

Contact with friction for the eXtended Eulerian Method

Efrem Vitali

Computational Geosciences Atmospheric, Earth, and Energy Division Physical and Life Sciences Directorate

Lawrence Livermore National Laboratory P.O. Box 808, Livermore, CA 94551

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

XEM

- **Friction Algorithm**
- **Numerical Results**

The End

Motivation

Outline

• eXtended Eulerian Method (background)

• Friction Algorithm (current work)

Numerical Results

- Granular Material
 Taylor Anvil
- XEM
- **Friction Algorithm**
- **Numerical Results**
- The End

Compaction of Granular Material

- Granular Material
- Taylor Anvil
- XEM
- **Friction Algorithm**
- **Numerical Results**
- The End

Lawrence Livermore Contract Co

Compaction of Granular Material

Motivation

- Granular Material
- Taylor Anvil
- XEM
- **Friction Algorithm**
- **Numerical Results**
- The End

Fully Bonded Solution Frictionless Slip Solution

Lawrence Livermore CC

Compaction of Granular Material

Motivation

- Granular Material
- Taylor Anvil
- XEM
- **Friction Algorithm**
- **Numerical Results**
- The End

Fully Bonded Solution Frictionless Slip Solution

Compaction Curves

XEM

Compaction Curves

15

Motivation

•Granular Material

Lawrence Livermore National Laboratory

Taylor Anvil

XEM

Friction Algorithm

Numerical Results

The End

DB: Header Cycle: 0 Time:0 Pseudocolor Var: pl0 2.000 60 50 - 1.500 40 +1.000 \$ 30 20 - 0.5000 10 0.000 Max: 0.000 Min: 0.000 0. 10 20 30 40 X-Axis

Motivation

Granular Material

Lawrence Livermore National Laboratory

Taylor Anvil

XEM

Friction Algorithm

Numerical Results

The End

DB: Header

DB: Header Cycle: 1893 Time:100

Fully Bonded Solution

•Granular Material

Lawrence Livermore National Laboratory

Taylor Anvil

XEM

Friction Algorithm

Numerical Results

The End

Fully Bonded Solution

Frictionless Slip Solution

Contact with friction for the eXtended Eulerian Method

DB: Header

Cycle: 1893 Time: 100

LLNL-PRES-643113

•Granular Material

Lawrence Livermore National Laboratory

Taylor Anvil

XEM

Friction Algorithm

Numerical Results

The End

Friction capabilities are needed in order to represent a complete range of problems

Frictionless Slip Solution

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113

XEM

- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

eXtended Eulerian Method (background)

Overview

Motivation

XEM

Overview

- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Overview

Motivation

XEM

Overview

- Equations
- Discretization
- Godunov
- Independent Fields
- •Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Time Evolution

$$\boldsymbol{U}_{i}^{n+1} = \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}^{n}) - \boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}^{n}) \right]$$

Overview

Motivation

XEM

Overview

- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**

The End

Time Evolution

$$\begin{aligned} \boldsymbol{U}_{i}^{n+1} &= \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}^{n}) - \boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}^{n}) \right] \\ \boldsymbol{F}(\boldsymbol{U}) &= f(\boldsymbol{q}_{S}) \qquad \boldsymbol{q}_{S} = \textit{Riemann}(\boldsymbol{q}_{L}, \boldsymbol{q}_{R}) \end{aligned}$$

Lawrence Livermore O

Overview

Motivation

XEM

•Overview

- Equations
- Discretization
- Godunov
- Independent Fields
- •Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**

The End

Time Evolution

$$\begin{aligned} \boldsymbol{U}_{i}^{n+1} &= \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}^{n}) - \boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}^{n}) \right] \\ \boldsymbol{F}(\boldsymbol{U}) &= f(\boldsymbol{q}_{S}) \qquad \boldsymbol{q}_{S} = \textit{Riemann}(\boldsymbol{q}_{L}, \boldsymbol{q}_{R}) \end{aligned}$$

Constitutive Equation

$$\boldsymbol{\sigma}^{n+1} = f(\boldsymbol{\sigma}^n, \boldsymbol{L}, \Delta t, \dots)$$

