ACM History Panel

153

Cray XMP48 and the Cray-2 and supporting the Bellcore parallel machine.
We’re very happy to have Harry Reed with us today.

Harry Reed:

I sort of thought the title for my talk should be something like
“My Life with the ENIAC: A Worm’s Eye View.” I came to
BRL in August of 1950, and I guess the first thing I learned
was about bureaucracy. I showed up at Personnel, and they
informed me that, “By golly, we don’t have any form so-
and-so available.” They said, “Not to worry. Come back after lunch. Go and
visit the Ordnance Museum. Everything is all right. You’re being paid, so you
don’t have to worry about it.” By the end of the day, I finally met Barkley, and
as he pointed out, he said, “Welcome aboard,” and I was a little taken aback,
because I thought this was an Army installation, but apparently it wasn’t.

I wanted to say a few words about how computing was at that time and how,
to a certain extent, that would shape the nature of the ENIAC. Indeed, some
of the traditions that came about during this period we tended to live with
quite a while.

To understand ENIAC, of course, for those of you who don’t know too much
about it, think about it as a processor chip with 20 register positions. That
was it. That was the RAM that you had available to you, and about half

of those register positions were involved intimately in the various arithmetic
operations and not available for general storage. You had the function tables,
which contained 3000 decade (10-position) switches, that could be set ahead
of time (like a read-only memory). And of course, you had cards for input and
output, which were used for intermediate storage.

The ENIAC itself, strangely, was a very personal computer. Now we think of

a personal computer as one which you carry around with you. The ENIAC
was actually one that you kind of lived inside. And as Barkley pointed out, you
could wander around inside it and watch the program being executed on lights,
and you could see where the bullet was going—you could see if it happened to
go below ground or went off into space or the wrong direction. So instead of
your holding a computer, this computer held you.

Given its somewhat fragile nature, there was a sort of intimate contact with

it. Probably one of the biggest problems we had was the IBM cards. The

only rooms at BRL that were air-conditioned were those that were used for

the handling and storage of IBM cards. Nothing else got air-conditioning,

but those rooms did, because the IBM cards had a nasty habit of soaking up
moisture, and the readers and printers that we had in those days were extremely
intolerant of changes in the size of the cards.

Interestingly enough, about 50 years later, I find that some of our computer
rooms have more problems associated with air-conditioning than they do with
things associated with electronics.

Given the limited storage—extremely limited storage—on the ENIAC, things
like the use of subroutines were just out of the question. There was no way
that you could have a prewritten subroutine—that you could plop in—because
you had nothing in the way of free space that you could use for local variables
and/or stacks and/or things like that. So you might have a routine that you

154 Fifty Years of Army Computing

would embed in your program, making sure that it didn’t interfere with other
storage. In fact, you would usually replicate the subroutine, because you didn’t
have enough storage to put a return address to get back to where you were
coming from. So it was easier just to put in the subroutine and then not have
to worry about transferring back.

To give some idea of how crowded this thing could become, Barkley at

one point asked me to program a guided missile for the General Electric
Company. I said, “There is not enough room; there are too many variables.”
And he said “Oh, go do it anyway.” So, it ended up we had to split the
registers and store two things in each one of those, which added to our agony.
We had to use all 3000 switches on the function tables, which at that time
were being used for both program storage and for data storage. And just to
make everything fit, we still had to write a special piece of microcode, if you
want to call it that; we had to rewire a new instruction because we had to
preserve one register and some of the transfer operations. So this was the kind

of thing that you had to do, to get a program on the ENIAC.

Setting the programs up was something like a several-week job, writing the
codes and figuring out how you were going to do it. Then you spent a couple
of hours turning switches—depending on how many people you could draft to
help do that process. And then you spent a certain amount of time in trying to
figure out whether what you had done worked or not.

One of the few cases in which you actually fooled around with the wiring
of the ENIAC was when you would pull the plug off the cable that sent the
command to trigger the next instruction and then would walk around the
computer with a little box and a button, and push the button and watch

as the various numbers bounced around from place to place as you had
programmed it.

ENIAC operation itself was done with a mathematician and an engineer on
each of the 8-hour shifts, and you ran 24 hours. So you had a mathematician
who was responsible for getting the program together, and who would go out
and recruit two other mathematicians to supervise on the other shifts, and
then you would run for 24 hours a day. It was a darn nuisance to set the
program up too many times.

