# Programming for Modern Architectures in the CHICOMA Hydrocode

Multimat 2013

# JG Wohlbier<sup>a</sup>, LD Risinger<sup>a</sup>, TR Canfield<sup>b</sup>, MR Charest<sup>c</sup>, NR Morgan<sup>c</sup>, JI Waltz<sup>c</sup>

# Los Alamos National Laboratory

<sup>a</sup> Computer, Computational, and Statistical Sciences Division

<sup>b</sup> Theoretical Division

<sup>c</sup> X-Computational Physics Division



UNCLASSIFIED

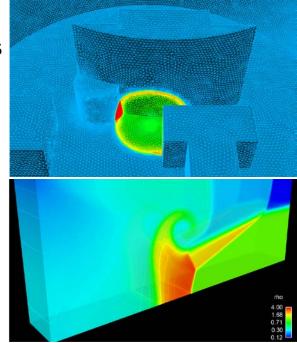
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



### Outline

- CHICOMA overview
- Hardware considerations
- Programming models
- Algorithms
- Results
- Conclusions




UNCLASSIFIED





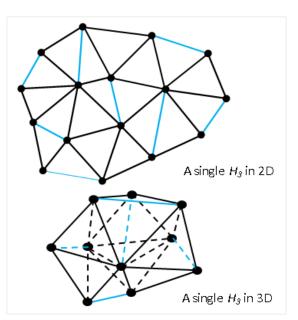
# CHICOMA, a 3D unstructured mesh code

- CHICOMA supports Eulerian, Lagrangian, and ALE hydro on unstructured tetrahedral meshes with AMR
  - The Eulerian-AMR algorithm is substantially verified
  - The Lagrangian algorithm is tentatively verified
  - ALE + multi-materials are in progress
- Multiple strategies for advanced architectures are under investigation
  - Graph theoretic optimization
  - High-order methods
  - Heterogeneous work sharing models



Our goal is to produce innovative, high-performance 3D multi-physics software applicable to a range of scientific problems.




UNCLASSIFIED



# **CHICOMA**

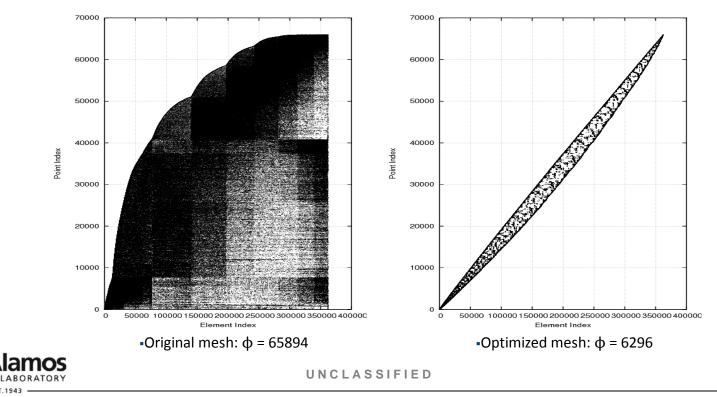
- CHICOMA has been designed for high performance on homogeneous multi-core architectures
  - OpenMP + compiler vectorization
  - Edge coloring to avoid write contention on threaded edge loops with point updates
  - Wavefront application to improve data locality

| Resolution<br>(µm) | OpenMP<br>Threads | Tetrahedra | Runtime<br>(min) | Cycles | Grind Time<br>(µs/element/cycle) |
|--------------------|-------------------|------------|------------------|--------|----------------------------------|
| 240                | 4                 | 362363     | 1.5              | 464    | 2.14                             |
| 120                | 8                 | 2898904    | 19               | 1294   | 2.43                             |
| 60                 | 12                | 23191232   | 404              | 3998   | 3.14                             |





UNCLASSIFIED




Slide 4



# **CHICOMA**

- Net effect of renumbering with wavefront reduces "bandwidth" by O(100) and smooths memory access patterns
- Example: Point-element connectivity for a Sedov mesh with 363k tetrahedra





### **Hardware Considerations**

#### Three chips of interest

- "Traditional" : Intel Xeon E5-2650
- "Future" : Nvidia C2075 GPU
- "Future" : Intel MIC, Xeon Phi 5110p

| Processor                    | Cores /<br>threads | SIMD<br>width<br>(bits) | GF/s<br>(double) | GF/s<br>(single) | Memory<br>Bandwidth<br>(GB/s) | Thermal<br>Design<br>Power (W) | Cost (\$) |
|------------------------------|--------------------|-------------------------|------------------|------------------|-------------------------------|--------------------------------|-----------|
| Xeon<br>E5-2650              | 8/16               | 256                     | 128              | 256              | 51                            | 95                             | 1100      |
| Nvidia<br>Processor<br>C2075 | 448                | NA                      | 515              | 1030             | 144                           | 225                            | 1800      |
| Xeon Phi<br>5110p            | 60/240             | 512                     | 1011             | 2022             | 320                           | 225                            | 2600      |



