APPENDIX A

Source Oil Analyses

- A.1. PAH analyses, analyte histogram and biomarker analyses of November 28, 2004 source oil sample (GERG Laboratory analyses).
- A.2. PAH analyses, analyte histogram and trace metals analysis of November 28, 2004 source oil sample (B&B Laboratory analysis).
- A.3. Analysis of source oil aromatics (Lancaster Laboratories).
- A.4. December 7, 2004 LSU source oil report.
- A.5. December 9, 2004 LSU source oil report.
- A.6. Narcotic potency of the PAH mixture in the source oil.
- A.7. PAH Analyte List by Laboratory.

A.1. PAH analyses, analyte histogram, and biomarker analyses of November 28, 2004 source oil sample taken by USCG from the M/T Athos. Analysis by GERG. GERG ID numbers C45279, W44253, W44254, W55259, and W442260 are replicates of the same source oil sample. The analyte histogram is the average of the five replicates.

GERG Analyses

Client Sample ID	Sample 1	Sample 1	Sample 1
Sample Descriptor	Tank Center 7	Tank Center 7	Tank Center 7
Original Sample			
GERG ID	C45279	W44253	W44254
Sample Type	SAMP	SAMP	SAMP
SDG	EC174	EC174	
Wet Weight	0.558	0.558	0.558
Sample Size Units	Milligrams	Milligrams	Milligrams
Matrix	Oil	Oil	Oil
% solid			
% Lipid			
Reporting Units	ng/mg	ng/mL	ng/mL
Calculation Basis (dry/wet)	Wet	Wet	Wet
QC Batch ID		T1465	T1465
Method	GCMS	GCMS	GCMS
Collection Date	11/28/04	11/28/04	11/28/04
Receive Date	12/15/04	12/15/04	12/15/04
Extraction Date			
Analysis Date	12/14/04	01/14/05	01/14/05
Surrogate Compounds	%Recovery	%Recovery	%Recovery
d8-Naphthalene	109.7	80.3	72.7
d10-Acenaphthene	107.5	85.5	74.3
d10-Phenanthrene	111.5	78.0	63.4
d12-Chrysene	97.7	73.8	57.3
d12-Perylene	92.7	83.8	79.7
Total PAHs	Concentration	Concentration	Concentration
Total PAHs with Perylene	4410.4	4427.0	4815.7
Total PAHs without Perylene	4401.5	4408.9	4603.1
Total NS&T PAHs	681.7	648.8	688.2

ND Not Detected
J <MDL
NA Not Applicable
Q Results Outside QC
I Interference
B Blank Contamination >3xMDL

Client Sample ID	Sample 1		Sample 1		Sample 1	
Sample Descriptor	Tank Center 7		Tank Center 7		Tank Center 7	
Original Sample						
GERG ID	C45279		W44253		W44254	
Sample Type SDG	SAMP EC174		SAMP EC174		SAMP	
500	EC174		EC1/4			
PAH Compounds	Concentration	MDL	Concentration	MDL	Concentration	MDL
Naphthalene	60.24	10.0	58.3	10.0	61.3	10.0
C1-Naphthalenes	129.62	10.0	132.8	10.0	137.8	10.0
C2-Naphthalenes	254.17	10.0	264.6	10.0	271.9	10.0
C3-Naphthalenes	263.56	10.0	296.2	10.0	299.3	10.0
C4-Naphthalenes	188.07	10.0	212.3	10.0	201.9	10.0
Biphenyl	13.27	10.0	13.1	10.0	13.7	10.0
Acenaphthylene	8.64	10.0 J	7.8	10.0 J	8.9	10.0 J
Acenaphthene	21.45	10.0	17.9	10.0	18.9	10.0
Fluorene	50.78	10.0	46.6	10.0	46.7	10.0
C1-Fluorenes	120.08	10.0	119.5	10.0	127.9	10.0
C2-Fluorenes	227.34	10.0	219.0	10.0	220.8	10.0
C3-Fluorenes	271.21	10.0	287.7	10.0	287.9	10.0
Phenanthrene	87.19	10.0	86.0	10.0	91.6	10.0
Anthracene	8.86	10.0 J	6.7	10.0 J	7.2	10.0 J
C1-Phenanthrenes/Anthracenes	228.96	10.0	222.4	10.0	246.3	10.0
C2-Phenanthrenes/Anthracenes	338.85	10.0	314.7	10.0	333.7	10.0
C3-Phenanthrenes/Anthracenes	282.08	10.0	275.8	10.0	287.8	10.0
C4-Phenanthrenes/Anthracenes	208.45	10.0	240.5	10.0	230.5	10.0
Dibenzothiophene	40.98	10.0	36.4	10.0	42.6	10.0
C1-Dibenzothiophenes	162.97	10.0	127.3	10.0	138.0	10.0
C2-Dibenzothiophenes	367.72	10.0	348.6	10.0	369.4	10.0
C3-Dibenzothiophenes	373.04	10.0	346.5	10.0	373.2	10.0
Fluoranthene	3.95	10.0 J	3.1	10.0 J	4.1	10.0 J
Pyrene	16.44	10.0	14.3	10.0	17.5	10.0
C1-Fluoranthenes/Pyrenes	84.53	10.0	78.1	10.0	79.8	10.0
C2-Fluoranthenes/Pyrenes	123.87	10.0	124.0	10.0	137.3	10.0
C3-Fluoranthenes/Pyrenes	139.00	10.0	173.4	10.0	168.5	10.0
Benzo(a)anthracene	10.40 36.91	10.0 10.0	5.3 32.8	10.0 J 10.0	6.3 38.8	10.0 J 10.0
Chrysene						
C1-Chrysenes	79.65	10.0	82.8	10.0	94.1	10.0
C2-Chrysenes	90.14	10.0	123.4	10.0	144.6	10.0
C3-Chrysenes C4-Chrysenes	47.12 9.84	10.0 10.0 J	36.8 11.2	10.0 10.0	48.1 5.7	10.0 10.0 J
Benzo(b)fluoranthene	7.86	10.0 J	8.0	10.0 10.0 J	8.3	10.0 J
Benzo(k)fluoranthene	2.07	10.0 J	1.1	10.0 J	0.3 1.2	10.0
Benzo(k)liuoranthene Benzo(e)pyrene	14.92	10.0 3	12.9	10.0 3	15.5	10.0
Benzo(a)pyrene	6.82	10.0 10.0 J	5.5	10.0 10.0 J	3.4	10.0 10.0 J
Perylene	8.90	10.0 J	18.1	10.0 3	3.4 12.6	10.0 3
Indeno(1,2,3-c,d)pyrene	4.99	10.0 J	4.4	10.0 J	2.7	10.0 J
Dibenz(a,h)anthracene	4.99 7.27	10.0 J	4.4 5.2	10.0 J	5.2	10.0 J
	8.25	10.0 J	6.2	10.0 J	4.9	10.0 J
Benzo(g,h,i)perylene	0.23	10.0 J	0.2	10.0 J	4.5	10.0 J
2-Methylnaphthalene	70.02	10.0	71.8	10.0	74.4	10.0
1-Methylnaphthalene	59.60	10.0	60.9	10.0	63.4	10.0
2,6-Dimethylnaphthalene	139.18	10.0	132.1	10.0	140.7	10.0
1,6,7-Trimethylnaphthalene	101.52	10.0	95.5	10.0	100.7	10.0
1,0,7-THIMEUNYINAPHUNAIENE						

ND Not Detected
J <MDL
NA Not Applicable
Q Results Outside QC
I Interference
B Blank Contamination >3xMDL
D Dilution

Client Sample ID Sample Descriptor Original Sample	Sample 1 Tank Center 7	Sample 1 Tank Center 7
GERG ID Sample Type SDG	W44259 SAMP	W44260 SAMP
Wet Weight Sample Size Units Matrix % solid % Lipid	0.558 Milligrams Oil	0.558 Milligrams Oil
Reporting Units Calculation Basis (dry/wet)	ng/mL Wet	ng/mL W et
QC Batch ID Method Collection Date Receive Date Extraction Date Analysis Date	T1466 GCMS 11/28/04 12/15/04	T1466 GCMS 11/28/04 12/15/04
Surrogate Compounds d8-Naphthalene d10-Acenaphthene d10-Phenanthrene d12-Chrysene d12-Perylene	%Recovery 101.8 110.4 99.7 94.7 89.7	%Recovery 117.3 119.3 108.0 109.6 82.9
Total PAHs Total PAHs with Perylene Total PAHs without Perylene Total NS&T PAHs	Concentration 4563.5 4547.0 652.4	Concentration 4964.3 4947.9 705.5

ND Not Detected
J <MDL
NA Not Applicable
Q Results Outside QC
I Interference
B Blank Contamination >3xMDL
D Dilution