Conservation Equations

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}(\boldsymbol{U})}{\partial x} + \frac{\partial \boldsymbol{G}(\boldsymbol{U})}{\partial y} + \frac{\partial \boldsymbol{H}(\boldsymbol{U})}{\partial z} = \boldsymbol{0}$$
$$\boldsymbol{U} = \begin{cases} \rho_{\boldsymbol{U}} \\ \rho_{\boldsymbol{U}} \\ \rho_{\boldsymbol{V}} \\ \rho_{\boldsymbol{W}} \\ \boldsymbol{E} \end{cases} \quad \boldsymbol{F}(\boldsymbol{U}) = \begin{cases} \rho_{\boldsymbol{U}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{xx}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{xx}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{yx}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{yx}} \\ \boldsymbol{U} = -\boldsymbol{U}\sigma_{xx} - \boldsymbol{V}\sigma_{yx} - \boldsymbol{W}\sigma_{zx} \end{cases}$$
$$\begin{cases} \rho_{\boldsymbol{V}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{yy}} \\ \rho_{\boldsymbol{V}^{2} - \sigma_{yy}} \\ \rho_{\boldsymbol{V}^{2} - \sigma_{zy}} \\ \boldsymbol{V} = -\boldsymbol{U}\sigma_{xy} - \boldsymbol{V}\sigma_{yy} - \boldsymbol{W}\sigma_{zy} \end{cases}$$
$$\boldsymbol{H}(\boldsymbol{U}) = \begin{cases} \rho_{\boldsymbol{W}} \\ \rho_{\boldsymbol{U}^{2} - \sigma_{zz}} \\ \rho_{\boldsymbol{W}^{2} - \sigma_{zz}} \\ \boldsymbol{W} = -\boldsymbol{U}\sigma_{xz} - \boldsymbol{V}\sigma_{yz} - \boldsymbol{W}\sigma_{zz} \end{cases}$$

$$\boldsymbol{E} = \rho \left[\frac{1}{2} \left(\boldsymbol{u}^2 + \boldsymbol{v}^2 + \boldsymbol{w}^2 \right) + \boldsymbol{e} \right]$$

Motivation

XEM

Overview

Equations

Discretization

Godunov

Independent Fields

Lawrence Livermore National Laboratory

Find Face Values

•Find Int. Solution

Friction Algorithm

Numerical Results

$$\frac{\partial \boldsymbol{U}}{\partial t} \approx \frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^n}{\Delta t} = \frac{\boldsymbol{U}^* - \boldsymbol{U}^n}{\Delta t} + \frac{\boldsymbol{U}^{**} - \boldsymbol{U}^*}{\Delta t} + \frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^{**}}{\Delta t}$$

Motivation

XEM

Overview

Equations

- Discretization
- Godunov

Independent Fields

Lawrence Livermore National Laboratory

Find Face Values

•Find Int. Solution

Friction Algorithm

Numerical Results

Motivation

XEM

Overview

Equations

- Discretization
- Godunov

Independent Fields

Lawrence Livermore National Laboratory

•Find Face Values

•Find Int. Solution

- **Friction Algorithm**
- **Numerical Results**

Motivation

XEM

Overview

Equations

Discretization

Godunov

Independent Fields
Find Face Values

Lawrence Livermore National Laboratory

•Find Int. Solution

- or ma me. Solution
- **Friction Algorithm**

Numerical Results

$$\frac{\partial \boldsymbol{U}}{\partial t} \approx \frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^n}{\Delta t} = \frac{\boldsymbol{U}^* - \boldsymbol{U}^n}{\Delta t} + \frac{\boldsymbol{U}^{**} - \boldsymbol{U}^*}{\Delta t} + \frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^{**}}{\Delta t}$$
$$\frac{\boldsymbol{U}^* - \boldsymbol{U}^n}{\Delta t} + \frac{\Delta \boldsymbol{F}(\boldsymbol{U}^n)}{\Delta x} = \mathbf{0}$$
$$\frac{\boldsymbol{U}^{**} - \boldsymbol{U}^*}{\Delta t} + \frac{\Delta \boldsymbol{G}(\boldsymbol{U}^*)}{\Delta y} = \mathbf{0}$$
$$\frac{\boldsymbol{U}^{n+1} - \boldsymbol{U}^{**}}{\Delta t} + \frac{\Delta \boldsymbol{H}(\boldsymbol{U}^{**})}{\Delta z} = \mathbf{0}$$

