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• The standard Lagrange-plus-remap method is shown, both analytically and 
numerically, to be 1st-order accurate in time 
• Errors result from operator splitting and low-order time integration of remap terms 
• Errors exist even if the underlying Lagrange step is 2nd-order accurate in time 

 
• A 2nd-order accurate (in time) ALE method can be achieved with an unsplit 

treatment of the remap terms 
• Improvements to the Lagrange-plus-remap method also are possible 

 
• Application of unsplit ALE to 3D shock hydrodynamics is demonstrated on 

unstructured meshes of up to 107 tetrahedra 
• The method satisfies the Geometric Conservation Law to truncation error 
• Convergence under mesh refinement is observed at the expected order of accuracy 

The time accuracy characteristics of the Lagrange-plus-remap 
ALE method have been investigated 
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We are investigating unsplit flux-conservative ALE methods due 
to several benefits over Lagrange-plus-remap methods 
• Temporal errors due to operator splitting are eliminated 

• Single high-order time integrator for all terms in the right-hand-side 
• Computational cost is reduced  

• One pass over the mesh versus two 
• Consistent spatial discretization for all terms in the right-hand-side 

• Everything converges at the same rate 
• The discrete system is exactly conservative by construction 

• Lax-Wendroff theorem: If the solution converges, then it will converge to a proper 
weak solution of the conservation law 

• Approximate Riemann solvers are readily incorporated 
• Eliminates need for artificial viscosity treatments 

 
This talk focuses on time accuracy issues associated with operator splitting 
and the application of unsplit ALE methods to 3D shock hydrodynamics.  



4 LA-UR-13-26731 

Operator splitting errors and concepts can be illustrated with a 
simple ODE 
• Linear, first-order ODE: 

 
Exact solution: 
 

• Lie splitting (“A then B”): solve                followed by                  
 
Exact solution: 
 
Splitting error:  
 

• General nonlinear case:                                     follows from Baker-Campbell-
Hausdorff formula 

𝑑𝑑
𝑑𝑑

= 𝐴𝐴 + 𝐵𝐵 

𝑦 𝑡 = 𝑒 𝐴+𝐵 𝑡 

𝑦 𝑡 = 𝑒𝐴𝑡𝑒𝐵𝐵 

𝑑𝑑
𝑑𝑑

= 𝐴𝐴 
𝑑𝑑
𝑑𝑑

= 𝐵𝐵 

𝑑𝑑
𝑑𝑑

= 𝑓 𝑦 + 𝑔 𝑦 + ⋯ 

𝜖 = 𝑒 𝐴+𝐵 𝑡 − 𝑒𝐴𝑡𝑒𝐵𝐵 =
𝑡2

2
𝐵,𝐴 +

𝑡3

12
𝐵, 𝐵,𝐴 − 𝐴, 𝐴,𝐵 + 𝑂 𝑡4  

Lie splitting is 1st-order accurate even if A and B can be integrated exactly! 
(Unless A and B commute, but that is not a very interesting problem) 
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Strang’s method has been widely used to achieve a 2nd-order 
accurate operator split 
• Strang splitting:  

• Solve                  over [0,t/2] 
 

• Solve                  over  [0,t] 
 

• Solve                  over [t/2,t] 
 
Exact solution: 
 
Splitting error: 

𝑑𝑑
𝑑𝑑

= 𝐴𝐴 

𝑑𝑑
𝑑𝑑

= 𝐵𝐵 

𝑑𝑑
𝑑𝑑

= 𝐴𝐴 

𝑦 𝑡 = 𝑒𝐴𝑡/2𝑒𝐵𝐵𝑒𝐴𝐴/2 

𝜖 = 𝑒 𝐴+𝐵 𝑡 − 𝑒𝐴𝐴/2𝑒𝐵𝐵𝑒𝐴𝐴/2 = 𝑡3
1

12
𝐵, 𝐵,𝐴 −

1
24

𝐴, 𝐴,𝐵 + 𝑂 𝑡4  

Strang splitting is 2nd-order accurate but requires more computational work since A 
(or B) must be evaluated twice per time step. 
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These errors are trivially demonstrated numerically 

• Example ODE: 
 

• Integrate with three methods: 
• Lie splitting + RK4 on each operator 
• Strang splitting + RK4 on each operator 
• Unsplit RK4 

• Measure self-convergence relative to  
unsplit, small-Δt result 

• Average convergence rates are exactly 
as expected: 
• Lie: 1.05 
• Strang: 2.0 
• Unsplit: 4.1 

