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We are developing hydrodynamic methods for advanced architectures 
in the 3D unstructured mesh code CHICOMA 

•  We seek to calculate complex 3D hydrodynamic problems  
•  These problems will require the following capabilities: 
•  Take advantage of advanced computing architectures 
•  Computationally more efficient than commonly used hydro codes 
•  Simplified problem setup with commodity tools 
•  Automatic mesh refinement (AMR) and mesh coarsening 
•  Multiple materials 
•  Strength 
•  Failure 
•  High explosives 
•  Eulerian, Lagrangian, and ALE hydro methods  

•  Tetrahedron meshes are an option to meet these code capabilities 
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Lagrangian schemes use control volumes to enforce conservation 

•  Staggered grid (SGH) 
-  Momentum control volume (CV) is 

staggered with respect to the strain/
energy volumes 

•  Point-centered (PCH) – “NEW 
METHOD”  
•  Control volumes coincide 

Strain  
control volume 

Cell 
!," ,e{ }

u{ }
Momentum  

control volume 
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Control volumes for 
energy and momentum  

coincide around the 
vertex of the cell, p 

!," ,e,u{ }
u*,! *{ }
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Why PCH?  A PCH scheme can accurately calculate dilatation and 
bending on triangular or tetrahedral meshes (i.e. not stiff) 

4 

Mesh generator Build control volumes 

2D example 3D example 
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The PCH approach solves the hydrodynamic equations on arbitrary 
polygonal control volumes around the point 
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AMR example 

The PCH control volumes can 
have a large number of vertices 

Single 
tetrahedron 

examples 
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The finite element (FE) PCH approach obviates the need to explicitly 
calculate the control volume surfaces around the point 
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Finite Volume Finite Element 

Surface area normal 
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Important Identities: 

S!" = #S"!

Closed contour around internal 
node α	


Equal and opposite on the edge 
between nodes α and β	


S!"
!"#$h

% = 0 Equal and opposite in a 
tetrahedron	
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The discrete conservation equations for FE ALE PCH are expressed in 
terms of the FE surface area normal vector 
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Riemann problem 
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Fluxes are solved in-line rather than 
a Lagrange + remap approach 

Currently, everything is spatially 1st-order accurate 
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Riemann-like problem 
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A multidirectional Riemann-like problem is solved at the center of the 
tetrahedron 
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S!" #q!" = µc u* $ uc( ) ac #S!"

The Riemann-like problem is based on seminal works by Despres & Mazeran (2005), 
Maire et. al. (2007) (2009), and Burton et. al. (2012). 

S!" # $* = S!" # $c + q!"( )Riemann force: 

S!" # $*

!"%&h

' = 0
Momentum conservation is 

enforced at tetrahedron center: 

u* =
µc ac !S"# uc $ S"# ! %c( )

"#&'h

(

µc ac !S"#( )
"#&'
(

Riemann velocity: 

Dissipation relation from 
Burton et. al. (2012) modified 
for finite element approach.  

S!" # $* = S!" # $c + µc u* % uc( ) ac #S!"Riemann force: 

Riemann 
velocity and 
force are used 
in the governing 
equations 

(13 Equations, 13 unknowns) 

This Riemann-like problem was successfully applied to contact 
surfaces (Morgan et. al. JCP 2013) and SGH (submitted to JCP). 

!

!

Control volume for 
Riemann-like problem 

2D example 

S!" #q!"
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Linear projections will be used to achieve 2nd-order accuracy  
(work in progress) 
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2nd order 
approach 
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The dissipation from the Riemann-like solver reduces to zero for a 
linear velocity and stress field 
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All linear projected values 
from are the same in a 
linear field 

Substitute into Riemann-like solution 

S!" # $* = S!" # $ k

u* = uk For a linear field and a 
linear projection, the 

Riemann values are the 
tetrahedron center value 

S!" #qc = µc u* $ uk( ) ac #S!"
Dissipation: 
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The robustness of pure Lagrangian hydro is increased by using corner 
pressures calculated from the corner volumes 
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The approach follows the 
temporary quadrilateral 
subzoning (TQS) approach in SGH 

SGH: 
Burton (1992) 
Caramana  et. al. (1998) 
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Arbitrary Lagrangian Eulerian (ALE) 
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The fluxes are calculated similarly to traditional swept-face remap methods 
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Currently, the corner values are equal to 
the point values (i.e. spatially 1st-order)  
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Time Integration 
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A multistage Runge-Kutta time integration approach is used to evolve 
the governing equations in time 
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Lagrangian test problems 

•  Fully Lagrangian (i.e. fluxes =0) 
•  3 stage RK time integration 
•  1st-order in space 
•  TQS 
•  Lumped mass 
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Results on Sedov indicate good mesh robustness and accuracy 
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44x44x2 nodes 

Mesh: Hexahedron 
cells decomposed into 
24 tetrahedrons 

Sedov (1959) 



Operated by Los Alamos National Security, LLC for NNSA 

Noh 1D Cartesian and Saltzman results demonstrate accuracy and 
robustness 
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Mesh: Hexahedron cells 
decomposed into 24 
tetrahedrons 

Time = 0.74  

Mesh: Hexahedron cells 
decomposed into 24 
tetrahedrons 

Saltzman 
Noh (1987) 
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The Noh results demonstrate accuracy and good mesh robustness 
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Mesh: Hexahedron 
cells decomposed into 
24 tetrahedrons 

44x44x2 nodes 

44x44x44 nodes 

Noh (1987) 
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The triple point results shows excellent mesh robustness with a fully 
3D unstructured Cubit mesh  
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Lagrangian AMR used on Sedov XY problem illustrates an advantage of 
a tetrahedron mesh 
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ALE test problems 

•  ALE  
•  Laplacian smoother applied to velocity  
•  see Waltz et. al. 2013 multiMat talk 

•  3-stage RK time integration 
•  1st-order in space 
•  Lumped mass 
•  With and without AMR 
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Sedov XY with ALE + AMR increases the peak density relative to the 
ALE calculation 
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Zoom 

Mesh refinement and 
coarsening based on 
density gradient 
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ALE+AMR is intended to improve accuracy on problems with vorticity 
such as the Taylor Green problem 
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ALE+AMR 

Lagrangian (no TQS) ALE 

Eulerian Time=0.5 

Zoom of corner 

Velocity plot 

Mesh refinement and coarsening 
based on velocity gradient 
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ALE+AMR is intended to improve accuracy on problems with vorticity 
such as the triple point problem 
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Time = 3.5  

ALE 

ALE+AMR 

Mesh refinement and 
coarsening based on 
density gradient 
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Conclusion 

•  Progress made on developing a PCH algorithm for tetrahedron meshes 
•  Finite Element  
•  ALE  
•  Multidirectional Riemann-like problem 
•  AMR 

•  Preliminary results (11-months into project) are encouraging 
•  Future work includes: 
•  Improve solution at discontinuities by eliminating oscillations 
•  Extend the algorithm to 2nd-order spatial accuracy 
•  Research automatic mesh refinement and coarsening criteria suitable for ALE 

calculations 
•  Explore velocity smoothing algorithms suitable for in-line advection 
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