaslet & Brown (1963)
Drake (2007)
Lowrie & Rauenzahn (2007)
Lowrie and Edwards (2008)
McClarren & Drake (2010)
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Introduction

Assumptions

The local material is sufficiently hot for radiation to affect the
hydrodynamics > 106 K .
Single material temperature.
Radiation can be treated in the geometric optics limit.
Sn radiation model.
Grey opacities and an ideal-gas γ-law EOS
An infinite medium (thick-thick shocks).
Material is non-relativistic.
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The Radiation-Hydrodynamics Equations

RH equations and the EOS

The 1-D nondimensional steady-state lab-frame RH equations, correct
through O(β) with O(β2) conservation corrections, are
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with an ideal-gas γ-law EOS

pm = (γ − 1) ρe & e =
T

γ (γ − 1)
.
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The Radiation-Hydrodynamics Equations

The Radiation Moment Equations

The radiation energy equation and momentum equations are
obtained by taking the zero’th and first angular moments,
respectively, of the grey transport equation:

∂Fr

∂x
= Sre ,

C ∂Pr

∂x
= Srp .

The radiation moment equation have three unknowns: Er , Fr , and
Pr and become closed under the assumption that Pr = fEr , where
f is called the variable Eddington factor.
However, the transport equation must be solved for f .
This suggests a straightforward global iterative solution procedure.
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Global Solution Algorithm

Global Solution Algorithm

Begin with solution algorithm of Lowrie and Edwards.
Their model assumes grey diffusion (EF=1/3).
Replace their fixed EF with a VEF.
Overall solution process is iterative:

Assume VEF = 1/3.
Solve “reduced” RH equations (Euler plus rad energy and
momentum equations with assumed VEF dependence).
Use variables from rad-hydro solve to construct right side of
transport equation, Cµ∂x I + σt I = q.
Perform sweep (invert left-hand side Sn operator using ODE solver
with error control).
Construct VEF function from intensity solution.
Repeat until converged: two versions of Er , Fr , and Pr must agree.
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Reduced-System Solution Algorithm

Reduced-System Solution Algorithm

Define upstream conditions at x = −∞.
Derive downstream final conditions at x = +∞ using continuity of
flux (Rankine-Hugoniot conditions).
Reduce system to two ODE’s.
Start with upstream boundary condition, integrate from upstream
to downstream using starting trick.
Start with downstream boundary, integrate from downstream to
upstream using starting trick.
Connect two solutions to obtain total solution where radiative flux
and radiative intensity are continuous.
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Computational Results

M0 = 2 Comparison to nonequilibrium diffusion
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Computational Results

M0 = 3 Comparison to nonequilibrium diffusion
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Computational Results

Anti-diffusion
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Computational Results

Origin of Anti-diffusion

Anti-diffusion manifests itself in the shock structure as a
non-monotonic dependence of the radiation temperature
characterized by the attainment of values above the final
downstream equilibrium material temperature.
The radiative flux can be expressed as follows:

Fr = − 1
σt

∂Pr

∂x
= − 1

σt

∂fEr

∂x
= − 1

σt

[
f
∂Er

∂x
+ Er

∂f
∂x

]
.

Note that the flux can be directed along the gradient of E rather
than opposite the gradient of E if ∂f

∂x is opposite in sign to ∂Er
∂x and

of sufficient magnitude. Thus radiation flows “uphill” rather than
“downhill”. This can never happen with the diffusion
approximation.
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Computational Results

Anti-diffusion versusM0
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Computational Results

Angular Distribution at Shock
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Computational Results

Transmissive and Diffusive Regions

Transmissive:
f > 1/3, such that
the radiation temperature is greater than the material temperature,
θ > T ,
and the temperatures decay exponentially when moving toward the
equilibrium precursor state.

Diffusive:
The Eddington approximation holds: f ≈ 1/3.
This results in equal material and radiation temperatures
(equilibrium), such that
the precursor temperatures decay linearly moving away from the
embedded hydrodynamic shock.
Sits between the embedded hydrodynamic shock and the
transmissive region.
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Computational Results

M0 = 3 Transmissive Region Only

Ferguson, Morel, Lowrie (TAMU,LANL) Radiative Shocks September 3, 2013 17 / 22



Computational Results

M0 = 5 Transmissive and Diffusive Regions
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Computational Results

M0 = 2 Comparison with Fully Relativistic IMC
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Computational Results

M0 = 3 Comparison with Fully Relativistic IMC
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Conclusions

Conclusions

Presented grey Sn semi-analytic radiative shock solutions. These
solutions are a useful code-verification tool of RH codes that solve
the radiation transport equation.
Have confirmed anti-diffusion.
Have confirmed angular distributions peaked about µ = 0.
Have confirmed transmissive/diffusive regions.
Much more physical understanding remains to be extracted.
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Conclusions

Future Work

Incorporate frequency-dependent diffusion and
frequency-dependent transport.
Incorporate separate elecron and ion temperatures.
Investigate validity of various material-motion models for radiation.
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