𝑑𝑑
𝑑𝑑

= −𝑦3 − 2𝑡𝑦2 



7 UNCLASSIFIED 20130005DR 7 LA-UR-13-26731 

The potential for operator splitting in hydrodynamics can be 
seen in the ALE form of the equations 

• “Eulerian-ALE” equations: transform 
Eulerian equations to mesh frame 
 

• “Lagrangian-ALE” equations: transform 
Lagrangian equations to mesh frame 
 𝜕

𝜕𝜕

𝜌
𝜌𝑢𝑖
𝜌𝜌

+
𝜕
𝜕𝑥𝑗

𝜌𝑢𝑗
𝜌𝑢𝑖𝑢𝑗 + 𝑝
𝜌𝜌𝑢𝑗 +𝑝𝑢𝑗

= 0 

 
 

𝜕
𝜕𝜕 𝑤

=
𝜕
𝜕𝜕

+ 𝑤𝑗
𝜕
𝜕𝑥𝑗

 

 
 

1
𝑉
𝜕
𝜕𝜕

𝑉
𝜌
𝜌𝑢𝑖
𝜌𝜌 𝑤

+
𝜕
𝜕𝑥𝑗

𝜌 𝑢𝑗 − 𝑤𝑗
𝜌𝑢𝑖 𝑢𝑗 − 𝑤𝑗 + 𝑝
𝜌𝜌 𝑢𝑗 − 𝑤𝑗 +𝑝𝑢𝑗

= 0 

𝐷𝐷
𝐷𝐷

= 0, 𝜌
𝐷𝑢𝑖
𝐷𝐷

= −
𝜕𝑝
𝜕𝑥𝑖

, 𝜌
𝐷𝑒
𝐷𝐷

= −𝑝
𝜕𝑢𝑖
𝜕𝑥𝑖

 

 
 
𝜕
𝜕𝜕 𝑤

=
𝐷
𝐷𝑡

− 𝑢𝑗 − 𝑤𝑗
𝜕
𝜕𝑥𝑗

 

 
 

𝜕𝑚
𝜕𝜕 𝑤

− 𝑢𝑗 − 𝑤𝑗
𝜕𝑚
𝜕𝑥𝑗

= 0 

𝜌
𝜕𝑢𝑖
𝜕𝜕 𝑤

+
𝜕𝜕
𝜕𝑥𝑖

− 𝜌 𝑢𝑗 − 𝑤𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 0 

𝜌
𝜕𝑒
𝜕𝜕 𝑤

+ 𝑝
𝜕𝑢𝑖
𝜕𝑥𝑖

− 𝜌 𝑢𝑗 − 𝑤𝑗
𝜕𝑒
𝜕𝑥𝑗

= 0 

Relation between lab 
frame and co-moving 
mesh frame 

Relation between fluid 
frame and co-moving 
mesh frame 

We will show that the Lagrange-plus-remap method is 
an operator split solution of the Lagrange-ALE equations.  
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• Typical Lagrange step: n to * 
1. Coordinate half-step 

 
 

2. Pressure and forces 
 
 
 
 

3. Velocity, energy, and coordinate update 

• Typical remap step: * to n+1 
1. Calculate relaxation displacements and 

flux volumes 
 
 
 

2. Mass, momentum, energy, and 
coordinate updates 

The solution at a zone (or control volume) is modified by both 
Lagrange and remap steps over the course of a time step 

𝑥𝑖𝑛+1/2 = 𝑥𝑖𝑛 +
1
2
∆𝑡𝑡𝑖𝑛  

 

𝑝𝑛+1/2 = 𝑓 𝑝𝑛, 𝑥𝑖𝑛+1/2  

𝐹𝑖𝑛+1/2 = −� 𝑝𝑛+1/2𝑑𝐴𝑖
𝐴

 

 

 𝑢𝑖∗ = 𝑢𝑖𝑛 +
∆𝑡
𝑚𝑛 𝐹𝑖

𝑛+1/2 

𝑒∗ = 𝑒𝑛 +
∆𝑡

2𝑚𝑛 𝐹𝑖
𝑛+1/2 𝑢𝑖∗ + 𝑢𝑖𝑛  

𝑥𝑖∗ = 𝑥𝑖𝑛 +
1
2
∆𝑡 𝑢𝑖∗ + 𝑢𝑖𝑛  

 