"1-D" Godunov Method (x-sweep)

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
 Find Face Values
 Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

$$\boldsymbol{U}_{i}^{*} = \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \begin{bmatrix} \boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}^{n}) - \boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}^{n}) \end{bmatrix}$$
$$\boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}) \qquad \boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}) \qquad \boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U})$$
$$\boldsymbol{U}_{i} \qquad \boldsymbol{U}_{i} \qquad \boldsymbol{U}_{i+1}$$

"1-D" Godunov Method (x-sweep)

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields Find Face Values Find Int. Solution
- **Friction Algorithm**
- Numerical Results
- The End

$$\boldsymbol{U}_{i}^{*} = \boldsymbol{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \begin{bmatrix} \boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}^{n}) - \boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}^{n}) \end{bmatrix}$$
$$\boldsymbol{F}_{i-\frac{1}{2}}(\boldsymbol{U}) \quad \boldsymbol{F}_{i+\frac{1}{2}}(\boldsymbol{U}) = f(\boldsymbol{q}_{S})$$

$oldsymbol{q}_L$	q _R

 $\boldsymbol{q}_{S} = Riemann(\boldsymbol{q}_{I}, \boldsymbol{q}_{R})$

 $\sigma_{xx} \sigma_{yx} \sigma_{zx} \}^{\mathrm{T}}$

$$\boldsymbol{q} = \{ \rho \ \boldsymbol{u} \ \boldsymbol{v} \ \boldsymbol{w} \}$$

Independent Fields

L

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
 Find Int. Solution
- Friction Algorithm
- **Numerical Results**
- The End

$$oldsymbol{J}_i^{m,n+1} = oldsymbol{U}_i^{m,n} - rac{\Delta t}{\Delta x} \left[oldsymbol{F}_{i+rac{1}{2}}^m(oldsymbol{U}^{m,n}) - oldsymbol{F}_{i-rac{1}{2}}^m(oldsymbol{U}^{m,n})
ight]$$

$$m = 1$$
 $m = 1$ $m = 1$

Independent Fields

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- •Find Face Values •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Independent Fields

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- •Find Face Values •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Find Face Values

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

 $\boldsymbol{q}_{L}^{\prime}$

Material Solution

$$\boldsymbol{q}_{S}^{M}=\textit{Riemann}_{E}(\boldsymbol{q}_{L}^{M},\boldsymbol{q}_{R}^{M})$$

Interface Solution

$$\boldsymbol{q}_{\mathcal{S}}^{\prime}=\textit{Riemann}_{\textit{L}}(\boldsymbol{q}_{\textit{L}}^{\prime},\boldsymbol{q}_{\textit{R}}^{\prime})$$

Interpolation Scheme

$$\pmb{q}_{\mathcal{S}} = f(\pmb{q}_{\mathcal{S}}^{M}, \pmb{q}_{\mathcal{S}}^{\prime})$$

Find Face Values

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Material Solution

$$\boldsymbol{q}_{S}^{M}=\textit{Riemann}_{E}(\boldsymbol{q}_{L}^{M},\boldsymbol{q}_{R}^{M})$$

Interface Solution

$$\boldsymbol{q}_{\mathcal{S}}^{\prime}=\textit{Riemann}_{L}(\boldsymbol{q}_{L}^{\prime},\boldsymbol{q}_{R}^{\prime})$$

Interpolation Scheme

$$\boldsymbol{q}_{\mathcal{S}} = f(\boldsymbol{q}_{\mathcal{S}}^{M}, \boldsymbol{q}_{\mathcal{S}}^{\prime})$$

Use Interface Coordinate System

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- **Friction Algorithm**
- **Numerical Results**
- The End

Use Interface Coordinate System

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- Friction Algorithm Numerical Results
- The End