Client Sample ID Sample Descriptor Original Sample	Sample 1 Tank Center 7		Sample 1 Tank Center 7	
GERG ID Sample Type SDG	W44259 SAMP		W44260 SAMP	
PAH Compounds	Concentration	MDL	Concentration	MDL
Naphthalene	61.3	10.0	63.7	10.0
C1-Naphthalenes	130.8	10.0	135.5	10.0
C2-Naphthalenes	266.3	10.0	274.7	10.0
C3-Naphthalenes	301.7	10.0	309.1	10.0
C4-Naphthalenes	206.2	10.0	216.0	10.0
Biphenyl	11.2	10.0	12.6	10.0
Acenaphthylene	7.7	10.0 J	8.7	10.0 J
Acenaphthene Fluorene	18.4	10.0	18.6	10.0
C1-Fluorenes	46.2	10.0	49.3	10.0
C2-Fluorenes	116.3	10.0	131.1	10.0
C3-Fluorenes	216.7	10.0	238.4	10.0
Phenanthrene	288.4	10.0	336.5	10.0
Anthracene	84.2 7.6	10.0 10.0 J	94.4 8.6	10.0 10.0 J
C1-Phenanthrenes/Anthracenes	7.6 225.1		260.5	
C2-Phenanthrenes/Anthracenes	328.2	10.0 10.0	260.5 358.1	10.0 10.0
C3-Phenanthrenes/Anthracenes	290.0	10.0	316.3	10.0
C4-Phenanthrenes/Anthracenes	290.0 255.0	10.0	258.5	10.0
Dibenzothiophene	38.3	10.0	258.5 42.1	10.0
C1-Dibenzothiophenes	36.3 125.5	10.0	42.1 146.4	10.0
C2-Dibenzothiophenes	365.9	10.0	408.4	10.0
C3-Dibenzothiophenes	369.2	10.0	406.8	10.0
Fluoranthene	3.0	10.0 J	4.7	10.0 J
Pyrene	16.0	10.0	18.6	10.0
C1-Fluoranthenes/Pyrenes	83.7	10.0	87.8	10.0
C2-Fluoranthenes/Pyrenes	131.1	10.0	152.0	10.0
C3-Fluoranthenes/Pyrenes	184.6	10.0	207.6	10.0
Benzo(a)anthracene	7.1	10.0 J	6.0	10.0 J
Chrysene	38.7	10.0	41.0	10.0
C1-Chrysenes	90.5	10.0	95.5	10.0
C2-Chrysenes	135.4	10.0	141.8	10.0
C3-Chrysenes	45.8	10.0	45.4	10.0
C4-Chrysenes	10.8	10.0	14.4	10.0
Benzo(b)fluoranthene	8.1	10.0 J	8.6	10.0 J
Benzo(k)fluoranthene	1.0	10.0 J	0.3	10.0 J
Benzo(e)pyrene	13.1	10.0	14.7	10.0
Benzo(a)pyrene	5.3	10.0 J	3.8	10.0 J
Perylene	16.6	10.0	16.4	10.0
Indeno(1,2,3-c,d)pyrene	3.3	10.0 J	2.7	10.0 J
Dibenz(a,h)anthracene	3.7	10.0 J	4.2	10.0 J
Benzo(g,h,i)perylene	5.9	10.0 J	4.5	10.0 J
2-Methylnaphthalene	70.3	10.0	73.8	10.0
1-Methylnaphthalene	60.4	10.0	61.7	10.0
2,6-Dimethylnaphthalene	129.2	10.0	143.8	10.0
1,6,7-Trimethylnaphthalene	94.7	10.0	107.5	10.0
1-Methylphenanthrene	60.2	10.0	69.7	10.0

ND Not Detected
J <MDL
NA Not Applicable
Q Results Outside QC
I Interference
B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	Tank Center 7 Average of 5 Injections			GERG REF OIL W44231 REF	
Wet Weight Sample Size Units Matrix % solid				1.00 Milliliter Oil Solution	
% Lipid Reporting Units Calculation Basis (dry/wet)				ng/mL Wet	
QC Batch ID Method Collection Date Receive Date Extraction Date Analysis Date				T1463 GCMS	
				12/14/04	
Surrogate Compounds d8-Naphthalene d10-Acenaphthene d10-Phenanthrene d12-Chrysene	Average	Std Dev	Coef of Var	%Recovery	NA NA NA
d12-Perylene					NA
Total PAHs Total PAHs with Perylene Total PAHs without Perylene Total NS&T PAHs	4596.2 4581.7 675.3	223.6 222.5 24.2	4.9 4.9 3.6	Concentration 10591.3 10575.4 4268.6	

ND Not Detected
J <MDL
NA Not Applicable
Q Results Outside QC
I Interference
B Blank Contamination >3xMDL
D Dilution

Sample Descriptor Tank Center 7 GERG REF OIL Original Sample GERG ID Average of 5 W44231 Sample Type Injections REF SDG **PAH Compounds** Concentration MDL 61.0 20 3.2 753 5 20.0 Naphthalene C1-Naphthalenes 133.3 3.4 2.5 2291.9 20.0 C2-Naphthalenes 8.0 3.0 20.0 266.3 2042.0 C3-Naphthalenes 294.0 17.7 6.0 1666.1 20.0 C4-Naphthalenes 204.9 904.6 20.0 10.9 5.3 Biphenyl 7.6 58.0 20.0 12.8 1.0 Acenaphthylene 8.4 0.6 6.8 29.2 20.0 Acenaphthene 19.0 1.4 7.3 9.3 20.0 Fluorene 47.9 2.0 4.2 91.1 20.0 C1-Fluorenes 123.0 5.1 264.0 20.0 6.2 C2-Fluorenes 224.4 8.7 3.9 344.4 20.0 C3-Fluorenes 294.3 24.6 294.2 20.0 8.4 Phenanthrene 88.7 4.2 4.7 142.5 20.0 Anthracene 7.8 0.9 11.5 15.4 20.0 C1-Phenanthrenes/Anthracenes 236.6 321.6 20.0 16.3 6.9 C2-Phenanthrenes/Anthracenes 334.7 15.9 47 378.1 20.0 C3-Phenanthrenes/Anthracenes 290.4 15.5 5.3 259.2 20.0 C4-Phenanthrenes/Anthracenes 238.6 20.3 8.5 143.7 20.0 Dibenzothiophene 20.0 40.1 2.6 6.5 21.7 C1-Dibenzothiophenes 140.0 15.4 11.0 82.4 20.0 C2-Dibenzothiophenes 372.0 22.0 5.9 75.9 20.0 C3-Dibenzothiophenes 373.7 21.5 5.8 55.6 20.0 Fluoranthene 0.7 19.7 6.1 20.0 3.8 Pyrene 16.6 1.6 9.8 6.5 20.0 C1-Fluoranthenes/Pyrenes 3.9 4.7 66.1 20.0 82.8 C2-Fluoranthenes/Pyrenes 133.7 11.7 8.7 69.4 20.0 C3-Fluoranthenes/Pyrenes 174.6 25.0 14.3 72.2 20.0 Benzo(a)anthracene 7.0 2.0 28.3 20.0 7.3 Chrysene 37.6 3.1 8.2 11.3 20.0 C1-Chrysenes 88.5 7.0 7.9 27.3 20.0 C2-Chrysenes 127.1 22.2 17.5 38.7 20.0 C3-Chrysenes 44.6 4.5 10.1 13.6 20.0 C4-Chrysenes 10.4 3.1 30.3 3.0 20.0 Benzo(b)fluoranthene 8.2 0.3 3.5 2.6 20.0 J Benzo(k)fluoranthene 1.1 0.6 57.7 2.4 20.0 J Benzo(e)pyrene 20.0 142 12 8.3 22 J Benzo(a)pyrene 5.0 1.4 27.8 1.1 20.0 Perylene 3.7 14.5 25.6 15.9 20.0 Indeno(1,2,3-c,d)pyrene 28.9 0.3 20.0 3.6 1.0 J Dibenz(a,h)anthracene 5.1 1.4 26.8 0.4 20.0 J

5.9

72.1

61.2

137.0

100.0

64.1

24.8

2.8

2.4

4.4

5.2

7.4

0.9

1382.5

909.4

751.6

521.5

104.8

1.5

2.0

1.5

6.1

5.2

4.8

Benzo(g,h,i)perylene

2-Methylnaphthalene

1-Methylnaphthalene

2,6-Dimethylnaphthalene

1-Methylphenanthrene

1,6,7-Trimethylnaphthalene

Client Sample ID

20.0

20.0

20.0

20.0 20.0

20.0

ND Not Detected

J <MDL

NA Not Applicable Q Results Outside QC

Q Results Outs I Interference

B Blank Contamination >3xMDL

D Dilution

STERANE AND TRITERPANE BIOMARKERS

Project: ATHOS I Oil Spill Lab Sample ID: C45279

Sample Descriptor: Sample 1, Tank Center 7

Analysis Date: 12/20/2004

PARAMETERS

A:LEVEL OF MATURITY

<u>Steranes</u>		<u>Terpanes</u>	
% 20S C29 STERANES	55.8	% 22S C31 HOMOHOPANE	60.7
% C29 ISOSTERANES (abb)	54.6	% C30 HOPANE	82.7
% REGULAR STERANES	13.9	% TS/TS+TM (C27)	41.6
% ISOSTERANES	15.7	TS/TM (C27)	0.71
% DIASTERANES	25.2	% C30 MORETANE	17.3
% SHORT-CHAIN STERANES	45.2	% C29 NORMORETANE	21.6
		DIAHOPANE INDEX (%)	9.2
		% TRICYCLIC TERPANES	45.2
B:ORGANIC FAC	TIES AND	DEPOSITIONAL ENVIRONMENT	
D.OKOANIC I AC	ILS AND	DEI OSITIONAL ELVIRONALINI	
% TOTAL C20+C21	45.2	OLEANANE INDEX (%)	14.9
% TOTAL C27	14.3	GAMMACERANE INDEX (%)	21.7
% TOTAL C28	19.6	BISNORHOPANE INDEX (%)	24.8
% TOTAL C29	16.4	25-NORHOPANE INDEX (%)	48.9
% TOTAL C30	4.5	DIAHOPANE INDEX (%)	9.2
HOPANES/STERANES	1.5	% TRICYCLIC TERPANES	45.2
% DIASTERANES	25.2	% C24 TETRACYCLIC TERPANE	24.8
TOTAL STERANES (ppm)	283	% MORETANES	19.5
		% TOTAL C31 PENTACYCLICS	41.2
Other Biological Markers		% TOTAL C32 PENTACYCLICS	24.0
		% TOTAL C33 PENTACYCLICS	15.9
b-Carotane (ppm)	0.6	% TOTAL C34 PENTACYCLICS	9.7
		% TOTAL C35 PENTACYCLICS	9.2
		C35/C34 HOMOHOPANES	0.95
		29/30 HOPANES	0.97
		TOTAL TRITERPANES (ppm)	418.2

All ratios based on concentrations

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45279

Sample Descriptor: Sample 1, Tank Center 7

Analysis Date: 12/20/2004

A.2. PAH analyses, analyte histogram and trace metals analysis of November 28, 2004 source oil sample (B&B Laboratory analysis).