𝛿𝑥𝑖
∗ = 𝑓 𝑥𝑖∗  

 
𝛿𝑉∗ = 𝑓 𝛿𝑥𝑖

∗  
 

𝑚𝑛+1 = 𝑚∗ + �𝜌∗
𝑓

𝛿𝑉∗ 

𝑢𝑖𝑛+1 = 𝑢𝑖∗ +
1

𝑚𝑛+1� 𝜌𝑢𝑖 ∗

𝑓

𝛿𝑉∗ 

𝑒𝑛+1 = 𝑒∗ +
1

𝑚𝑛+1� 𝜌𝑒 ∗

𝑓

𝛿𝑉∗ 

𝑥𝑖𝑛+1 = 𝑥𝑖∗ + 𝛿𝛿𝑖
∗ 

 
Although details and notation may vary, those variations don’t change 
the fact that both procedures modify the solution at each time step.  
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• Mass, momentum, energy, and coordinate updates (after a bit of manipulation 
and dividing both sides by Δt): 
 
 
 
 
 
 
 
 
and recall that for face f,  
 
 
 
 
 
 
 

𝜕𝑚
𝜕𝜕 𝑤

− 𝑢𝑗 − 𝑤𝑗
𝜕𝑚
𝜕𝑥𝑗

= 0 

 

𝜌
𝜕𝑢𝑖
𝜕𝜕 𝑤

+
𝜕𝜕
𝜕𝑥𝑖

− 𝜌 𝑢𝑗 − 𝑤𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 0 

 

𝜌
𝜕𝑒
𝜕𝜕 𝑤

+ 𝑝
𝜕𝑢𝑖
𝜕𝑥𝑖

− 𝜌 𝑢𝑗 − 𝑤𝑗
𝜕𝑒
𝜕𝑥𝑗

= 0 

𝑚𝑛+1 − 𝑚𝑛

∆𝑡
−

1
∆𝑡
�𝜌∗
𝑓

𝛿𝑉∗ = 0 

 
𝑢𝑖𝑛+1 − 𝑢𝑖𝑛

∆𝑡
−
𝐹𝑖𝑛+1/2

𝑚𝑛 −
1

∆𝑡𝑚𝑛+1� 𝜌𝑢𝑖 ∗

𝑓

𝛿𝑉∗ = 0 

 
𝑒𝑛+1 − 𝑒𝑛

∆𝑡
−
𝐹𝑖𝑛+1/2

2𝑚𝑛 𝑢𝑖∗ + 𝑢𝑖𝑛 −
1

∆𝑡𝑚𝑛+1� 𝜌𝑒 ∗

𝑓

𝛿𝑉∗ = 0 

The terms can be combined to give the full expression for a 
single time step 

An operator splitting error results from the use of post-Lagrange values in 
the remap step and will be O(Δt) accurate unless Strang splitting is used 

𝛿𝛿 = ∆𝑡 𝑢𝑗 − 𝑤𝑗 𝐴𝑗  
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The remap step in this form is easily shown to be 1st-order 
accurate in time 
• Begin with the Lagrange-ALE mass equation and integrate over a control 

volume (which gives an equation for zone z): 
 

 
 

• Discretizing the time derivative with forward Euler and combining terms gives 
 
 
 
which is exactly the remap step but with * replaced by n. The analysis is easily 
repeated for the remaining equations. 

�
1
𝑉
𝜕𝜕
𝜕𝜕 𝑤

𝑑𝑑 =
𝜕𝑚𝑧

𝜕𝜕 𝑤
 

�
1
𝑉

𝑢𝑗 − 𝑤𝑗
𝜕𝜕
𝜕𝑥𝑗

𝑑𝑑 =�
1
𝑉

𝑢𝑗 − 𝑤𝑗 𝑚𝑚𝐴𝑗 =�𝜌
𝑓

𝑢𝑗 − 𝑤𝑗 𝐴𝑗 

𝑚𝑛+1 − 𝑚𝑛

∆𝑡
= � 𝜌 𝑢𝑗 − 𝑤𝑗 𝐴𝑗

𝑛

𝑓

=
1
∆𝑡
� 𝜌𝜌𝑉 𝑛

𝑓

 

The standard remap procedure is equivalent to a forward Euler method and will 
be O(Δt) accurate unless a higher accuracy time integration method is used.   
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What about the discontinuous remap (i.e. mesh-mesh 
intersection) method? 
• Obviously the analysis is more complicated since a given zone may not exist 

from one time step to the next 
• However, the intersection process still 

computes δV for a set of fluid elements  
from one time step to the next  
(we’ve just allowed for the possibility that the  
initial or final volume of a zone can be zero) 