Rotate Stresses and Velocities $\widetilde{\boldsymbol{\sigma}} = \boldsymbol{R}^{\mathrm{T}} \boldsymbol{\sigma} \boldsymbol{R} \qquad \widetilde{\boldsymbol{u}} = \boldsymbol{R}^{\mathrm{T}} \boldsymbol{u}$ $\widetilde{\boldsymbol{q}}_{L,R}^{I} = \left\{ \rho \ \widetilde{\boldsymbol{u}} \ \widetilde{\boldsymbol{v}} \ \widetilde{\boldsymbol{w}} \ \widetilde{\sigma}_{xx} \ \widetilde{\sigma}_{yy} \ \widetilde{\sigma}_{zz} \ \widetilde{\sigma}_{xy} \ \widetilde{\sigma}_{yz} \ \widetilde{\sigma}_{zx} \right\}^{\mathrm{T}}$

Use Interface Coordinate System

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields
- Find Face Values
- •Find Int. Solution
- Friction Algorithm Numerical Results The End

Rotate Stresses and Velocities $\widetilde{\boldsymbol{\sigma}} = \boldsymbol{R}^{\mathrm{T}} \boldsymbol{\sigma} \boldsymbol{R} \qquad \widetilde{\boldsymbol{u}} = \boldsymbol{R}^{\mathrm{T}} \boldsymbol{u}$ $\widetilde{\boldsymbol{q}}_{LR}^{I} = \left\{ \rho ~ \widetilde{\boldsymbol{u}} ~ \widetilde{\boldsymbol{v}} ~ \widetilde{\boldsymbol{w}} ~ \widetilde{\sigma}_{xx} ~ \widetilde{\sigma}_{yy} ~ \widetilde{\sigma}_{zz} ~ \widetilde{\sigma}_{xy} ~ \widetilde{\sigma}_{yz} ~ \widetilde{\sigma}_{zx} \right\}^{\mathrm{T}}$

Find Lagrangian Solution (bonded materials)

$$ilde{m{q}}_{S}^{\prime}=Riemann_{L}(ilde{m{q}}_{L}^{\prime}, ilde{m{q}}_{R}^{\prime})$$

Allow Frictionless Slip

Motivation

XEM

Overview

Equations

Discretization

Godunov

Independent Fields

Lawrence Livermore

Find Face Values

•Find Int. Solution

Friction Algorithm

Numerical Results

The End

Apply Frictionless Contact to Tangential Components

$$\tilde{v}_{S}^{I} = \tilde{v}_{L}^{I} - \frac{\tilde{\sigma}_{xy_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{w}_{S}^{I} = \tilde{w}_{L}^{I} - \frac{\tilde{\sigma}_{xz_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{\sigma}_{xy_{S}}^{I} = \tilde{\sigma}_{xz_{S}}^{I} = 0$$

Allow Frictionless Slip

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields

Lawrence Livermore National Laboratory

- Find Face Values
- •Find Int. Solution
- Friction Algorithm
- **Numerical Results**
- The End

Apply Frictionless Contact to Tangential Components

$$\tilde{v}_{S}^{I} = \tilde{v}_{L}^{I} - \frac{\tilde{\sigma}_{xy_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{w}_{S}^{I} = \tilde{w}_{L}^{I} - \frac{\tilde{\sigma}_{xz_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{\sigma}_{xy_{S}}^{I} = \tilde{\sigma}_{xz_{S}}^{I} = 0$$

Update $\tilde{\sigma}_{yy}$ and $\tilde{\sigma}_{zz}$ (1-D Strain Condition)

$$egin{aligned} \Delta ilde{\sigma}_{xx}^{\prime} &= ilde{\sigma}_{xx_S}^{\prime} - ilde{\sigma}_{xx_L}^{\prime} & ilde{\sigma}_{yy_S}^{\prime} &= ilde{\sigma}_{yy_L}^{\prime} + rac{3K - 2G}{3K + 4G} \Delta ilde{\sigma}_{xx}^{\prime} \ & ilde{\sigma}_{zz_S}^{\prime} &= ilde{\sigma}_{zz_L}^{\prime} + rac{3K - 2G}{3K + 4G} \Delta ilde{\sigma}_{xx}^{\prime} \end{aligned}$$

Allow Frictionless Slip

Motivation

- XEM
- Overview
- Equations
- Discretization
- Godunov
- Independent Fields

Lawrence Livermore National Laboratory

- Find Face Values
- •Find Int. Solution
- Friction Algorithm
- **Numerical Results**