B Laboratories yect J04447 port 04-1353		Polaris Appiled TV Athos I Oil Polycyclic Aromatic Client Submit	l Spill Project Hydrocarbon Data	Client Project # 1148
Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Weight (mg) Dillution	ETX3672.D Sample 1 Tank Center 7 Product 11/28/04 12/04/04 12/04/04 ENV 1057 12/04/04 PAH-2002 11.9 NA	ETX3872D.D Dupl. (Sample 1 Tank Coni Product 11/28/04 12/04/04 12/04/04 ENV 1057 12/04/04 PAH-2002 11.9 NA	tor 7)	
Target Compounds	Su Corrected Q Conc. (ng/mg)	Su Corrected Conc. (ng/mg)	Q	
Naphthalene C1-Naphthalenes C2-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Benzothiophenes C4-Particle C4-Particle C4-Particle C4-Particle C4-Particle C4-Particle C4-Particle C4-Phenanthrene/Anthracenes C4-Phenanthrene/Prenes C4-Diberzothiophenes C4-Diberzothiophenes C4-Diberzothiophenes C4-Puoranthenes/Pyrenes C4-Puoranthenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes/Pyrenes C4-Puoranthrenes C5-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C7-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C6-Puoranthrenes C7-Puoranthrenes C6-Puoranthrenes C7-Puoranthrenes C7-Puo	76.2 69.5		63.1 96.1 343 444 J 27.7 7 400 122 16.3 410 10.2 16.2 9.5 37.9 81.0 204 197 400 147 370 499 635 316 5026 45.5 J 16.4 84.7 12.2 74.6 84.7 15.5 86.8 J 27.5 76.6 93 43.8 J 10.0 J 1.1 J 10.7 J 2.1 J 6460	
2-Modynaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Modylphenanthrane C29-Hopane Ba-Oleanane C30-Hopane	76.2 69.5 160 47.5 72.1 72.4 12.8 74.0		79.0 70.8 174 51.6 66.8 67.3 12.3 73.4	
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)		 And Anna Anna Anna Anna Anna Anna Anna A
Naphthalene-d8 Acenaphthene-d10 Phenanthrone-d10 Chrysene-d12	91 95 90 90	93 92 90 85		

Qualifiers (Q): J=Below the MCL, U=Not detected, B=In procedural blank > 3x MDL, i=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Sample 1 Tank Center 7 (Product) ETX3872

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client: B&B Laboratories, Inc. Service Request: K2409956

Project No.: NA Date Collected: 11/28/04
Project Name: TV Athos I Date Received: 12/16/04

Matrix: OIL Units MG/KG

Basis Wet

Sample Name: ETX3872 Lab Code: K2409956-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	6010B	5.0	1	12/30/04	1/6/05	8.6		
Antimony	6010B	5.0	1	12/30/04	1/6/05	5.0	U	
Arsenic	7060A	1.0	5	1/10/05	1/14/05	1.0	U	
Barium	6010B	0.5	1	12/30/04	1/6/05	1.3		
Beryllium	6010B	0.5	1	12/30/04	1/6/05	0.5	U	
Cadmium	6010B	0.5	1	12/30/04	1/6/05	0.5	U	
Calcium	6010B	5.0	1	12/30/04	1/6/05	41.8		
Chromium	6010B	1.0	1	12/30/04	1/6/05	1.5		
Cobalt	6010B	1.0	1	12/30/04	1/6/05	1.0	U	
Copper	6010B	1.0	1	12/30/04	1/6/05	1.7		
Iron	6010B	2.0	1	12/30/04	1/6/05	43.0		
Lead	6010B	10	1	12/30/04	1/6/05	10	U	
Magnesium	6010B	4.0	1	12/30/04	1/6/05	18.4		
Manganese	6010B	0.5	1	12/30/04	1/6/05	1.1		
Mercury	7471A	0.04	1	12/22/04	12/23/04	0.04	U	
Nickel	6010B	2.0	1	12/30/04	1/6/05	54.8		
Potassium	6010B	200	1	12/30/04	1/6/05	200	U	
Selenium	7740	1.0	5	1/10/05	1/12/05	1.0	U	
Silicon	6010B	50	1	12/30/04	1/6/05	50	U	
Silver	6010B	1.0	1	12/30/04	1/6/05	1.0	U	
Sodium	6010B	10	1	12/30/04	1/6/05	34.7		
Thallium	7841	0.4	2	1/10/05	1/17/05	0.4	U	
Tin	6010B	10	1	12/30/04	1/6/05	10	U	
Vanadium	6010B	1.0	1	12/30/04	1/6/05	440		
Zinc	6010B	1.0	1	12/30/04	1/6/05	3.8		

% Solids: NA

Comments:

A.3. Analysis of source oil aromatics.

Analysis Report

Page 2 of 2

Lancaster Laboratories Sample No. G5 4419595

Sample 1 Tank Center 7 Grab Oil Sample Delaware River Sample

Collected: 11/28/2004 by SD Account Number: 11623

Submitted: 12/03/2004 17:30 Reported: 12/17/2004 at 12:40 Discard: 01/01/2005 Entrix 10 Corporate Circle

Suite 300

New Castle DE 19720 TANK7 SDG#: DRS01-01*

					As Received		
CAT			As Receiv	ed	Method		Dilution
No.	Analysis Name	CAS Number	Result		Detection Limit	Units	Factor
03761	Naphthalene	91-20-3	40,000.	J	20,000.	ug/kg	10
03765	Acenaphthylene	208-96-8	N.D.		20,000.	ug/kg	10
03768	Fluorene	86-73-7	28,000.	J	20,000.	ug/kg	10
03775	Phenanthrene	85-01-8	78,000.	J	20,000.	ug/kg	10
03776	Anthracene	120-12-7	N.D.		20,000.	ug/kg	10
03778	Fluoranthene	206-44-0	N.D.		20,000.	ug/kg	10
03781	Benzo(a) anthracene	56-55-3	31,000.	J	20,000.	ug/kg	10
03782	Chrysene	218-01-9	N.D.		20,000.	ug/kg	10
03786	Benzo(b)fluoranthene	205-99-2	N.D.		20,000.	ug/kg	10
03787	Benzo(k) fluoranthene	207-08-9	N.D.		20,000.	ug/kg	10
03788	Benzo(a)pyrene	50-32-8	N.D.		20,000.	ug/kg	10
03789	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		20,000.	ug/kg	10
03790	Dibenz(a,h)anthracene	53-70-3	N.D.		20,000.	ug/kg	10
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		20,000.	ug/kg	10
	Due to sample matrix interf	arances observed a	hiving the e		d		

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

Commonwealth of Pennsylvania Lab Certification No. 36-037

Inhoratory Chronicle

		Labora CO1	y circo	IIICIE		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
08432	STARS Petroleum	SW-846 8021B	1	12/06/2004 18:09	Michael F Barrow	5000
	Contaminants S					
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	12/07/2004 12:48	Jeffrey B Smith	10
01132	GC VOA Soil Prep	SW-846 5035	1	12/06/2004 15:05	Michael F Barrow	n.a.
07806	BNA Soil Extraction	SW-846 3550B	1	12/05/2004 12:30	Olivia Arosemena	1

2216 Rev. 3/10/03

Page 2 of 2

Lancaster Laboratories Sample No. G5 4419595

Sample 1 Tank Center 7 Grab Oil Sample Delaware River Sample

Collected: 11/28/2004 by SD Account Number: 11623

Submitted: 12/03/2004 17:30 Reported: 12/17/2004 at 12:40 Discard: 01/01/2005

10 Corporate Circle

Suite 300 New Castle DE 19720

TANK7 SDG#: DRS01-01*

					As Received		
CAT			As Receiv	ed	Method		Dilution
No.	Analysis Name	CAS Number	Result		Detection Limit	Units	Factor
03761	Naphthalene	91-20-3	40,000.	J	20,000.	ug/kg	10
03765	Acenaphthylene	208-96-8	N.D.		20,000.	ug/kg	10
03768	Fluorene	86-73-7	28,000.	J	20,000.	ug/kg	10
03775	Phenanthrene	85-01-8	78,000.	J	20,000.	ug/kg	10
03776	Anthracene	120-12-7	N.D.		20,000.	ug/kg	10
03778	Fluoranthene	206-44-0	N.D.		20,000.	ug/kg	10
03781	Benzo(a)anthracene	56-55-3	31,000.	J	20,000.	ug/kg	10
03782	Chrysene	218-01-9	N.D.		20,000.	ug/kg	10
03786	Benzo(b)fluoranthene	205-99-2	N.D.		20,000.	ug/kg	10
03787	Benzo(k)fluoranthene	207-08-9	N.D.		20,000.	ug/kg	10
03788	Benzo(a)pyrene	50-32-8	N.D.		20,000.	ug/kg	10
03789	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		20,000.	ug/kg	10
03790	Dibenz(a,h)anthracene	53-70-3	N.D.		20,000.	ug/kg	10
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		20,000.	ug/kg	10
	Due to sample matrix interf	erences observed o	iuring the e	xtract	ion, the		

Entrix

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

Commonwealth of Pennsylvania Lab Certification No. 36-037

normal reporting limits could not be obtained.