 
 

• Our hypothesis, therefore, is that the discontinuous remap method will also 
show 1st-order accuracy in time 

Note that if the remap step did not affect time accuracy, we would not 
expect the use of a remap step to affect temporal convergence rates! 
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Numerical experiments were performed to test our hypotheses 

• Experiment: measure self-convergence with decreasing time step relative to a 
fine time step result on a fixed spatial mesh 

• 1D Test problems (see JCP article for definitions): 
• Smooth flow problem (Kenamond & McAbee) 
• Shock Tube 

• Methods: 
• Pure Lagrange with 1st or 2nd order Runge-Kutta (RK) integration 
• Lagrange plus remap with Lie or Strang splitting and RK1 or RK2 for remap terms 
• Unsplit method with RK2 
• Discontinuous remap method (DRM) 
• Test both donor cell (1st order) and piecewise linear (2nd order) advection schemes 
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While it is true that Δx and Δt are related in hyperbolic 
problems, reality is not that simple 
• The Courant condition is a stability constraint, not an accuracy constraint 

• A given set of stable methods will not necessarily have the same accuracy  
• Many codes must run at a Courant number well below 1.0 

• Increasing time accuracy often allows the Courant number to be increased 
• The Courant condition is not always the limiting factor 

• We have observed mesh tangling at sub-Courant time steps that does not occur if 
the time step is decreased or time accuracy is increased 

• In highly nonlinear problems, small errors compound 
• For example, in a burning DT plasma, the reaction rate scales as 𝜌2𝑇4 

• Varying Δt at fixed Δx is actually how most production codes are run 
• Users pick a resolution they can afford and vary the time step controls as needed 

Temporal convergence studies at fixed mesh size allow time 
accuracy to be quantified in isolation from spatial operators. 
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Results for the smooth flow problem are consistent with our 
hypotheses 
• Methods and average convergence rate: 

1. RK2 Lagrange: 2.0 
2. RK2 Lagrange + Lie/RK1 remap: 1.2 
3. RK2 Lagrange + Strang/RK1 remap: 1.5 
4. RK2 Lagrange + Strang/RK2 remap: 1.7 
5. Unsplit RK2: 2.0 
6. RK2 Lagrange + DRM: 0.92 

• ALE methods undo half the Lagrange  
displacement at each time step 

• The DRM used a piecewise linear  
reconstruction (PLR); all other advection  
schemes used donor cell (DC) 

Although the use of Strang splitting and an RK2 remap improves accuracy, only the 
unsplit method matches the 2nd-order convergence of the RK2 Lagrange method. 

m = 1 

m = 2 
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Results for the shock tube problem are consistent with our 
hypotheses (using a point in the nonlinear expansion fan) 
• Methods and average slope: 

1. RK1 Lagrange: 1.02 
2. RK2 Lagrange: 2.0 
3. RK2 Lagrange + Lie/RK1 remap (DC): 1.05 
4. RK2 Lagrange + Lie/RK1 remap (PLR): 1.06 
5. RK2 Unsplit (DC): 2.08 
6. RK2 Unsplit (PLR): 2.09 

• Methods 3 & 4, and 5 & 6, use identical time 
integration but different advection schemes 
 

Only the unsplit method matches the 2nd order convergence of the RK2 Lagrange 
method. The advection scheme does not change the convergence rate. 

m = 1 

m = 2 
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• CHICOMA solves the flux-conservative ALE equations on tetrahedral meshes 
with AMR 
 

 
 
• Spatial scheme: Edge-based FE scheme for linear tetrahedra (node-centered) 
• Time integration: Explicit multi-stage RK scheme with unsplit mesh motion 
• The choice of flux and mesh velocity determine the method 

• Eulerian: wj = 0, Rusanov or HLLC flux, parabolic MUSCL reconstruction 
• Lagrangian: wj = uj, Morgan-Waltz-Burton “flux”, optional TTS-like model 
• ALE mode: Eulerian or Lagrangian solver + mesh velocity option 

 
 

Based (in part) on these studies we have implemented unsplit 
ALE in our 3D unstructured mesh code CHICOMA 

1
𝑉
𝜕
𝜕𝜕

𝑉
𝜌
𝜌𝑢𝑖
𝜌𝜌 𝑤

+
𝜕
𝜕𝑥𝑗

𝜌 𝑢𝑗 − 𝑤𝑗
𝜌𝑢𝑖 𝑢𝑗 − 𝑤𝑗 + 𝑝
𝜌𝜌 𝑢𝑗 − 𝑤𝑗 +𝑝𝑝𝑗

=
𝑆𝜌
𝑆𝑢,𝑖
𝑆𝐸

 𝐸 = 𝑒 +
1
2
𝑢𝑖𝑢𝑖 

This approach provides a consistent numerical framework for Eulerian, 
Lagrangian, and ALE algorithms in the same code, with AMR. 