UNCLASSIFIED

Slide 6



### **Hardware Considerations**

#### • Why do we care?

- HPC Industry trend is increased Flops/Watt
- Cannot make an exascale machine by bolting together Xeons

| Processor                    | GF/s<br>(double) | Thermal<br>Design<br>Power (W) | Cost (\$) | Flops/Watt<br>(GF/W) | Flops/Cost<br>(GF/\$) | CHICOMA<br>wall time<br>(s) | Kernel<br>wall<br>time (s) |
|------------------------------|------------------|--------------------------------|-----------|----------------------|-----------------------|-----------------------------|----------------------------|
| Xeon<br>E5-2650              | 128              | 95                             | 1100      | 1.4                  | 0.12                  |                             |                            |
| Nvidia<br>Processor<br>C2075 | 515              | 225                            | 1800      | 2.3                  | 0.29                  |                             |                            |
| Xeon Phi<br>5110p            | 1011             | 225                            | 2600      | 4.5                  | 0.39                  |                             |                            |



UNCLASSIFIED

EST.1943



Slide 7

# **Programming models**

- We are using multiple programming models
  - OpenMP with compiler vectorization (CPU + MIC)
  - CUDA (Nvidia GPU)
  - OpenCL (CPU's, GPU's, MIC, FPGA's)
- CHICOMA was developed primarily with OpenMP + compiler vectorization
  - Many of the algorithms work very well, e.g., color groups, multi-level OpenMP parallelism
- GPU computing on unstructured meshes is challenging
  - GPU's are often "all or none"
  - Increased thread level parallelism does not necessarily map nicely onto data structures that work well for OpenMP + vectorization

### Language portability

- CUDA for Nvidia GPU's only
- OpenCL promises hardware portability but is very low level
  - SDK's for CPU's and MIC do not support 64 bit atomics



UNCLASSIFIED



# **Algorithms Studied**

### Gradient

- Loop over edges, gather/scatter to points
- Very few flops per memory access

### Muscl solver

- Edge loop getting gradients from points and storing in edge array
- More flops per memory access, but still not huge

#### Riemann solver

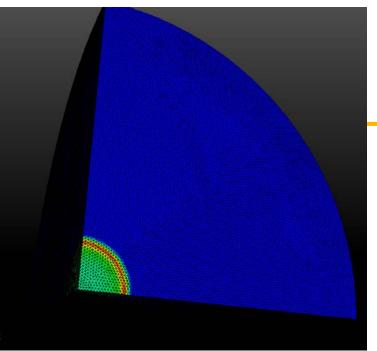
• Edge loop on muscl unknowns scattered back to points

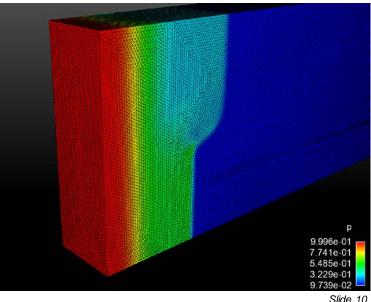


UNCLASSIFIED

Slide 9




### Results


#### Sedov : 100 cycles on mesh with

- Npoint = 505,724
- Nelement = 2,898,904
- Nboundary = 45,786
- Nedge = 3,450,411
- Nface = 5,843,592

#### Triple Point : 100 cycles on mesh with

- Npoint = 347,811
- Nelement = 1,960,914
- Nboundary = 45,073
- Nedge = 2,353,795
- Nface = 3,966,899







UNCLASSIFIED

NNSX

### Results: Xeon E5-2650

- "Large edge color groups" used to avoid write contention on points
- "Small color group option" (not shown) gets 7-8x scaling, but not thread safe for small number of zones per thread
  - Changed to large color groups for thread safety on Intel MIC •
- Large color groups to be replaced by point based method which will recover 7-8x scaling

| S                | edov 2.9M eleme          |                         | Tripl   | e Point 1.9M ele | ments                    |                         |
|------------------|--------------------------|-------------------------|---------|------------------|--------------------------|-------------------------|
| Threads          | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |         | Threads          | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |
| 1                | 520                      | 426                     |         | 1                | 367                      | 252                     |
| 8                | 111                      | 83                      |         | 8                | 87                       | 49                      |
|                  | 4.7x                     | 5.1x                    |         |                  | 4.2x                     | 5.1x                    |
| IONAL LABORATORY |                          | UNCLA                   | SSIFIED |                  |                          | Slide 11                |