Laboratory Chronicle

		naborat	ora curo	IIICIE		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
08432	STARS Petroleum Contaminants S	SW-846 8021B	1	12/06/2004 18:09	Michael F Barrow	5000
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	12/07/2004 12:48	Jeffrey B Smith	10
01132	GC VOA Soil Prep	SW-846 5035	1	12/06/2004 15:05	Michael F Barrow	n.a.
07806	BNA Soil Extraction	SW-846 3550B	1	12/05/2004 12:30	Olivia Arosemena	1

Lancaster Laboratories, Inc.
2425 New Holland Pike
PO Box 12425
Lancaster, PA 17605-2425
717-656-2300 Fax: 717-656-2681

2216 Rev. 3/10/03

A.4. December 7, 2004 LSU source oil report.

Department of Environmental Studies, Louisiana State University

1285 Energy, Coast & Environment Building, Baton Rouge, LA 70803 (225) 578-4295

IES/RCAT04-26 07 December, 2004

To: Ed Levine NOAA SSC

From: Scott Miles

Chemistry Support Team Louisiana State University

Re: Delaware River Oil Spill

Executive Summary

Two (2) reference oil samples (Table 1) collected from the Athos I by David Wesley (NOAA HAZMAT) were received at the Louisiana State University Response laboratory on 06 December 2004. The samples were diluted and fingerprinted upon arrival and logged-in at DES/RCAT. In addition to oil fingerprinting, density, viscosity, evaporative weathering, and standard distillation curve analysis was performed on the samples. The samples displayed a fingerprinting pattern similar to a heavy crude oil with normal alkane ranges from nC-10 to nC-26. The samples contained high concentrations of asphaltenes and other unresolved high molecular weight compounds. Initial density analyses suggest the oil samples will float if spilled in fresh water. Results from the evaporative weathering experiment indicated that it is unlikely the sample oils would sink due to natural evaporative processes. It should be noted the sample oils loss <3% (by weight) when placed under vacuum and 90 degree Celsius conditions for four (4) hours.

Table 1. Sample Identifications and LSU Identifications

NOAA	Collection Site	Time	LSU ID#	Instrument ID
Sample #1	Delaware	12/03/2004	2N4341-01	GRM4341D
	River/Philadelphia	0955		
Sample #2	Delaware	12/03/2004	2N4341-02	GRM4341E
	River/Philadelphia	0955		

METHODOLOGY

Once the samples were received at the LSU laboratory, they were transferred with a metal spatula into 40-milliliter (ml) extraction vials. The samples were then mixed and covered with dichloromethane (DCM). Sodium sulfate Na₂SO₄ was added to each sample, which was then shaken. The samples were then transferred, using separate disposable pipettes, into a 2 mL autosampler vial and capped with a PTFE/Aluminum crimp cap. A reference oil standard (North Slope Crude) was analyzed prior to the sample oil analyses. The extracted oil sample and reference oils were analyzed on a Hewlett Packard 5890 Series II Gas Chromatograph coupled with a Hewlett Packard 5971 Series Mass Selective Detector operated in selected ion monitoring mode.

Oil density was determined by filling a pre-weighed calibrated Teflon tube with a known volume of sample oil. The Teflon tube and oil were weighed on an analytical balance and weight recorded. Density was expressed as g/ml.

Viscosity was determined using a calibrated EZ viscosity cup and stopwatch as specified in ASTM D 4212 standards. Viscosity was expressed in cSt.

Evaporative weathering was performed by placing approximately 10 ml of each oil sample into a pre-weighed 100 ml round bottom flask followed by attachment to a rotary evaporative device. The flasks were then submersed in a 90 degree Celsius hot water bath. The flasks were removed at set time intervals (10, 30, 60, 120, 240 minutes) and weighed. The weight loss was noted and the % evaporation was calculated. After 240 minutes the flasks were removed from the rotovap and allowed to cool to room temperature. A small aliquot of oil from each flask was removed and placed in 100 ml beakers containing 50 ml of tap water. Observations were noted and recorded in laboratory notebook.

Results from the physical analyses are displayed in the results and discussion section, Table 2.

RESULTS AND DISCUSSION

Results from the fingerprinting analysis indicate the samples originated from a heavy crude oil with normal alkanes ranging from C-10 to C-26. The samples contained low concentrations of aromatic compounds and were slightly weathered. The significant oil-fingerprinting biomarker compounds, hopanes and steranes, were detected at very low concentrations. The samples did contain a high concentration of asphaltenes and other unresolved high molecular weight compounds. The normal alkane profile for the two oil samples and North Slope Crude reference oil are displayed below.

Table 2. Results from Physical Testing

Test	Sample	Results	Comments
Density	Sample #1	0.978 g/ml	
	Sample #2	0.973 g/ml	
Viscosity	Sample #1	>5000cSt	Beyond testing range
	Sample #2	>5000cSt	Beyond testing range
Evaporative Weathering	Sample #1	< 3%	Oil floated and spread
	Sample #2	< 3%	Oil floated and spread

Normal Alkane Profile of Reference Oil: North Slope Crude

Normal Alkane Profile of Oil Sample #1 from Athos I Spill

Normal Alkane Profile of Oil Sample #2 from Athos I Spill

A.5. December 9, 2004 LSU source oil report.

Department of Environmental Studies, Louisiana State University

1285 Energy, Coast & Environment Building, Baton Rouge, LA 70803 (225) 578-4295

IES/RCAT04-28 09 December, 2004

To: Ed Levine

NOAA SSC

From: Scott Miles

Chemistry Support Team Louisiana State University

Re: Delaware River Oil Spill

Executive Summary

One (1) oil sample (Table 1) collected from the Athos I spill by Steve Lehmann (NOAA SSC) was received at the Louisiana State University Response laboratory on 09 December 2004. The sample was diluted and fingerprinted upon arrival and logged-in at DES/RCAT. In addition to oil fingerprinting, density, viscosity, and oil cohesiveness test was performed on the sample. The sample displayed a fingerprinting pattern similar to a heavy crude oil with normal alkane ranges from nC-10 to nC-26. The sample displayed a fingerprinting pattern similar to previous samples retrieved from the M/V Athos spill, but with a higher degree of weathering. The samples contained high concentrations of asphaltenes and other unresolved high molecular weight compounds. The presence of aromatic and biomarker compounds was detected, but at very low levels. Initial density analyses suggest the oil samples will float if spilled in fresh water. **Results from the oil** cohesiveness jar test demonstrate the oil may adhere to the river bottom sediments if the oil was released with sufficient mass and velocity to strike the river bottom. During the jar test, large quantities (>50%) of oil was retained on the silt/sand test bed and remained submerged during the entire testing period. We are speculating the outer boundary layer of the pooled oil mass may be adhering to the bottom sediments/detritus material. The remainder of the oil, not contacting the river bottom, is being held immobile by the high cohesive forces exerted by the highly viscous oil.

Table 1. Sample Identifications and LSU Identifications

NOAA	Collection Site	Time	LSU ID#	Instrument ID
Pooled Oil	Delaware	12/08/2004	2N4344-01	GRM4344A
	River/Philadelphia			

METHODOLOGY

Once the sample was received at the LSU laboratory, it was transferred with a metal spatula into 40-milliliter (ml) extraction vial. The sample was then mixed and covered with dichloromethane (DCM). Sodium sulfate Na₂SO₄ was added to each sample, which was then shaken. The sample was then transferred, using a disposable pipette, into a 2 mL autosampler vial and capped with a PTFE/Aluminum crimp cap. A reference oil standard (North Slope Crude) was analyzed prior to the sample oil analysis. The extracted oil sample and reference oils were analyzed on a Hewlett Packard 5890 Series II Gas Chromatograph coupled with a Hewlett Packard 5971 Series Mass Selective Detector operated in selected ion monitoring mode.

Oil density was determined by filling a pre-weighed calibrated Teflon tube with a known volume of sample oil. The Teflon tube and oil was weighed on an analytical balance and weight recorded. Density was expressed as g/ml.

Viscosity was determined using a calibrated EZ viscosity cup and stopwatch as specified in ASTM D 4212 standards. Viscosity was expressed in cSt.

The oil cohesiveness jar test was performed by placing approximately 10 ml of sample oil into a Teflon tube and forcefully injecting the oil into 125 ml Pyrex beaker. The beaker contained approximately 60 ml of Mississippi River water and a ¼" thick sand/silt bed material. The experiment was allowed to equilibrate for three (3) hours and visual observations were noted..

Results from the physical analyses are displayed in the results and discussion section, Table 2.

RESULTS AND DISCUSSION

Results from the fingerprinting analysis indicate the samples originated from a heavy crude oil with normal alkanes ranging from C-10 to C-26. The samples contained low concentrations of aromatic compounds and was moderately weathered. The significant oil-fingerprinting biomarker compounds, hopanes and steranes, were detected at very low concentrations. The samples did contain a high concentration of asphaltenes and other unresolved high molecular weight compounds. Results from the oil cohesiveness jar test demonstrate the oil may adhere to the river bottom sediments if the oil was released with sufficient mass and velocity to strike the river bottom. The normal alkane profiles for the pooled oil sample and North Slope Crude reference oil are displayed below.

Table 2. Results from Physical Testing

Test	Sample Results		Comments	
Density	2N4344-01	0.943 g/ml		
Viscosity	2N4344-01	>5000cSt	Beyond testing range	
Oil cohesiveness jar test	2N4344-01	Positive	Oil may adhere to	
			bottom sediments	

NA – Not Applicable

Normal Alkane Profile of Reference Oil: North Slope Crude

Normal Alkane Profile of Pooled Oil from M/V Athos I Spill

A.6. Narcotic potency of the PAH mixture in the source oil.