17 LA-UR-13-26731 

The mesh velocity is initially set to the fluid velocity, and then 
smoothed to mitigate tangling 
• The linear system                       

 
 
is solved to some specified tolerance  

• The diffusion coefficient at each node is given by 
 
 
 
where c1 and c2 are input parameters. 

• This form allows regions of high vorticity to be treated more Eulerian-like, and 
regions of low vorticity to be treated more Lagrangian-like 

𝑘𝛻2𝑤𝑖 = 0 

𝜖𝑤 

𝑘 = 𝑐1𝑚𝑚𝑚 0,1 − 𝑐2
𝜔𝑖

𝜔𝑖 ∞
 

This scheme allows the mesh to follow the flow in a robust manner. Mesh 
motion will occur only where the fluid velocity is nonzero! 
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Our method satisfies the Geometric Conservation Law to 
truncation error  
• Geometric conservation law: 
• Test problem: 

• Uniform density field on shock tube mesh with 
mesh velocity given by 

 
 

• Evolve for 20 time units and measure error 
relative to exact uniform solution 

1
𝑉
𝜕𝜕
𝜕𝜕

=
𝜕𝑤𝑖
𝜕𝑥𝑖

 

𝑤𝑧 = 𝑠𝑠𝑠2
𝜋𝜋

100
 

Mesh Points Tets Ave. dx 

0 7294 34181 0.840 

1 51794 273448 0.414 

2 389139 2187584 0.206 

3 2014277 17500672 0.103 

Convergence rate = 2.3 
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The method exhibits 1st-order spatial accuracy on a shock tube 
problem 
• Order of magnitude pressure/density ratio across interface 
• Same set of meshes used for GCL problem 
• Error measured along centerline of 3D mesh 

Convergence rate = 0.8 

𝑐1 = 1.0, 𝑐2= 0, 𝜖𝑤= 0.5 
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The method exhibits 1st-order spatial accuracy on the Sedov 
problem 
• Standard Sedov definition 
• Error measured along x-axis 
• Total energy is conserved exactly 

Mesh Points Tets Ave. dx 

0 7294 34181 0.840 

1 51794 273448 0.414 

2 389139 2187584 0.206 

Convergence rate = 1.0 

𝑐1 = 0.5, 𝑐2= 0, 𝜖𝑤= 0.25 
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ALE increases peak density by 10% over a direct Eulerian 
solution on the finest mesh 
• Higher density results from smaller mesh size near shock 
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The method exhibits 2nd-order spatial accuracy on the Taylor-
Green problem 
• Run as steady state problem with 

source term 
• Two zones thick in z-direction on  

coarsest mesh 

Mesh Points Tets Ave. dx 

0 24530 75912 0.011 

1 148378 607296 0.0055 

2 997679 4858368 0.0028 

Convergence rate = 1.9 

𝑐1 = 0.5, 𝑐2= 0.5, 𝜖𝑤= 0.2 
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The mesh motion algorithm is robust on a single-material 
variant of the triple point problem 
• Mesh of 2 x 106 tetrahedra 

𝑐1 = 0.25, 𝑐2= 0.5,  𝜖𝑤= 0.2 
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• The standard Lagrange-plus-remap method is shown, both analytically and 
numerically, to be 1st-order accurate in time 
• Errors result from operator splitting and low-order time integration of remap terms 
• Errors exist even if the underlying Lagrange step is 2nd-order accurate in time 

 
• A 2nd-order accurate (in time) ALE method can be achieved with an unsplit 

treatment of the remap terms 
• Improvements to the Lagrange-plus-remap method also are possible 

 
• Application of unsplit ALE to 3D shock hydrodynamics is demonstrated on 

unstructured meshes of up to 107 tetrahedra 
• The method satisfies the Geometric Conservation Law to truncation error 
• Convergence under mesh refinement is observed at the expected order of accuracy 

The time accuracy characteristics of the Lagrange-plus-remap 
ALE method have been investigated 
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