I might also mention that, as far as reliability was concerned, the ENIAC was
rather remarkable. You hear lots of numbers about failure rates and so forth,
but once you got the computer settled down, the computer had a habit of
running for about a couple of weeks with no errors whatsoever. This is quite
a remarkable achievement.

The whole thing had a certain amount of bailing wire in it. People talk about
the “bailing wire days of aviation.” Barkley was lucky I guess, or maybe he just
tells the story that way. When he was with the President, he was able to show
him a trajectory. Every year at springtime, the West Point graduating class
would come down to the Proving Ground. They would visit all the various
functions and get a demonstration of big guns firing. Among the things they
came to see was the ENIAC. So you had this troop of cadets wandering
through the room.

And when you had large groups of people wandering through the ENIAC
room, things always went wrong. People always bumped cables and so forth
and so on. So we would usually take out a deck of punched cards that
contained some special diagnostic tests, and we would load these cards into

ACM History Panel

155

the ENIAC and run those, because we won’t have to worry about whether
or not our results are any good. It was a great display, because these tests
were constructed so that you could watch the numbers sort of flow through
the registers in their patterns. So it reminded you of Times Square in New
York, and you could diagnose what was going on in the computer.

So we would put these diagnostic tests on, and as I said, it sort of looked
like Times Square. Then this escort officer would come in with these
cadets, and he’d been briefed ahead of time. He would say, “Over there,
you can see in this register that this is the velocity of a bullet, and you can
see how it is moving ...” None of this was true. It was just these tests going
on. But we got away with it, and it did look good.

I wanted to spend the rest of my time talking about the big program

for the ENIAC, which was firing table calculation. The ENIAC’s basic
construction, the number of registers and so forth, was quite well tailored
to the problems associated with firing table calculations and in particular
the calculation of trajectories.

Now, the basic problem in a firing table calculation is to calculate where
the bullet is going. I've got this very simple-minded trajectory here. [see
figure below] These are the kinds of things the ENIAC would calculate,
for all sorts of angles, elevations, velocities. Then it would generate data
about where the bullet was in space and, in particular, where it would hit
the ground—which, of course, was the principal concern to most of the
artillery officers at that time.

Of course, what you are getting is the wrong variables. You are getting
the data for where the shell lands, given where you aimed the gun. What
you really want is how to aim the gun so it will hit a specific target.

That seems like an extremely simple problem for a computer today. If

I worked on my PC, I obviously would have it record the data and

go back through the interpolations, resort the data, and come out with
what I want. Unfortunately though, it wasn’t quite that simple with the
ENIAC. You had no intermediate storage, so you had to take what you
got out on IBM cards, and then if you were going to do something with
these, you would have to resort them with a mechanical sorter, and then
reprogram something on the switches so you could go back and get these
new answers.

Height

A simple set of trajectories.

Range

156 Fifty Years of Army Computing

Now, that actually was not all that hard to
do. In fact, at one point Margery Fields from
the Bombing Tables Branch was looking for
some of this work, and Barkley shuffled me
off on it. They wanted to do essentially the
same thing for bombing tables. They wanted
to generate the data for the people who
designed the bomb sights rather than trajec-
tory data. We went through quite an elabo-
rate process of creating data and sorting it.

(I thought I could qualify as a faro dealer in
Las Vegas by the time I got done with the
card shuffling that had to be done with this.)
Essentially, we would take the punched cards,
sort them, put them back, run them through
rather elaborate fifth-order interpolations and
smoothing processes, and generate the data.

The firing tables people were a bit more recal-

citrant about that. This is a pair of pages

from a firing table. This is a firing table for a

105-mm howitzer. It is just loaded with pages like that. And that’s the kind
of stuff we were generating.

Firing table for 105-mm howitzer.

Now people don’t use these anymore. The data goes into computers that are
embedded in the system, but they still print these things, because I think they
ought to have them as a backup, or as a piece of history, I guess.

This contains a whole bunch of stuff starting with the range, the elevation you
would shoot at, and a whole bunch of things that would tell you how you

have to change things if the wind were blowing or if there were more dense

air or whatever. The firing table people would take these data, and they would
then perform an operation that they called “smoothing.” Then they would start
“differencing” all this, and create large sheets that they would write all this
stuff on and then give it to a typist who would type all this stuff—and in fact,
her grade was based on the fact that she went through this agony of typing
these firing tables.