Sample ID	Average Athos I Oil				
Collection Date	11/28/04				
Location	Tank Center 7				
Acute PAH Narcosis	12.20	umol/g octanol			
Acute:Chronic Ratio	5.09				
Narcosis	2.40	umol/g octanol			

	MW (g/mol)	log Kow	Subcooled Solub. (mol/L)	Athos Oil Ave. (ng/mg)	Moles PAH _i	Mole Fraction x _i	LC50 _i (mol/L)	$TU_{W,max}$ (S _L /LC50)	TUa (TU _{W,max} * X _i)	% Contribution $TU_{W,\text{max}}$
Naphthalene	128.2	3.33	7.03E-04	61.0	2.65E-10	2.06E-02	8.70E-06	80.81	1.67	3.97
C1-Naphthalenes	142.2	3.80	2.14E-04	133.3	5.23E-10	4.06E-02	3.13E-06	68.33	2.78	6.62
C2-Naphthalenes	156.2	4.30	6.03E-05	266.3	9.51E-10	7.39E-02	1.05E-06	57.17	4.22	10.08
C3-Naphthalenes	170.3	4.80	1.70E-05	294.0	9.64E-10	7.48E-02	3.55E-07	47.82	3.58	8.54
C4-Naphthalenes	184.3	5.30	4.79E-06	204.9	6.20E-10	4.82E-02	1.20E-07	40.01	1.93	4.60
Biphenyl	154.2	3.80	2.14E-04	12.8	4.61E-11	3.58E-03	3.13E-06	68.33	0.24	0.58
Acenaphthylene	152.2	4.00	1.29E-04	8.4	3.06E-11	2.38E-03	2.02E-06	63.63	0.15	0.36
Acenaphthene	154.2	4.20	7.76E-05	19.0	6.89E-11	5.35E-03	1.31E-06	59.24	0.32	0.76
Fluorene	166.2	4.32	5.73E-05	47.9	1.61E-10	1.25E-02	1.01E-06	56.76	0.71	1.69
C1-Fluorenes	180.3	4.72	2.08E-05	123.0	3.81E-10	2.96E-02	4.23E-07	49.21	1.45	3.47
C2-Fluorenes	194.3	5.20	6.17E-06	224.4	6.45E-10	5.01E-02	1.49E-07	41.46	2.08	4.95
C3-Fluorenes	208.3	5.70	1.74E-06	294.3	7.88E-10	6.12E-02	5.01E-08	34.68	2.12	5.07
Phenanthrene	178.2	4.57	3.03E-05	88.7	2.78E-10	2.16E-02	5.84E-07	51.90	1.12	2.67
Anthracene	178.2	4.68	2.30E-05	7.8	2.44E-11	1.89E-03	4.61E-07	49.92	0.09	0.23
C1-Phenanthrenes	192.3	5.04	9.25E-06	236.6	6.87E-10	5.33E-02	2.11E-07	43.90	2.34	5.59
C2-Phenanthrenes	206.3	5.46	3.19E-06	334.7	9.05E-10	7.03E-02	8.45E-08	37.79	2.66	6.34
C3-Phenanthrenes	220.3	5.92	9.95E-07	290.4	7.35E-10	5.71E-02	3.10E-08	32.07	1.83	4.37
C4-Phenanthrenes	234.3	6.32	3.61E-07	238.6	5.68E-10	4.41E-02	1.30E-08	27.80	1.23	2.93
Dibenzothiophene	184.2	4.53	3.37E-05	40.1	1.21E-10	9.43E-03	6.39E-07	52.66	0.50	1.18
C1-Dibenzothiophene	198.3	4.96	1.13E-05	140.0	3.94E-10	3.06E-02	2.51E-07	45.17	1.38	3.30

C2-Dibenzothiophene	212.3	5.42	3.53E-06	372.0	9.78E-10	7.59E-02	9.21E-08	38.33	2.91	6.95
C3-Dibenzothiophene	226.3	5.89	1.07E-06	373.7	9.22E-10	7.16E-02	3.31E-08	32.41	2.32	5.53
Fluoranthene	202.3	5.23	5.71E-06	3.8	1.04E-11	8.08E-04	1.39E-07	41.02	0.03	0.08
Pyrene	202.3	5.13	7.36E-06	16.6	4.57E-11	3.55E-03	1.73E-07	42.51	0.15	0.36
C1-Fluoranthenes	216.3	5.48	3.00E-06	82.8	2.14E-10	1.66E-02	8.02E-08	37.46	0.62	1.48
C2-Fluoranthenes	230.3	5.88	1.10E-06	133.7	3.24E-10	2.51E-02	3.39E-08	32.53	0.82	1.95
C3-Fluoranthenes	244.3	6.28	4.00E-07	174.6	3.99E-10	3.10E-02	1.42E-08	28.20	0.87	2.08
Benzo(a)anthracene	195.0	5.91	1.02E-06	7.0	2.01E-11	1.56E-03	3.17E-08	32.18	0.05	0.12
Chyrsene	228.3	5.81	1.32E-06	37.6	9.20E-11	7.14E-03	3.94E-08	33.35	0.24	0.57
C1-Chyrsenes	242.3	6.14	5.70E-07	88.5	2.04E-10	1.58E-02	1.92E-08	29.64	0.47	1.12
C2-Chyrsenes	256.3	6.43	2.74E-07	127.1	2.77E-10	2.15E-02	1.03E-08	26.74	0.57	1.37
C3-Chyrsenes	270.4	6.94	7.52E-08	44.6	9.21E-11	7.15E-03	3.37E-09	22.28	0.16	0.38
C4-Chyrsenes	284.4	7.36	2.59E-08	10.4	2.04E-11	1.58E-03	1.35E-09	19.18	0.03	0.07
Benzo(b)fluoranthene	252.3	6.27	4.14E-07	8.2	1.81E-11	1.40E-03	1.46E-08	28.34	0.04	0.10
Benzo(k)fluoranthene	252.3	6.29	3.89E-07	1.1	2.47E-12	1.92E-04	1.38E-08	28.09	0.01	0.01
Benzo(e)pyrene	252.3	6.44	2.67E-07	14.2	3.14E-11	2.44E-03	1.00E-08	26.63	0.07	0.16
Benzo(a)pyrene	252.3	6.13	5.85E-07	5.0	1.10E-11	8.53E-04	1.97E-08	29.75	0.03	0.06
Perylene Indeno(1,2,3-	252.3	6.25	4.32E-07	14.5	3.21E-11	2.49E-03	1.51E-08	28.50	0.07	0.17
cd)pyrene	276.3	6.72	1.31E-07	3.6	7.30E-12	5.67E-04	5.42E-09	24.08	0.01	0.03
Dibenz(a,h)anthracene	278.4	6.71	1.34E-07	5.1	1.02E-11	7.95E-04	5.53E-09	24.16	0.02	0.05
Benzo(ghi)perylene	276.3	6.51	2.25E-07	5.9	1.20E-11	9.31E-04	8.65E-09	26.00	0.02	0.06
			Total Moles of	Specific PAHs =	1.29E-08	Acute Narcotic Chronic Narcotic	Potency of Ave Potency of Ave		41.90 213.28	100.00

A.7.a PAH Analyte List by Laboratory Compounds Included in Total PAH Measurement Compounds in Bold are the National Status and Trends PAHs (NS&T Total

PAHs)

B&B Laboratory	GERG	Lancaster Laboratories
Naphthalene	Naphthalene	Naphthalene
C1-Naphthalenes	C1-Naphthalenes	
C2-Naphthalenes	C2-Naphthalenes	
C3-Naphthalenes	C3-Naphthalenes	
C4-Naphthalenes	C4-Naphthalenes	
Benzothiophene	_	
C1-Benzothiophenes		
C2-Benzothiophenes		
C3-Benzothiophenes		
Biphenyl	Biphenyl	
Acenaphthylene	Acenaphthylene	Acenaphthylene
Acenaphthene	Acenaphthene	Acenaphthene
Dibenzofuran	•	
Fluorene	Fluorene	Fluorene
C1-Fluorenes	C1-Fluorenes	
C2-Fluorenes	C2-Fluorenes	
C3-Fluorenes	C3-Fluorenes	
Carbazole		
Anthracene	Anthracene	Anthracene
Phenanthrene	Phenanthrene	Phenanthrene
C1-Phenanthrene/Anthracenes	C1-Phenanthrenes/Anthracenes	
C2-Phenanthrene/Anthracenes	C2-Phenanthrenes/Anthracenes	
C3-Phenanthrene/Anthracenes	C3-Phenanthrenes/Anthracenes	
C4-Phenanthrene/Anthracenes	C4-Phenanthrenes/Anthracenes	
Dibenzothiophene	Dibenzothiophene	
C1-Dibenzothiophene	C1-Dibenzothiophenes	
C2-Dibenzothiophene	C2-Dibenzothiophenes	
C3-Dibenzothiophene	C3-Dibenzothiophenes	
Fluoranthene	Fluoranthene	Fluoranthene
Pyrene	Pyrene	Pyrene
C1-Fluoranthenes/Pyrenes	C1-Fluoranthenes/Pyrenes	
C2-Fluoranthenes/Pyrenes	C2-Fluoranthenes/Pyrenes	
C3-Fluoranthenes/Pyrenes	C3-Fluoranthenes/Pyrenes	
Naphthobenzothiophene		
C1-Naphthobenzothiophenes		

B&B Laboratory	GERG	Lancaster Laboratories
C2-Naphthobenzothiophenes		
C3-Naphthobenzothiophenes		
Benz(a)anthracene	Benzo(a)anthracene	Benzo(a)anthracene
Chrysene	Chrysene	Chrysene
C1-Chrysenes	C1-Chrysenes	
C2-Chrysenes	C2-Chrysenes	
C3-Chrysenes	C3-Chrysenes	
C4-Chrysenes	C4-Chrysenes	
Benzo(b)fluoranthene	Benzo(b)fluoranthene	Benzo(b)fluoranthene
Benzo(k)fluoranthene	Benzo(k)fluoranthene	Benzo(k)fluoranthene
Benzo(e)pyrene	Benzo(e)pyrene	
Benzo(a)pyrene	Benzo(a)pyrene	Benzo(a)pyrene
Perylene	Perylene	
Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-cd)pyrene
Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene
Benzo(g,h,i)perylene	Benzo(g,h,i)perylene	Benzo(g,h,i)perylene