### **Results: Nvidia C2075**

- Started with data layout coming from edge coloring and used atomic operations to handle write contention
- GPU kernels invert loop such that unknowns updated for large groups of edges rather than updating all unknowns per edge
- Discovered access to global memory was VERY slow
  - Host side data layout was all unknowns per edge (column major) rather than all edges per unknown (row major)
  - Indirect addressing into points had far from ideal data locality
- Skipped coloring algorithm on the host to get ideal data locality for points
  - Branching due to atomic operations became unbearable due to good locality
  - "Whack a mole"
- Switched to point based algorithm with host memory layout to maximize global memory access
  - Results in branch divergence on variable numbers of edges per point
  - Best performance so far



UNCLASSIFIED





# **Results: Nvidia C2075**

#### With the changes above the speed improved substantially

- Sedov before: 289s
- Sedov after: 187s

#### Not reporting OpenCL numbers

- OpenCL implementation does not have optimizations done in CUDA
- ... and is presently broken

| Befo    | Before: Sedov 2.9M elements |                         |          | Before:  | Triple Point 1.9         | M elements              |
|---------|-----------------------------|-------------------------|----------|----------|--------------------------|-------------------------|
| Threads | CHICOMA<br>wall time (s)    | Kernel wall<br>time (s) |          | Threads  | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |
| 1       | 289                         | 204                     |          | 1        | 271                      | 137                     |
| Afte    | After: Sedov 2.9M elements  |                         |          | After: T | riple Point 1.9N         | l elements              |
| Threads | CHICOMA<br>wall time (s)    | Kernel wall<br>time (s) |          | Threads  | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |
| 1       | 187                         | 109                     |          | 1        | 207                      | 76                      |
|         |                             | UNCL                    | ASSIFIED | )        |                          |                         |



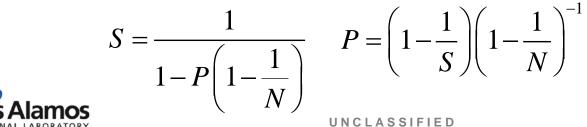
# **Results: Xeon Phi 5110p**

- Run in "native" mode
  - Other modes available: "offload mode," OpenCL
- OpenMP implementation for native mode "just works" via cross compile
  - If you have a well optimized OpenMP code the MIC won't be a complete disaster

ASSIFIED

| See                                            | Sedov 2.9M elements      |                         |  |  |  |  |  |  |  |  |
|------------------------------------------------|--------------------------|-------------------------|--|--|--|--|--|--|--|--|
| Threads /<br>threads per<br>core               | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |  |  |  |  |  |  |  |  |
| 30                                             |                          |                         |  |  |  |  |  |  |  |  |
| 60/1                                           |                          | 1 and 1                 |  |  |  |  |  |  |  |  |
| 120/2                                          |                          |                         |  |  |  |  |  |  |  |  |
| 240/4                                          | NOUL                     |                         |  |  |  |  |  |  |  |  |
| LOS Alamos<br>NATIONAL LABORATORY<br>EST. 1943 |                          | UNCL                    |  |  |  |  |  |  |  |  |

| Triple Point 1.9M elements       |                          |                         |  |  |  |  |  |  |  |
|----------------------------------|--------------------------|-------------------------|--|--|--|--|--|--|--|
| Threads /<br>threads per<br>core | CHICOMA<br>wall time (s) | Kernel wall<br>time (s) |  |  |  |  |  |  |  |
| 30                               | 409                      | 222                     |  |  |  |  |  |  |  |
| 60/1                             | 308                      | 145                     |  |  |  |  |  |  |  |
| 120/2                            | 325                      | 131                     |  |  |  |  |  |  |  |
| 240/4                            | 481                      | 208                     |  |  |  |  |  |  |  |


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



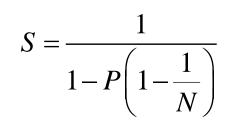
# **Results: Xeon Phi 5110p**

| Have not done detailed analysis for MIC      |                                         |  |  |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| Estimate parallel fraction from Amdahl's lav |                                         |  |  |  |  |  |  |  |
| •                                            | CHICOMA ~ 93%                           |  |  |  |  |  |  |  |
| •                                            | Extrapolate to $N = 240$ for $P = 0.93$ |  |  |  |  |  |  |  |
|                                              | – S ~ 13.5                              |  |  |  |  |  |  |  |
| •                                            | Increasing P is essential               |  |  |  |  |  |  |  |

- If P = 0.99 and can scale on MIC, S  $\sim$  71
- Amdahl's Law
  - S = speed up٠
  - P = parallel fraction •
  - N = number of parallel units •