And I said, “Hey, I can do all that on the computer. I can even print it out for
you.” It wouldn’t be great with an IBM tabulator, but it wouldn’t be all that
bad. And they said, “Oh no, no, you can’t do that, because we have to smooth
the data.” I said, “I can smooth the data the way I did for the bombing tables
people.” “No,” they said, “We have to do it our way.” So I said, “Tell me what
your way is.” They said, “Well, it’s hard to explain.”

So I don’t know whether it was sort of intellectual privacy or something they
were dealing with, but they would look at me and say, “Gee, I think I better
raise that number a bit or lower that number a bit.” Now, nobody really cared,
because anybody who thinks you can take too many of these numbers all that
seriously is somewhat misled. [laughter]

But nevertheless, they did generate, among other things they called graphical
firing tables, which were slide rules. And the people who made the slide rules
had a terrible time if you gave them data that didn’t have nice smooth higher
differences. It just didn’t work well when they tried to put in the graduations.
But anyway, they went through this process, and it seemed terribly inefficient,

ACM History Panel 157

although it did represent a certain trend in using the ENIAC.

Basically, the resource was extremely scarce. It was the only computer. It

was busy; everybody wanted to use it—particularly after Herman and Adele?8
[Goldstine] and Clippinger?’ made it so you could set these switches and
program it instead of doing all this wiring. So, what was usually done in the
ENTAC was to take a high-intensity calculation problem and do that. And all
the other stuff would then be relegated to other activities and to other people.

Well anyway, that all sort of persisted in the firing table business, until we
came to the 280-mm atomic cannon. Once again, I think my friend Barkley
said, “Hey, we need firing tables for the 280-mm atomic cannon, and there’s
a problem. The problem is that with atomic things, you have to burst them
up in the air.” And so all of a sudden, this one-dimensional table became a
two-dimensional table, because I had to know where I would aim the bullet
to hit each of these points up bere [hands over his head]. And now I had a

humongous human problem.

The firing people just sort of threw up their hands. What we essentially needed
was something that would look like this [see below].

Every one of these pages represented a column on this sheet. So I was talking
about a lot of calculations. So finally, the firing tables people had to give up.
We did the calculations on the computer. We then took the data, played with
various sorting games to do the double interpolations, did all the differential
effects, took all the differences, and then I put a brand new ribbon in the
IBM tabulator and put some nice bond paper in there instead of the usual
stuff, and actually printed the firing tables. It was quite a dramatic experience
for the folks. I don’t think they ever felt that a computer could take over
their business.

There was a tendency, particularly as I say with the ENIAC, to reduce the
problem to something that would fit on the computer. Now when the human
computers were calculating trajectories, they used very high-order numerical
integration techniques, probably fourth- or fifth-order integration techniques
at relatively large intervals. So, it
was essentially a minimal computa-

28 Adele Goldstine, Herman’s
wife, was one of the ENIAC team
members; Adele wrote Report on
the ENIAC (Electronic Numerical
Integrator and Computer) Techni-
cal Report 1 (of 2 vols), Phila-
delphia, 1 June 1946. Adele later
played a major role in recon-
figuring the ENIAC to use the

function tables for programming.

29 Clippinger (1948).

QUADRANT ELEVATION - MILS

tional problem, but unfortunately it Height of Target - Meters
was a fairly sizable memory problem. Range -400 -300 .200 -100 O 100 200 300 400 500 600 700 800 900 1000

The ENTAC couldn’t handle that. It Meters

didn’t have the data storage neces-

10000 318.3 329.9 341.5 353.2 364.9 376.6 388.4 400.1 412.0 423.8 435.7 447.7 459.6 471.7 483.7

sary to do high—order integrations; it 10100 323.1 334.6 346.1 357.7 369.4 381.0 392.7 404.5 416.2 428.0 439.9 451.8 463.7 475.7 487.7

