A Godunov-like point-centered ALE finite element hydrodynamic approach

Nathaniel Morgan, Jacob Waltz, Don Burton, Thomas Canfield*, L. Dean Risinger⁺, John Wohlbier⁺, and Marc Charest

> X-Computational Physics Division *Theoretical Division *Applied Computer Science Los Alamos National Laboratory

> > Sept 2013

Acknowledgements:

Andrew Thurber, Micah Esmond, and Misha Shashkov

Los Alamos
NATIONAL LABORATORY

The LANL Laboratory Directed Research and Development (LDRD) program

LA-UR-13-26722

We are developing hydrodynamic methods for advanced architectures in the 3D unstructured mesh code CHICOMA

- We seek to calculate complex 3D hydrodynamic problems
- These problems will require the following capabilities:
 - Take advantage of advanced computing architectures
 - Computationally more efficient than commonly used hydro codes
 - Simplified problem setup with commodity tools
 - Automatic mesh refinement (AMR) and mesh coarsening
 - Multiple materials
 - Strength
 - Failure
 - High explosives
 - Eulerian, Lagrangian, and ALE hydro methods

Tetrahedron meshes are an option to meet these code capabilities

Lagrangian schemes use control volumes to enforce conservation

- Staggered grid (SGH)
 - Momentum control volume (CV) is staggered with respect to the strain/ energy volumes

- Point-centered (PCH) "NEW METHOD"
 - Control volumes coincide

Why PCH? A PCH scheme can accurately calculate dilatation and bending on triangular or tetrahedral meshes (i.e. not stiff)

The PCH approach solves the hydrodynamic equations on arbitrary polygonal control volumes around the point

The finite element (FE) PCH approach obviates the need to explicitly calculate the control volume surfaces around the point

 $\sum_{\alpha\beta\in\alpha}\mathbf{S}^{\alpha\beta}=0$

 $\mathbf{S}^{\alpha\beta} = -\mathbf{S}^{\beta\alpha}$

Closed contour around internal node α

Equal and opposite on the edge between nodes
$$\alpha$$
 and β

 $\sum_{\alpha\beta\in\Omega_h} \mathbf{S}^{\alpha\beta} = 0 \qquad \text{Equal and opposite in a tetrahedron}$

The discrete conservation equations for FE ALE PCH are expressed in terms of the FE surface area normal vector

Currently, everything is spatially 1st-order accurate

ΔΒΟΒΔΤΟΒΥ

Riemann-like problem

A multidirectional Riemann-like problem is solved at the center of the tetrahedron

The Riemann-like problem is based on seminal works by Despres & Mazeran (2005), Maire et. al. (2007) (2009), and Burton et. al. (2012).

Riemann force: $\mathbf{S}^{\alpha\beta} \cdot \boldsymbol{\sigma}^* = \mathbf{S}^{\alpha\beta} \cdot \left(\boldsymbol{\sigma}^c + \mathbf{q}^{\alpha\beta}\right)$ Dissipation relation from Burton et. al. (2012) modified for finite element approach. $\mathbf{S}^{\alpha\beta} \cdot \mathbf{q}^{\alpha\beta} = \mu^c \left(\mathbf{u}^* - \mathbf{u}^c\right) |\mathbf{a}^c \cdot \mathbf{S}^{\alpha\beta}|$

αβ∈Ω

Momentum conservation is enforced at tetrahedron center:

$$\mathbf{S}^{\alpha\beta} \cdot \mathbf{\sigma}^* = 0$$
 (13 Equations, 13 unknowns)

Riemann velocity:
$$\mathbf{u}^{*} = \frac{\sum_{\alpha\beta\in\Omega_{h}} \left(\mu^{c} \left| \mathbf{a}^{c} \cdot \mathbf{S}^{\alpha\beta} \right| \mathbf{u}^{c} - \mathbf{S}^{\alpha\beta} \cdot \boldsymbol{\sigma}^{c}\right)}{\sum_{\alpha\beta\in\Omega} \left(\mu^{c} \left| \mathbf{a}^{c} \cdot \mathbf{S}^{\alpha\beta} \right|\right)}$$

Riemann force:
$$\mathbf{S}^{\alpha\beta} \cdot \boldsymbol{\sigma}^{*} = \mathbf{S}^{\alpha\beta} \cdot \boldsymbol{\sigma}^{c} + \mu^{c} \left(\mathbf{u}^{*} - \mathbf{u}^{c}\right) \left| \mathbf{a}^{c} \cdot \mathbf{S}^{\alpha\beta} \right|$$

Riemann velocity and force are used in the governing equations

This Riemann-like problem was successfully applied to contact surfaces (Morgan *et. al.* JCP 2013) and SGH (submitted to JCP).