The End

Apply Frictionless Contact to Tangential Components

$$\tilde{v}_{S}^{I} = \tilde{v}_{L}^{I} - \frac{\tilde{\sigma}_{xy_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{w}_{S}^{I} = \tilde{w}_{L}^{I} - \frac{\tilde{\sigma}_{xz_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} \qquad \tilde{\sigma}_{xy_{S}}^{I} = \tilde{\sigma}_{xz_{S}}^{I} = 0$$

Update $\tilde{\sigma}_{yy}$ and $\tilde{\sigma}_{zz}$ (1-D Strain Condition)

 $\Delta \tilde{\sigma}'_{xx} = \tilde{\sigma}'_{xx_{S}} - \tilde{\sigma}'_{xx_{L}} \qquad \tilde{\sigma}'_{yy_{S}} = \tilde{\sigma}'_{yy_{L}} + \frac{3K - 2G}{3K + 4G} \Delta \tilde{\sigma}'_{xx}$

$$\tilde{\sigma}'_{zz_{S}} = \tilde{\sigma}'_{zz_{L}} + \frac{3K - 2G}{3K + 4G} \Delta \tilde{\sigma}'_{xx}$$

Rotate Stresses and Velocities Back

 $\boldsymbol{\sigma} = \boldsymbol{R} \, \widetilde{\boldsymbol{\sigma}} \, \boldsymbol{R}^{\mathrm{T}} \qquad \boldsymbol{u} = \boldsymbol{R} \, \widetilde{\boldsymbol{u}}$

 $\boldsymbol{q}_{\mathcal{S}}^{\prime} = \left\{ \rho \ \boldsymbol{u} \ \boldsymbol{v} \ \boldsymbol{w} \ \sigma_{\boldsymbol{x}\boldsymbol{x}} \ \sigma_{\boldsymbol{y}\boldsymbol{y}} \ \sigma_{\boldsymbol{z}\boldsymbol{z}} \ \sigma_{\boldsymbol{x}\boldsymbol{y}} \ \sigma_{\boldsymbol{y}\boldsymbol{z}} \ \sigma_{\boldsymbol{z}\boldsymbol{x}} \right\}^{\mathrm{T}}$

XEM

Friction Algorithm

Coulomb Friction
 Interface Solution
 Sanity Check

Numerical Results

The End

Friction Algorithm (current work)

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113

Lawrence Livermore Introduce Coulomb Friction (μ)

Motivation

XEM

Friction Algorithm

- Coulomb Friction
 Interface Solution
 Sanity Check
- **Numerical Results**

The End

Values Available by XEM

$\tilde{\sigma}_{xx_S}^I$	$\tilde{\sigma}_{{ m xy}_{{ m S}}}^{{ m bonded}}$	$\tilde{\sigma}_{\textit{xz}_{\mathcal{S}}}^{\textit{bonded}}$	$ ilde{v}^{slip}_S$	$ ilde{w}^{slip}_S$
0	,0	0	-	-

Lawrence Livermore National Laboratory Introduce Coulomb Friction (μ)

Motivation

XEM

- **Friction Algorithm**
- Coulomb Friction
 Interface Solution
 Sanity Check
- **Numerical Results**

The End

Values Available by XEM

$\tilde{\sigma}^{I}_{xx_{S}}$	$\tilde{\sigma}_{\mathrm{xy}_{S}}^{\mathrm{bonded}}$	$\tilde{\sigma}_{\textit{xz}_{\mathcal{S}}}^{\textit{bonded}}$	\widetilde{v}^{slip}_S	$ ilde{w}^{slip}_S$
-------------------------------	--	--	--------------------------	---------------------

Calculate Maximum Tangential Frictional Stress

Lawrence Livermore Introduce Coulomb Friction (μ)

Motivation

XEM

- **Friction Algorithm**
- Coulomb Friction
 Interface Solution
 Sanity Check
- **Numerical Results**

The End

Values Available by XEM

Calculate Maximum Tangential Frictional Stress

$$au^{\textit{max}} = -\textit{min}(\mathbf{0},\mu\, ilde{\sigma}'_{\textit{xx}})$$