A.7.b PAH Analyte List by Laboratory Additional Analytes Not Included as Total PAHs Compounds in Bold are the National Status and Trends PAHs (NS&T Total

PAHs)

B&B Laboratory	GERG	Lancaster Laboratories
2-Methylnaphthalene	2-Methylnaphthalene	Methyl t-Butyl Ether
1-Methylnaphthalene	1-Methylnaphthalene	Benzene
2,6-Dimethylnaphthalene	2,6-Dimethylnaphthalene	Toluene
1,6,7-Trimethylnaphthalene	1,6,7-Trimethylnaphthalene	Ethylbenzene
1-Methylphenanthrene	1-Methylphenanthrene	m,p-Xylene
C29-Hopane		o-Xylene
18a-Oleanane		Isopropylbenzene (Cumene)
C30-Hopane		n-Propylbenzene
		1,3,5-Trimethylbenzene
		tert-Butylbenzene
		1,2,4-Trimethylbenzene
		sec-Butylbenzene
		p-Isopropyltoluene
		n-Butylbenzene

APPENDIX B

Water Sample Analytical Results

- B.1. Water sample log.
- B.2. PAH analyses of water samples collected during preassessment efforts
- B.3. Total suspended solids (TSS) analyses of water samples collected on December 7-8, 2004.
- B.4. Volatile organic analyses of water samples collected on November 27, 2004, near the Commodore Barry Bridge.

B.1. Water sample log. All samples are surface samples unless noted otherwise in the comments column.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
W-CBB-01	39.82586	-75.36619	27-Nov-04	391	Comm. Barry Br.
W-CBB-02	39.82.895	-75.37180	27-Nov-04	618	Comm. Barry Br.
W-CBB-03	39.83286	-75.37460	27-Nov-04	564	Comm. Barry Br.
W-WOOD-01	39.84204	-75.15443	28-Nov-04	962	Woodbury Creek
W-WOOD-02	39.86600	-75.19727	28-Nov-04	768	Woodbury Creek
W-DR-01	39.87383	-75.19268	28-Nov-04	3015	NJ side, just upstream of Woodbury Creek
W-DER-01			28-Nov-04	457	DE River on NJ side of where Athos moored
W-MAN-01			28-Nov-04	1122	Upstream of first bridge, Mantua Creek
W-MAN-02			28-Nov-04	585	Mouth of Mantua Creek
W-BTC-01-1	39.86117	-75.11560	28-Nov-04	876	Big Timber Creek
W-BTC-01-2	39.86117	-75.11560	28-Nov-04	787	Big Timber Creek (field duplicate)
W-BTC-02	39.88633	-75.13495	28-Nov-04	1124	Big Timber Creek
W-BTC-03	39.88685	-75.13690	28-Nov-04	1517	Big Timber Creek
WMH-01	39.79208	-75.44603	28-Nov-04	727	Marcus Hook
WMH-02	39.78860	-75.44796	28-Nov-04	595	Marcus Hook
WMH-03	39.78389	-75.44540	28-Nov-04	474	Marcus Hook
W-BTC-04	39.88840	-75.13528	30-Nov-04	203	Big Timber Creek
W-BTC-05	39.88582	-75.13320	30-Nov-04	310	Big Timber Creek
W-BTC-06	39.85307	-75.09625	30-Nov-04	304	Big Timber Creek
W-WOOD-03-1	39.86990	-75.19633	30-Nov-04	205	Woodbury Creek
W-WOOD-03-2	39.86990	-75.19633	30-Nov-04	195	Woodbury Creek
W-WOOD-04	39.86517	-75.19558	30-Nov-04	283	Woodbury Creek
W-WOOD-05	39.88840	-75.13528	30-Nov-04	481	Woodbury Creek
WMH-04	39.78833	-75.44200	30-Nov-04	439	Marcus Hook
WMH-05	39.78600	-75.44233	30-Nov-04	289	Marcus Hook
WMH-06	39.78350	-75.44033	30-Nov-04	273	Marcus Hook
W-CBB-04	39.82300	-75.36667	30-Nov-04	407	Comm. Barry Br.
W-CBB-05	39.82500	-75.36700	30-Nov-04	225	Comm. Barry Br.
W-CBB-06	39.83333	-75.36867	30-Nov-04	249	Comm. Barry Br.
W-DER-02			30-Nov-04	646	160 m East of Athos I bow
W-MAN-03			30-Nov-04	729	Mouth of Mantua Creek
W-MAN-04			30-Nov-04	403	1/4 mi up Mantua Creek
WPA4-J	39.86318	-75.2407	30-Nov-05	2531	PA, Across from Mantua Creek
WMIF-1	39.87612	-75.20883	30-Nov-05	4927	Mouth of Schuylkill River
WMIF-2	39.87522	-75.21192	30-Nov-05	586	Mouth of Schuylkill River
W-UL-01	40.01288	-75.02488	7-Dec-04	177	Upstream of Tacony Palmyra Bridge, East Bank
W-UL-02	40.01740	-75.02817	7-Dec-04	105	Upstream of Tacony Palmyra Bridge, Center Channel
WSUB-01-1	40.01740	-75.02817	7-Dec-04	478	Upstream of Tacony Palmyra Bridge, Center Channel (Bottom sample)

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
WSUB-01-2	40.01740	-75.02817	7-Dec-04	32	Upstream of Tacony Palmyra Bridge, Center Channel (Bottom sample)
W-UL-03	40.01770	-75.03710	7-Dec-04	179	Upstream of Tacony Palmyra Bridge, West Bank
W-TPB-01	40.00922	-75.04285	7-Dec-04	141	East Bank
W-TPB-02	40.01132	-75.04483	7-Dec-04	213	Center Channel
W-TPB-03	40.01370	-75.04610	7-Dec-04	320	West Bank
W-BTC-07	39.88330	-75.13205	7-Dec-04	409	Big Timber Creek
W-Dup-01	39.88330	-75.13205	7-Dec-04	378	Big Timber Creek, duplicate
W-BTC-08	39.87150	-75.12043	7-Dec-04	287	Big Timber Creek
W-BTC-09	39.88698	-75.13533	7-Dec-04	190	Big Timber Creek, river side of boom at mouth
WLP-#1-5	39.43060	-75.47412	7-Dec-04	130	Liston Pt. Left Descending Bank
WLP-#2-5	39.40397	-75.49662	7-Dec-04	132	Liston Pt. Center Channel
WLP-#3-5	39.40127	-75.52187	7-Dec-04	2154	Liston Pt. Right Descending Bank
W-WOOD-07	39.86608	-75.19635	8-Dec-04	250	Woodbury Creek, inside boom creekside, eastside
W-WOOD-08	39.84190	-75.15450	8-Dec-04	533	Woodbury Creek, otherside of bridge, by baseball field
W-WOOD-06	39.86717	-75.19670	8-Dec-04	235	Woodbury Creek, riverside of boom
W-MAN-07	39.83477	-75.23668	8-Dec-04	255	Mantua Creek, downriver
W-MAN-06	39.85383	-75.23105	8-Dec-04	214	Mantua Creek, inside boom, creekside at mouth
W-MAN-05	39.85445	-75.23135	8-Dec-04	188	Mantua Creek, outside boom, riverside at mouth
W-TN-01	39.85915	-75.30923	8-Dec-04	437	Tinicum Island, west coast outside boom, riverside
W-TN-02	39.85327	-75.31020	8-Dec-04	383	Tinicum Island, in front of island to the NJ side
W-SUBTN-01-1	39.85327	-75.31020	8-Dec-04	2083	Tinicum Island, in front of island to the NJ side (Bottom sample)
W-SUBTN-01-2	39.85327	-75.31020	8-Dec-04	197	Tinicum Island, in front of island to the NJ side (Bottom sample)
W-TN-03	39.84487	-75.30710	8-Dec-04	244	NJ side of river shoreline area
W-TN-04	39.84393	-75.28160	8-Dec-04	299	Off cove on island NJ side at Greenwich
W-SUBTN-02-1	39.84393	-75.28160	8-Dec-04	317	Off cove on island NJ side at Greenwich (Bottom sample)
W-SUBTN-02-2	39.84393	-75.28160	8-Dec-04	38	Off cove on island NJ side at Greenwich (Bottom sample)
WCD-#1S	39.57283	-75.53270	8-Dec-04	220	C & D Canal, Left Descending Bank
WCD-#2S	39.57093	-75.56238	8-Dec-04	154	C & D Canal, Center Channel
WCD-#2D-1	39.57093	-75.56238	8-Dec-04	297	C & D Canal, Center Channel (Bottom sample)
WCD-#2D-2	39.57093	-75.56238	8-Dec-04	38	C & D Canal, Center Channel (Bottom sample)
WCD-#3S (ETX3924D)	39.57097	-75.56923	8-Dec-04	210	C & D Canal, Right Descending Bank
WCR-#1S	39.71685	-75.51042	8-Dec-04	180	Christina River, Right Descending Bank
WCR-#1D-1	39.71685	-75.51042	8-Dec-04	776	Christina River, Right Descending Bank (Bottom sample)
WCR-#1D-2	39.71685	-75.51042	8-Dec-04	100	Christina River, Right Descending Bank (Bottom sample)

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
WCR-#2S	39.71297	-75.50800	8-Dec-04	187	Christina River, Center Channel
WCR-#2D-1	39.71297	-75.50800	8-Dec-04	809	Christina River, Center Channel (Bottom sample)
WCR-#2D-2	39.71297	-75.50800	8-Dec-04	25	Christina River, Center Channel (Bottom sample)
WCR-#3S (ETX3918.D)	39.71183	-75.49560	8-Dec-04	160	Christina River, Left Descending Bank
WCR-#3S (ETX3924.D)			8-Dec-04	210	Christina River
WMH-#1-5	39.80968	-75.41132	8-Dec-04	26634	Marcus Hook, Right Descending Bank
WMH-#1S			8-Dec-04	293	Marcus Hook
WMH-#2D	39.80370	-75.41062	8-Dec-04	570	Marcus Hook, Center Channel (Bottom sample)
WMH-#3S	39.79850	-75.40993	8-Dec-04	172	Marcus Hook, Left Descending Bank

B.2. PAH analyses of water samples collected during preassessment efforts.