. bl <« » .
just couldn’t “remember” the imme- 10200 327.8 339.3 350.8 362.3 373.9 385.5 397.1 408.8 420.5 432.3 444.1 455.9 467.8 479.7 491.7

diate results. What we had to do
then was to revert back to a very

10300 332.6 344.0 355.5 366.9 378.4 390.0 401.6 413.2 424.9 436.6 448.4 460.2 472.0 483.9 495.8

simple trapezoidal integration, and, 10400 337.5 348.8 360.2 371.6 383.1 394.6 406.1 417.7 429.3 441.0 452.7 464.4 476.2 488.1 500.0

of course, then run the itegration 10500 342.3 353.6 364.9 376.3 387.7 399.2 410.6 422.2 433.8 445.4 457.1 468.8 480.5 492.4 504.2

interval back so that we now had an
adequate approximation to the prob-
lem. There was a good bit of that

10600 347.2 358.4 369.7 381.0 392.4 403.8 415.2 426.7 438.3 449.9 461.5 473.2 484.9 496.7 508.6

10700 3521 363.3 374.5 385.8 397.1 408.5 419.9 431.4 442.9 454.4 466.0 477.7 489.4 501.2 513.0

Wthh went on. 10800 357.1 368.2 379.4 390.6 401.9 413.2 424.6 436.0 447.5 459.0 470.6 482.2 493.9 505.7 517.5

10900 362.1 373.2 384.3 395.5 406.7 418.0 429.4 440.8 452.2 463.7 475.3 486.9 498.5 510.3 522.1

11000 367.1 378.1 389.2 400.4 411.6 422.9 434.2 445.5 457.0 468.4 480.0 491.6 503.2 515.0 526.8

Quadrant elevation table.

11100 372.2 383.2 394.2 405.4 416.5 427.8 439.0 450.4 461.8 473.3 484.8 496.4 508.0 519.8 531.6

11200 377.3 388.2 399.3 410.4 421.5 432.7 444.0 455.3 466.7 478.1 489.7 501.2 512.9 524.6 536.5

158 Fifty Years of Army Computing

A previous way of doing firing tables was to use a differential analyzer, which
was a predecessor to the ENIAC. On the differential analyzer, you didn’t have a
terribly bad job of generating trajectories. As I pointed out, the accuracy is not
all that critical, when you come right down to it.

But where the problem came in was, if you wanted to calculate trajectories
under standard conditions and under some nonstandard conditions, you didn’t
have enough accuracy in the computer so that you could take two sets of results
and difference them and get a meaningful result. So to accommodate that,
people went to things like adjoining systems of equations. So they first would
solve the basic equation, and then they would mathematically have worked out
the adjoining systems, feed the trajectories back, calculate the joint equations,
and from those, be able to get the differential effects—very elegant way of
doing business. If you like to read about it, Bliss’s book on exterior ballistics,3° I
believe, probably goes into great discussion about the joint system and such.

A lot of these “pretty things” got lost. The ENIAC, again, did not accom-
modate that kind of calculation. It was much easier to just calculate 10,000
trajectories for all the conditions you wanted. So a lot of that kind of—what

I might call “quality stuff”—got lost, at least for a while. I think it took a fair
period of time before people got back out of the mentality that says the easiest
thing to do is just put the simplest version of the problem on the computer
and calculate the bel/ out of it.

I think that probably covers just about what I wanted to say. The whole idea
of computing with the ENIAC was sort of a hair-shirt kind of thing. Program-
ming for the computer, whatever it was supposed to be, was a redemptive
experience—one was supposed to suffer to do it. And it wasn’t until the 1970s
that we finally were able to convince people that they were not going to have
programmers continually writing little programs for them. I actually had to take
my Division and sit everybody down who hadn’t taken a course in FORTRAN,
because, by God, they were going to write their own programs now. We
weren’t going to get computer specialists to write simple little programs that
they should have been writing. Programming, indeed, had become a simple
process, and I think to some extent, some of the earlier experience on the
ENIAC convinced people that you should suffer to use a computer, whereas it
had become something that was easy. [applause]

Paul Deitz:

Thank you very much, Harry. Bert Herzog has shown up, and I did thank
ACM for this opportunity. Thank you very much. Frank Friedman was around
the back, too, and may have slipped out. Again, our thanks to ACM. We will
have these talks up on the Net as soon as possible for those who would like to
do surfing. Bill Moye has copies of a wonderful brochure that he put together
for those of you who want to read a little bit more about 50 years of computing
in the U.S. Army.

30 Bliss (1944).