Linear projections will be used to achieve 2nd-order accuracy (work in progress)

The dissipation from the Riemann-like solver reduces to zero for a linear velocity and stress field

The robustness of <u>pure</u> Lagrangian hydro is increased by using corner pressures calculated from the corner volumes

The approach follows the temporary quadrilateral subzoning (TQS) approach in SGH

SGH: Burton (1992) Caramana et. al. (1998) $P^{c} = P^{z} + \delta P^{c}$ $dP = d\rho \frac{\partial p}{\partial \rho}\Big|_{s} + ds \frac{\partial p}{\partial s}\Big|_{\rho}$ Thermodynamic extrapolation along an isentrope $\delta P^c \approx (\rho^c - \rho^z)(c^z)^2$ $\delta P^{c} \approx \left(\frac{M^{c}}{V^{c}} - \frac{M^{z}}{V^{z}}\right) \left(c^{z}\right)^{2}$ $\approx \left(\frac{\left(\rho^{z}V^{c}\right)^{n=0}}{V^{c}} - \frac{\left(\rho^{z}V^{z}\right)^{n=0}}{V^{z}}\right) \left(c^{z}\right)^{2}$ $(V^{c})^{n=0}$ $(V^{c})^{n=0}$ $(V^{z})^{n=0}$ $(V^{z})^{n=0}$

$$\approx \left(\rho^{z}\right) \left(\frac{\sqrt{\gamma}}{V^{c}} - \frac{\sqrt{\gamma}}{V^{z}}\right) \left(c^{z}\right)$$
$$\delta P^{c} \approx \left(\rho^{z}\right)^{n=0} \left(\frac{\left(V^{c}\right)^{n=0}}{V^{c}} - \frac{\left(V^{z}\right)^{n=0}}{V^{z}}\right) \left(c^{z}\right)^{2}$$

Arbitrary Lagrangian Eulerian (ALE)

The fluxes are calculated similarly to traditional swept-face remap methods

Operated by Los Alamos National Security, LLC for NNSA

14 **NNS**

Time Integration

A multistage Runge-Kutta time integration approach is used to evolve the governing equations in time

Runge-Kutta time integration

$$U^{k+1} = U^{n} + \theta^{k} RHS^{k}$$
$$\theta^{k} = \frac{1}{n_{stage} + 1 - k} \qquad \qquad \theta^{k=1} = \theta^{n}$$
$$\theta^{k=n_{stage}} = \theta^{n+1}$$

Governing ALE equations

$$\begin{pmatrix} M_{L}^{\alpha} \end{pmatrix}^{k+1} = \begin{pmatrix} M_{L}^{\alpha} \end{pmatrix}^{n} + \theta^{k} \Delta t \left(\sum_{\Omega_{h} \in \alpha} \sum_{\beta \in \Omega_{h}} \rho^{c(\alpha\beta)} \left[\mathbf{S}^{\alpha\beta} \cdot \left(\mathbf{w}^{\alpha\beta} - \mathbf{u}^{*} \right) \right] \right)^{k} \\ \begin{pmatrix} M_{L}^{\alpha} \mathbf{u}^{\alpha} \end{pmatrix}^{k+1} = \begin{pmatrix} M_{L}^{\alpha} \mathbf{u}^{\alpha} \end{pmatrix}^{n} + \theta^{k} \Delta t \left(\sum_{\Omega_{h} \in \alpha} \sum_{\beta \in \Omega_{h}} \left(1 - \delta_{\alpha\beta} \right) \left(\mathbf{S}^{\alpha\beta} \cdot \mathbf{\sigma}^{*} \right) + \rho^{c(\alpha\beta)} \mathbf{u}^{c(\alpha\beta)} \left[\mathbf{S}^{\alpha\beta} \cdot \left(\mathbf{w}^{\alpha\beta} - \mathbf{u}^{*} \right) \right] \right)^{k} \\ \begin{pmatrix} M_{L}^{\alpha} j^{\alpha} \end{pmatrix}^{k+1} = \begin{pmatrix} M_{L}^{\alpha} j^{\alpha} \end{pmatrix}^{n} + \theta^{k} \Delta t \left(\sum_{\Omega_{h} \in \alpha} \sum_{\beta \in \Omega_{h}} \left(1 - \delta_{\alpha\beta} \right) \left(\mathbf{S}^{\alpha\beta} \cdot \mathbf{\sigma}^{*} \cdot \mathbf{u}^{*} \right) + \rho^{c(\alpha\beta)} j^{c(\alpha\beta)} \left[\mathbf{S}^{\alpha\beta} \cdot \left(\mathbf{w}^{\alpha\beta} - \mathbf{u}^{*} \right) \right] \right)^{k} \\ \begin{pmatrix} \mathbf{x}^{\alpha} \end{pmatrix}^{k+1} = \left(\mathbf{x}^{\alpha} \right)^{n} + \theta^{k} \Delta t \left(\mathbf{w}^{\alpha} \right)^{k} \end{cases}$$