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3798.D W-BTC-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/07/04 PAH-2002 1.0 NA	ETX3800.D W-BTC-02 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/07/04 PAH-2002 1.0 NA	ETX3802.D W-BTC-03 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3804.D W-WOOD-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3806.D W-WOOD-02 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3808.D W-DER-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzoturan Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrenes	93.3 93.4 68.6 49.0 41.1 <1.7 U <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <3.5 U <3.5 U <3.5 U <3.5 U <3.5 U <3.5 U <3.5 U <3.7 U <3.8 U <3.8 U <3.8 U <3.8 U <3.9 U <3.8 U <3.9 U <3.8 U <3.9 U <3.8 U <4.8 U	130 129 90.2 69.2 45.4 1.9 7.8 9.2 12.6 4.7 1.7 6.1 4.8 7.1 17.5 28.0 36.3 1.2 J 1.7 14.9 35.8 48.0 28.6	78.2 59.2 64.0 71.8 77.3 1.5 3.3 U 3.3 U 3.3 U 5.3 1.6 6.5 5.5 20.5 51.5 66.2 6.6 1.8 15.7 48.5 103.0 95.8 68.3	62.8 39.9 38.1 28.4 27.3 1 <1.7 t <3.3 t	39.9 32.4 32.0 26.2 30.8 <1.7 U <3.3 U <3.3 U <4.3 4 4.4 4.0 5.1 11.0 26.9	48.6 31.2 25.7 17.2 18.9 1 <1.6 U <3.3 U <3.3 U <3.3 U 3.0 1.5 <1.3 U 3.3 2.8 5.8
Dibenzothiophene C1-Dibenzothiophenes C2-Dibenzothiophenes C2-Dibenzothiophenes C3-Dibenzothiophenes Fluoranthene Pyrene C1-Fluoranthenes/Pyrenes C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophene C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes Benz(a)anthracene	1.7 13.1 25.1 29.1 17.1 22.2 15.2 10.7 7.5 6.5 12.8 21.2 15.1 8.8	2.4 20.2 33.9 43.9 10.6 16.7 16.8 14.5 13.3 6.8 21.4 35.0 23.5 5.6	3.5 35.3 82.6 110 8.3 15.7 23.6 27.1 36.9 14.8 56.0 84.8 47.7 5.8	3.2 5.0 4.6 7.5 112 71.7 21.5 13.5 4.2 13.8 8.0 9.8 <2.3 U	3.3 15.8 28.8 40.8 16.4 24.1 15.7 14.0 11.8 8.2 21.2 32.4 24.2	1.0 8.0 13.4 20.6 8.1 14.4 9.5 6.7 4.0 3.9 10.3 15.5 12.5
Chrysene C1-Chrysenes C2-Chrysenes C3-Chrysenes C4-Chrysenes Eenzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	13.2 10.6 7.4 <1.6 U <1.6 U 18.2 6.2 11.5 11.9 4.5 8.2 <1.5 U 9.3	7.9 10.2 12.9 5.9 <1.6 U 9.8 3.2 6.9 5.6 3.0 3.6 <1.5 U 4.4	11.1 21.0 29.3 15.7 <1.6 U 8.3 2.2 J 8.1 4.9 4.5 3.5 <1.5 U 3.7	43.9 9.5 <1.6 U <1.6 L 60.2 19.4 33.3 25.6 6.1 30.1 4.3 29.1	<1.6 U	
Total PAHs	876	1124	1517	962	768	457
Individual Alkyl Isomers and Hope						
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	96.2 53.4 26.8 5.9 4.3 24.7 ⊲10 U 27.1	126 80.5 34.3 7.0 6.4 15.7 <9.7 U 24.2	63.3 31.5 26.3 8.9 9.9 32.5 <9.9 U 41.4	37.0 26.9 13.5 3.5 4.4 44.1 <9.9 U	33.2 18.6 12.1 3.5 5.1 26.4 <10 U 31.5	33.4 16.6 10.0 2.5 2.7 12.7 <9.8 U 17.1
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	74 79 75 68 80	78 82 77 75 82	78 81 78 78 84	57 56 57 56 62	76 80 77 80 81	80 80 75 73 80

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3810.D	ETX3812.D	ETX3814.D	ETX3820.D	ETX3822.D	ETX3824.D
	W-MAN-01 (1 of 2)	W-MAN-02 (1 of 2)	W-CBB-01 (1 of 6)	W-CBB-02 (1 of 2)	W-CBB-03 (1 of 2)	WMH-1 (1 of 2)
	Water	Water	Water	Water	Water	Water
	11/28/04	11/28/04	11/27/04	11/27/04	11/27/04	11/28/04
	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04
	12/01/04	12/01/04	12/01/04	12/01/04	12/01/04	12/01/04
	ENV 1054	ENV 1054	ENV 1054	ENV 1054	ENV 1054	ENV 1054
	12/08/04	12/08/04	12/08/04	12/08/04	12/08/04	12/08/04
	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
	1.0	1.0	1.0	1.0	1.0	1.0
	NA	NA	NA	NA	NA	NA
Target Compounds	Su Corrected Q	Su Corrected Q	Su Corrected Q	Su Corrected Q	Su Corrected Q	Su Corrected Q
	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes E2-Naphthalenes Benzothiophene C1-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Bipheryl Acenaphthylene Acenaphthylene Acenaphthylene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C1-Phenanthrene C1-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenzothiophenes C3-Dibenzothiophenes C1-Dibenzothiophenes C1-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Phenanthrenes/Pyrenes C3-Chysenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C4-Chrysenes C4-Chrysenes C4-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	90.1 66.0 69.0 55.1 52.5 <1.6 U <3.3 U <3.3 U <3.3 U <3.3 S 4.0 12.1 9.1 8.8 23.3 39.6 55.4 16.9 4.3 22.4 33.9 58.5 46.6 32.3 4.4 18.7 35.2 48.3 28.2 37.3 19.6 16.7 9.6 9.3 21.9 34.0 27.7 8.9 12.3 11.1 8.2 <1.6 U 16.3 5.7 10.7 10.5 5.7 7.0 1.6 7.1	91.8 51.3 34.6 24.1 23.8 <1.6 U <3.3 U <3.3 U <3.3 U <3.3 U <4.4 4.4 4.3 8.5 15.9 <1.2 U 8.3 1.3 8.4 15.9 25.4 26.2 15.5 1.1 11.7 16.2 23.4 10.8 15.9 25.4 26.2 15.5 6.4 15.9 25.4 26.2 15.5 1.1 11.7 16.2 23.4 10.8 15.5 10.2 8.8 7.2 23.4 10.8 15.5 10.2 8.8 7.2 3.3 4.8 4.6 U <1.6 U <1.6 U 10.3 3.7 7.4 6.2 3.3 4.8 <1.5 U 4.6 U 4.6 U	45.4 33.4 28.9 16.2 <6.1 U <1.6 U <3.2 U <3.2 U <3.2 U <3.2 U <3.2 S 2.9 4.7 3.5 3.6 4.7 <1.2 U <1.2 U 5.9 3.1 8.7 8.3 9.6 8.6 3.7 -1.7 U 19.0 25.4 12.1 5.7 3.7 4.0 <2.2 U <2.2 U <2.2 U <2.2 U <11.2 12.4 7.5 4.1 <1.6 U 22.1 8.5 11.8 13.4 6.8 6.8 10.0 2.4 10.6	84.9 57.4 31.8 18.9 14.3 <1.6 3.2 U <3.2 U <3.2 U <3.2 U 4.2 4.7 5.4 4.2 7.2 7.2 7.2 1.2 U 8.2 5.6 17.7 12.8 18.3 13.6 8.9 1.0 4.3 <1.7 U <1.7 U 32.7 39.3 20.6 10.6 4.8 6.9 4.9 <2.2 U 15.6 19.6 11.4 5.5 <1.6 U 28.4 10.5 17.9 17.4 13.6 13.8 3.1 13.4	61.2 37.5 22.4 13.1 10.9 <1.6 U <3.2 U <3.2 U <3.2 U <3.1 3.4 4.2 4.4 3.5 <1.2 U <1.2 U <1.2 U <1.2 U 1.3.9 20.1 19.5 13.1 1.2 4.7 7.1 13.4 32.0 36.9 19.3 9.9 8.4 7.4 8.1 11.4 <2.2 U 12.9 16.4 9.4 5.1 <1.6 U <1.6 U <1.6 U <1.7 U <1.7 U <1.8 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.0 U	63.3 67.6 76.3 42.7 21.1 <1.7 U <3.4 U <3.4 U <3.4 U <3.4 U <3.4 U 5.1 4.5 5.8 5.4 5.6 7.0 9.8 <1.3 U 2.1 7.7 25.1 20.5 27.3 21.3 11.0 1.8 4.3 4.5 <1.8 U 34.9 38.2 22.9 10.6 6.7 7.6 6.5 <2.4 U <2.4 U 15.3 18.3 10.0 5.3 <1.7 U 26.3 8.4 14.6 17.2 16.0 13.5 2.2 12.5
Total PAHs	1122	585	391	618	564	727
Individual Alkyl Isomers and Hopar	nes					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	67.7	57.0	34.5	64.4	39.7	67.5
	37.9	25.1	19.0	27.4	20.2	40.8
	24.3	14.2	8.7	14.6	10.1	31.9
	6.5	1.5	0.9 J	1.6	1.4	4.9
	5.9	2.9	1.3	2.6	2.8	4.5
	35.4	13.6	21.8	31.6	24.4	27.7
	<9.8 U	<9.8 U	<9.6 U	<9.6 U	<9.6 U	<10.1 U
	37.2	18.1	24.0	45.8	34.1	29.3
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8	43	86	70	68	82	87
Acenaphthene-d10	40	84	77	69	80	87
Phenanthrene-d10	40	77	76	69	71	72
Chrysene-d12	52	70	66	69	81	82
Perylene-d12	52	80	77	72	77	66