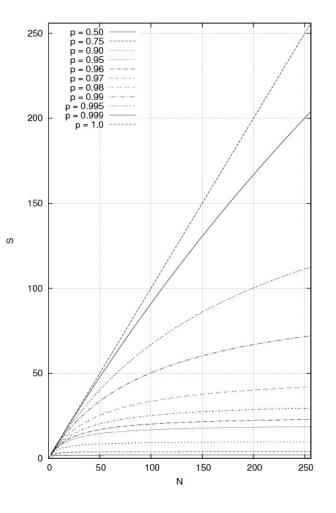


| ABORATORY | T | 1 | N) | UNCLASSIF |
|-----------|---|---|----|-----------|
|           |   |   |    |           |


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

| N   | time<br>(s) | S    | P <sub>est</sub><br>(%) |
|-----|-------------|------|-------------------------|
| 1   | 857         | 1    | NA                      |
| 2   | 459         | 1.87 | 92.9                    |
| 4   | 267         | 3.21 | 91.8                    |
| 8   | 161         | 5.32 | 92.8                    |
| 16  | 106         | 8.08 | 93.5                    |
| 32  | 76          | 11.3 | 94.1                    |
| 60  | 68          | 12.6 | 93.6                    |
| 120 | 69          | 12.4 | 92.7                    |




# **Results: Xeon Phi 5110p**

- Previously saw for OpenMP on "traditional" chips
  - P ~ 0.98
- Increasing P is essential once past N = O(10)
- Change to point based loops from edges with coloring may increase P due to fewer OpenMP barriers





UNCLASSIFIED





# **Results**

- We have work to do for "future architectures"
- Wall time increases with Flops/Watt
  - Want opposite trend!

|                                               | Sedov 2.9M elements |                                |           |                      |                       |                             |                            |  |  |  |  |
|-----------------------------------------------|---------------------|--------------------------------|-----------|----------------------|-----------------------|-----------------------------|----------------------------|--|--|--|--|
| Processor                                     | GF/s<br>(double)    | Thermal<br>Design<br>Power (W) | Cost (\$) | Flops/Watt<br>(GF/W) | Flops/Cost<br>(GF/\$) | CHICOMA<br>wall time<br>(s) | Kernel<br>wall<br>time (s) |  |  |  |  |
| Xeon<br>E5-2650 (8<br>cores)                  | 128                 | 95                             | 1100      | 1.4                  | 0.12                  | 111                         | 83                         |  |  |  |  |
| Nvidia<br>Processor<br>C2075 (1<br>host core) | 515                 | 225                            | 1800      | 2.3                  | 0.29                  | 187                         | 109                        |  |  |  |  |
| Intel MIC<br>pre-<br>production               | 1011                | 225                            | 2600      | 4.5                  | 0.39                  | NDA                         | NDA                        |  |  |  |  |
| LOS AIAMOS<br>NATIONAL LABORATORY             |                     |                                | UNCLAS    | SIFIED               |                       |                             | Slide 17                   |  |  |  |  |



# **Results**

- We have work to do for "future architectures"
- Wall time increases with Flops/Watt
  - Want opposite trend! •

|                                               | Triple Point 1.9M elements |                                |           |                      |                       |                             |                            |  |  |  |  |
|-----------------------------------------------|----------------------------|--------------------------------|-----------|----------------------|-----------------------|-----------------------------|----------------------------|--|--|--|--|
| Processor                                     | GF/s<br>(double)           | Thermal<br>Design<br>Power (W) | Cost (\$) | Flops/Watt<br>(GF/W) | Flops/Cost<br>(GF/\$) | CHICOMA<br>wall time<br>(s) | Kernel<br>wall<br>time (s) |  |  |  |  |
| Xeon<br>E5-2650 (8<br>cores)                  | 128                        | 95                             | 1100      | 1.4                  | 0.12                  | 87                          | 49                         |  |  |  |  |
| Nvidia<br>Processor<br>C2075 (1<br>host core) | 515                        | 225                            | 1800      | 2.3                  | 0.29                  | 207                         | 76                         |  |  |  |  |
| Xeon Phi<br>5110p (60<br>∠ cores)             | 1011                       | 225                            | 2600      | 4.5                  | 0.39                  | 308                         | 145                        |  |  |  |  |
| LOS Alamos                                    |                            |                                | UNCLAS    | SIFIED               |                       |                             | Slide 18                   |  |  |  |  |

EST.1943



# Conclusions

- CHICOMA performs well on current hardware due to built-in design for OpenMP threads
  - Edge coloring to avoid point write contention
- Hardware is trending toward higher Flops/Watt via more on chip parallelism
  - GPU O(10,000) parallel threads
  - MIC O(1,000) parallelism via O(100) threads X O(10) SIMD vector widths
- The status quo will not be viable in the future
- GPU implementations in CHICOMA progressing
- Intel MIC
  - Nice because it works "out of the box" with OpenMP + vectorization model, and "only slows code down by a factor of 3.5x"
  - Further study required to determine performance bottlenecks
  - Will be studying ways to increase parallel fraction



UNCLASSIFIED