16

Lagrangian test problems

- Fully Lagrangian (i.e. fluxes =0)
- 3 stage RK time integration
- 1st-order in space
- TQS
- Lumped mass

Results on Sedov indicate good mesh robustness and accuracy

Noh 1D Cartesian and Saltzman results demonstrate accuracy and robustness

The Noh results demonstrate accuracy and good mesh robustness

The triple point results shows excellent mesh robustness with a fully 3D unstructured Cubit mesh

Lagrangian AMR used on Sedov XY problem illustrates an advantage of a tetrahedron mesh

ALE test problems

- ALE
 - Laplacian smoother applied to velocity
 - see Waltz et. al. 2013 multiMat talk
- 3-stage RK time integration
- 1st-order in space
- Lumped mass
- With and without AMR

Sedov XY with ALE + AMR increases the peak density relative to the **ALE** calculation

ALE+AMR is intended to improve accuracy on problems with vorticity such as the Taylor Green problem

Mesh refinement and coarsening based on velocity gradient

ALE+AMR is intended to improve accuracy on problems with vorticity such as the triple point problem

Conclusion

- Progress made on developing a PCH algorithm for tetrahedron meshes
 - Finite Element
 - ALE
 - Multidirectional Riemann-like problem
 - AMR
- Preliminary results (11-months into project) are encouraging
- Future work includes:
 - Improve solution at discontinuities by eliminating oscillations
 - Extend the algorithm to 2nd-order spatial accuracy
 - Research automatic mesh refinement and coarsening criteria suitable for ALE calculations
 - Explore velocity smoothing algorithms suitable for in-line advection

References

- D. Burton, T. Carney, N. Morgan, S. Sambasivan, M. Shashkov, "A cell-centered Lagrangian Godunov-like method for solid dynamics", *Computers and Fluids*, 2012.
- D. Burton, Temporary Quadrilateral Subzoning, Lawrence Livermore National Laboratory Notes; 1992
- E. Caramana, and M. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures. Journal of Applied Physics 1998;142:521-561.
- B. Despres and C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 2005;178:327-372
- P. Maire, R. Abgrall, J. Breil, and J. Ovadia, A cell-centered Lagrangian scheme for twodimensional compressible flow problems, SIAM J. Sci. Comput., 2007;29:1781-1824.
- P. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured mesh, Journal of Computational Physics 2009;228(7):6882-6915
- N. Morgan, M. Kenamond, D. Burton, T. Carney, and D. Ingraham, "An Approach for Treating Contact Surfaces in Lagrangian Cell-Centered Hydrodynamics" *Journal of Computational Physics*, 2013.
- N. Morgan, K. Lipnikov, D. Burton, and M. Kenamond "A Godunov-like staggered grid Lagrangian hydrodynamic approach" *Journal of Computational Physics (In Review)*
- W. Noh. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. Journal of Applied Physics 1987;72:78–120.
- L. Sedov, Similarity and Dimensional methods in Mechanics. Academic Press, 1959.
- J. Waltz, T. Canfield, N. Morgan, L Risinger, and J. Wohlbier, "Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions," *Computers and Fluids*, 2013.