Calculate Interface Solution

Motivation

XEM

Friction Algorithm • Coulomb Friction • Interface Solution • Sanity Check

Lawrence Livermore

Numerical Results

The End

Calculate Allowable Tangential Frictional Stresses

$$\tau_{xy}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xy_s}^{bonded}|) \quad \tau_{xz}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xz_s}^{bonded}|)$$

$$\tilde{\sigma}_{xy_{S}}^{\prime} = sign(\tilde{\sigma}_{xy_{S}}^{bonded}) \tau_{xy}^{allow} \quad \tilde{\sigma}_{xz_{S}}^{\prime} = sign(\tilde{\sigma}_{xz_{S}}^{bonded}) \tau_{xz}^{allow}$$

Calculate Interface Solution

Motivation

XEM

Friction Algorithm • Coulomb Friction • Interface Solution • Sanity Check

Lawrence Livermore National Laboratory

Numerical Results

The End

Calculate Allowable Tangential Frictional Stresses

$$\tau_{xy}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xy_s}^{bonded}|) \quad \tau_{xz}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xz_s}^{bonded}|)$$

$$\tilde{\sigma}_{xy_{S}}^{l} = sign(\tilde{\sigma}_{xy_{S}}^{bonded}) \tau_{xy}^{allow} \quad \tilde{\sigma}_{xz_{S}}^{l} = sign(\tilde{\sigma}_{xz_{S}}^{bonded}) \tau_{xz}^{allow}$$

Update Tangential Velocities

$$\tilde{\mathbf{v}}_{S}^{\prime} = \tilde{\mathbf{v}}_{S}^{\textit{slip}} + \frac{\tilde{\sigma}_{\textit{xy_S}}^{\prime}}{\rho_{L}^{\prime} c_{\textit{T}_{L}}^{\prime}} \qquad \qquad \tilde{\mathbf{w}}_{S}^{\prime} = \tilde{\mathbf{w}}_{S}^{\textit{slip}} + \frac{\tilde{\sigma}_{\textit{xz_S}}^{\prime}}{\rho_{L}^{\prime} c_{\textit{T}_{L}}^{\prime}}$$

Calculate Interface Solution

Motivation

XEM

Friction Algorithm • Coulomb Friction • Interface Solution • Sanity Check

Lawrence Livermore National Laboratory

Numerical Results

The End

Calculate Allowable Tangential Frictional Stresses

$$\tau_{xy}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xy_s}^{bonded}|) \quad \tau_{xz}^{allow} = \min(\tau^{max}, |\tilde{\sigma}_{xz_s}^{bonded}|)$$

$$\tilde{\sigma}_{xy_{S}}^{l} = sign(\tilde{\sigma}_{xy_{S}}^{bonded}) \tau_{xy}^{allow} \quad \tilde{\sigma}_{xz_{S}}^{l} = sign(\tilde{\sigma}_{xz_{S}}^{bonded}) \tau_{xz}^{allow}$$

Update Tangential Velocities

$$\tilde{\mathbf{v}}_{S}^{\prime} = \tilde{\mathbf{v}}_{S}^{\textit{slip}} + \frac{\tilde{\sigma}_{\textit{xy_S}}^{\prime}}{\rho_{L}^{\prime} c_{\textit{T}_{L}}^{\prime}} \qquad \tilde{\mathbf{w}}_{S}^{\prime} = \tilde{\mathbf{w}}_{S}^{\textit{slip}} + \frac{\tilde{\sigma}_{\textit{xz_S}}^{\prime}}{\rho_{L}^{\prime} c_{\textit{T}_{L}}^{\prime}}$$

Contact with Friction Solution

$$\boldsymbol{\sigma} = \boldsymbol{R} \, \widetilde{\boldsymbol{\sigma}} \, \boldsymbol{R}^{\mathrm{T}} \qquad \boldsymbol{u} = \boldsymbol{R} \, \widetilde{\boldsymbol{u}}$$
$$\boldsymbol{q}_{S}^{\prime} = \left\{ \rho \, \boldsymbol{u} \, \boldsymbol{v} \, \boldsymbol{w} \, \sigma_{xx} \, \sigma_{yy} \, \sigma_{zz} \, \sigma_{xy} \, \sigma_{yz} \, \sigma_{zx} \right\}^{\mathrm{T}}$$

Sanity Check

Motivation

XEM

- Friction Algorithm •Coulomb Friction •Interface Solution
- Sanity Check
- **Numerical Results**

The End

Updated Tangential Velocity

$$ilde{m{v}}_{\mathcal{S}}^{\prime} = ilde{m{v}}_{\mathcal{S}}^{\textit{slip}} + rac{ ilde{\sigma}_{\textit{xy}_{\mathcal{S}}}^{\prime}}{
ho_{\textit{L}}^{\prime} m{c}_{\textit{T}_{\textit{L}}}^{\prime}}$$

Sanity Check

Motivation

XEM

- Friction Algorithm • Coulomb Friction • Interface Solution
- Sanity Check
- **Numerical Results**

The End

Updated Tangential Velocity

$$ilde{v}_{S}^{\prime} = ilde{v}_{S}^{\textit{slip}} + rac{\delta_{LS}}{2} = ilde{v}_{S}^{\textit{slip}}$$

Sanity Check

Motivation

XEM

- Friction Algorithm •Coulomb Friction •Interface Solution
- Sanity Check
- **Numerical Results**

The End

Updated Tangential Velocity

$$\tilde{v}_{S}^{I} = \tilde{v}_{S}^{slip} + \frac{\tilde{\sigma}_{xy_{S}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} = \tilde{v}_{L}^{I} - \frac{\tilde{\sigma}_{xy_{L}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}} + \frac{\tilde{\sigma}_{xy_{S}}^{I}}{\rho_{L}^{I}c_{T_{L}}^{I}}$$

XEM

Friction Algorithm • Coulomb Friction • Interface Solution

Sanity Check

Numerical Results

The End

Updated Tangential Velocity

$$\tilde{\mathbf{v}}_{S}^{l} = \tilde{\mathbf{v}}_{S}^{\textit{slip}} + \frac{\tilde{\sigma}_{xy_{S}}^{l}}{\rho_{L}^{l} c_{T_{L}}^{l}} = \tilde{\mathbf{v}}_{L}^{l} - \frac{\tilde{\sigma}_{xy_{L}}^{l}}{\rho_{L}^{l} c_{T_{L}}^{l}} + \frac{\tilde{\sigma}_{xy_{S}}^{l}}{\rho_{L}^{l} c_{T_{L}}^{l}}$$

Impose Fully Bonded Tangential Stress

$$\tilde{\sigma}_{xy_{\mathcal{S}}}^{\prime} = \tilde{\sigma}_{xy_{\mathcal{S}}}^{\textit{bonded}} = \frac{\rho_{L}^{\prime} c_{T_{L}}^{\prime} \tilde{\sigma}_{xy_{R}}^{\prime} + \rho_{R}^{\prime} c_{T_{R}}^{\prime} \tilde{\sigma}_{xy_{L}}^{\prime} - \rho_{L}^{\prime} c_{T_{L}}^{\prime} \rho_{R}^{\prime} c_{T_{R}}^{\prime} (\tilde{v}_{L}^{\prime} - \tilde{v}_{R}^{\prime})}{\rho_{L}^{\prime} c_{T_{L}}^{\prime} + \rho_{R}^{\prime} c_{T_{R}}^{\prime}}$$

XEM

Friction Algorithm • Coulomb Friction • Interface Solution

Sanity Check

Numerical Results

The End

Updated Tangential Velocity

$$\tilde{\mathbf{v}}_{\mathcal{S}}^{\prime} = \tilde{\mathbf{v}}_{\mathcal{S}}^{\textit{slip}} + \frac{\tilde{\sigma}_{\textit{xy}_{\mathcal{S}}}^{\prime}}{\rho_{\textit{L}}^{\prime} c_{\textit{T}_{\textit{L}}}^{\prime}} = \tilde{\mathbf{v}}_{\textit{L}}^{\prime} - \frac{\tilde{\sigma}_{\textit{xy}_{\textit{L}}}^{\prime}}{\rho_{\textit{L}}^{\prime} c_{\textit{T}_{\textit{L}}}^{\prime}} + \frac{\tilde{\sigma}_{\textit{xy}_{\mathcal{S}}}^{\prime}}{\rho_{\textit{L}}^{\prime} c_{\textit{T}_{\textit{L}}}^{\prime}}$$

Impose Fully Bonded Tangential Stress

$$\tilde{\sigma}_{xy_{\mathcal{S}}}^{\prime} = \tilde{\sigma}_{xy_{\mathcal{S}}}^{\textit{bonded}} = \frac{\rho_{L}^{\prime}c_{T_{L}}^{\prime}\tilde{\sigma}_{xy_{R}}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime}\tilde{\sigma}_{xy_{L}}^{\prime} - \rho_{L}^{\prime}c_{T_{L}}^{\prime}\rho_{R}^{\prime}c_{T_{R}}^{\prime}(\tilde{v}_{L}^{\prime} - \tilde{v}_{R}^{\prime})}{\rho_{L}^{\prime}c_{T_{L}}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime}}$$

Solve for Tangential Velocity

$$\begin{split} \tilde{\mathbf{v}}_{S}^{\prime} &= \tilde{\mathbf{v}}_{L}^{\prime} - \frac{\tilde{\sigma}_{xy_{L}}^{\prime}}{\rho_{L}^{\prime}c_{T_{L}}^{\prime}} + \frac{\rho_{L}^{\prime}c_{T_{L}}^{\prime}\tilde{\sigma}_{xy_{R}}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime}\tilde{\sigma}_{xy_{L}}^{\prime} - \rho_{L}^{\prime}c_{T_{L}}^{\prime}\rho_{R}^{\prime}c_{T_{R}}^{\prime}(\tilde{\mathbf{v}}_{L}^{\prime} - \tilde{\mathbf{v}}_{R}^{\prime})}{\rho_{L}^{\prime}c_{T_{L}}^{\prime}(\rho_{L}^{\prime}c_{T_{L}}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime})} \\ &= \frac{\rho_{L}^{\prime}c_{T_{L}}^{\prime}\tilde{\mathbf{v}}_{L}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime}\tilde{\mathbf{v}}_{R}^{\prime} - (\tilde{\sigma}_{xy_{L}}^{\prime} - \tilde{\sigma}_{xy_{R}}^{\prime})}{\rho_{L}^{\prime}c_{T_{L}}^{\prime} + \rho_{R}^{\prime}c_{T_{R}}^{\prime}} \underbrace{\begin{array}{c}} \text{Bonded} \\ \text{Velocity} \\ \text{Solution} \end{array} \end{split}$$

XEM

Friction Algorithm

Numerical Results Sliding Block Taylor Anvil G.M. Compaction

The End

Numerical Results

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113

Lawrence Livermore National Laboratory

LLNL-PRES-643113

XEM

Friction Algorithm

Lawrence Livermore National Laboratory

- **Numerical Results**
- Sliding Block
- •Taylor Anvil •G.M. Compaction

The End

periodic

.: Ö

ന്

Lawrence Livermore National Laboratory

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113

Lawrence Livermore National Laboratory

XEM

periodic

.: Ö

ന്

Results

Motivation

XEM

- **Friction Algorithm**
- **Numerical Results**
- Sliding Block
- •Taylor Anvil •G.M. Compaction

Motivation

XEM

- **Friction Algorithm**
- Numerical Results

 Sliding Block
- •Taylor Anvil •G.M. Compaction

The End

FrictionlessSlip with FrictionFully Bondedslip $\mu = 0$ $\mu = 0.3$ $\mu = \infty$

Granular Material Compaction

Motivation

XEM

- **Friction Algorithm**
- **Numerical Results**
- Sliding Block
- Taylor Anvil
- G.M. Compaction

The End

Fully Bonded $\mu=\infty$

Slip with Friction $\mu = 0.25$ Frictionless slip $\mu = 0$

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113

Contact with friction for the eXtended Eulerian Method

XEM

 $n_{slides} \geq n_{slides_{max}}$

XEM

- **Friction Algorithm**
- **Numerical Results**

The End

Thank You!

Contact with friction for the eXtended Eulerian Method

LLNL-PRES-643113