Sample Name	ETX3826.D	ETX3828.D	ETX3830.D	
Client Name	WMH-2 (1 of 2)	WMH-3 (1 of 2)	W-DR-01 (1 of	
1) Matrix	Water	Water	Water	
Collection Date	11/28/04	11/28/04	11/28/04	
Received Date	11/30/04	11/30/04	11/30/04	
Extraction Date	12/01/04	12/01/04	12/01/04	
Extraction Batch	ENV 1054	ENV 1054	ENV 1054	
Date Acquired	12/08/04	12/08/04	12/08/04	
Method	PAH-2002	PAH-2002	PAH-2002	
Sample Volume (L)	1.0	1.0	1.0	
Dilution	NA	NA	NA	
Target Compounds	Su Corrected Q	Su Corrected Q	Su Corrected	
	Q Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	
Naphthalene	65.0	79.3	97.4	
C1-Naphthalenes	64.5	40.4	65.1	
C2-Naphthalenes	67.8	24.5	122	
C3-Naphthalenes	34.4	16.8	138	
C4-Naphthalenes	19.9	<6.4 U	124	
Benzothiophene	<1.7 U	<1.7 U	1.3 J	
C1-Benzothiophenes	<3.4 U	<3.4 U	<3.3 U	
C2-Benzothiophenes	<3.4 U	<3.4 U	<3.3 U	
C3-Benzothiophenes	<3.4 U	<3.4 U	<3.3 U	
		<3.4 U 2.3		
Siphenyl	2.6		5.9	
cenaphthylene	2.8	3.0	5.2	
cenaphthene	5.7	4.2	7.2	
Dibenzofuran	5.1	4.1	7.7	
Fluorene	4.8	3.0	13.8	
C1-Fluorenes	7.4	<1.3 U	46.3	
C2-Fluorenes	<1.3 U	<1.3 U	110.0	
C3-Fluorenes	<1.3 U	<1.3 U	132	
Carbazole	1.8 J	7.0	<1.9 U	
Anthracene	4.5	4.4	4.2	
Phenanthrene	19.4	18.9	41.6	
C1-Phenanthrene/Anthracenes	16.0	10.5	117	
C2-Phenanthrene/Anthracenes	22.6	13.9	214	
C3-Phenanthrene/Anthracenes	17.3	11.6	204	
C4-Phenanthrene/Anthracenes	9.9	8.1	136	
Dibenzothiophene	1.4	1.4	11.7	
C1-Dibenzothiophenes	5.6	<1.8 U	71.2	
	4.0	<1.8 U	164	
C2-Dibenzothiophenes				
C3-Dibenzothiophenes	<1.8 U	<1.8 U	229	
Fluoranthene	24.4	25.1	23.0	
Pyrene	28.1	27.2	33.1	
C1-Fluoranthenes/Pyrenes	15.6	13.0	49.5	
C2-Fluoranthenes/Pyrenes	7.0	7.6	60.1	
C3-Fluoranthenes/Pyrenes	<1.4 U	<1.4 U	36.9	
Naphthobenzothiophene	6.7	3.7	28.0	
C1-Naphthobenzothiophenes	6.7	4.3	112	
C2-Naphthobenzothiophenes	<2.4 U	<2.4 U	190	
C3-Naphthobenzothiophenes	<2.4 U	<2.4 U	156	
Benz(a)anthracene	11.3	12.2	17.0	
Chrysene	13.4	13.6	24.2	
C1-Chrysenes	7.4	8.0	45.3	
C2-Chrysenes	<1.7 U	4.7	57.9	
C3-Chrysenes	<1.7 U	-:. <1.7 U	21.8	
C4-Chrysenes	<1.7 U	<1.7 U	<1.6 U	
Benzo(b)fluoranthene	26.9	30.8	20.6	
Benzo(k)fluoranthene	3.8	4.4	6.3	
Benzo(e)pyrene	3.o 13.1	13.9	18.2	
	13.1	13.9	13.2	
Benzo(a)pyrene Perylene	14.2		10.0	
		11.6		
ndeno(1,2,3-c,d)pyrene	9.7	11.9	9.3	
Dibenzo(a,h)anthracene	1.9	2.2	2.5	
Benzo(g,h,i)perylene	10.6	11.8	11.1	
Total PAHs	595	474	3015	
IVIAI FANS	595	4/4	3015	
ndividual Isomers				
2-Methylnaphthalene	64.5	46.1	66.4	
-Methylnaphthalene	38.8	18.4	37.9	
2,6-Dimethylnaphthalene	26.3	10.7	49.2	
,6,7-Trimethylnaphthalene	4.2	1.4	18.3	
-Methylphenanthrene	3.6	2.3	22.5	
C29-Hopane	20.9	23.3	54.3	
18a-Oleanane	<10.1 U	23.3 <10.1 U	54.5 <10 U	
C30-Hopane	30.7	28.6	68.0	
		Su Recovery (%)	Su Recovery (%)	
·	Su Recovery (%)	ou recovery (70)		
Surrogate (Su)			90	
Surrogate (Su) Naphthalene-d8	89	82	80	
Surrogate (Su) Naphthalene-d8 Acenaphthene-d10	89 93	82 85	83	
Surrogate (Su) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10	89 93 68	82 85 69	83 76	
Surrogate (Su) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12	89 93	82 85	83	

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3837.D W-WOOD-03 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3838.D V-WOOD-03 (2 of 2) V Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3839.D V-WOOD-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3841.D W-BTC-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3843.D W-BTC-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3845.D W-BTC-06 (1 of 1) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C1-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Ruoranthenes/Pyrenes C3-Naphthobenzothiophenes C1-Naphthobenzothiophenes C1-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C4-Chrysenes C3-Chrysenes C4-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(b)pyrene Benzo(a)pyrene Benzo(a,h)anthracene Benzo(g,h,i)perylene	42.1 28.9 17.1 8.9 <6.5 U <1.7 U <3.5 U <3.5 U <3.5 U <3.5 U <1.1 J 3.3 2.8 2.1 <1.3 U <1.3 U <1.3 U <1.6 J 1.0 6.7 12.6 <2.9 U <2.9 U <2.9 U <1.8 U <1.8 U <1.8 U <1.8 U <1.8 U <1.8 U <1.7 U <1.8 U <2.8 <1.9 U <2.9 U <1.8 U <1	36.9 23.3 16.3 9.2 <6.5 U <1.7 U <3.5 U <3.5 U <3.5 U <3.5 U <1.4 U <1.2 U <1.3 U <1.3 U <1.3 U <1.9 U <1.8 U <1.8 U <1.8 U <1.8 U <1.8 U <1.5 U <2.4 U <1.7 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.8 U <1.7	51.3 40.0 20.4 12.6 8.9 <1.6 U <3.2 U <3.2 U <3.1 J 1.2 4.7 3.5 3.6 3.8 5.8 <1.2 U 0.9 J 1.0 2.7 U 2.7 U 2.7 U 1.3 1.9 6.3 5.3 10.9 15.6 6.1 2.7 1.1 J 1.9 2.3 4.6 U <1.6	45.6 33.6 14.2 8.8 <6.6 U <1.7 U <3.5 U <3.5 U 2.0 J 2.7 2.8 1.7 <1.3 U <1.3 U <1.3 U <2.9 U 0.4 J <1.8 U <1.8 U <1.8 U <1.5 U <2.4 U <1.5 U <1.7 U <3.8 U <1.8 U <	3.7 <3.4 L <3.4 L 2.3 <1.1 U 4.8 4.3 2.6 3.6 <1.3 L	J
Total PAHs	205	195	283	203	310	304
Individual Alkyl Isomers and Hope 2-Methylnaphthalene	anes 30.3	23.9	43.2	34.7	40.9	33.5
1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	16.3 6.5 0.5 J 10.6 <10.3 U <10.3 U <10.3 U	13.8 5.2 0.3 J 8.3 <10.3 U <10.3 U <10.3 U	21.2 10.3 1.0 9.8 <9.6 U <9.6 U	19.7 6.8 0.9 J 9.0 <10.4 U <10.4 U <10.4 U	40.3 22.1 9.4 1.4 11.9 <10.2 U <10.2 U <10.2 U	18.3 6.8 1.3 12.4 <10.2 U <10.2 U <10.2 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	74 81 87 79 80	68 78 93 85 81	73 81 91 85 87	69 81 89 77 80	44 49 59 50 50	66 74 79 75 79

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3846.D W-WOOD-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3848.D WPA4-J (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3850.D WMIF-1 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3852.D WMIF-2 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3854.D W-CBB-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3856.D W-CBB-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzofuran Fluorene	37.2 23.6 19.4 15.9 12.8 <1.7 U <3.5 U <3.5 U <4.1 1.8 4.2 4.7	120 85.6 134 129 90.3 2.1 13.9 29.1 22.3 12.6 7.2 45.5 18.9 39.7	195 149 192 257 228 2.5 11.3 33.8 41.7 9.9 8.9 27.7 18.2 37.0	77.4 52.9 29.6 16.8 5.9 1.7 (3.3 (3.3 (3.3 (4.7 4.9 5.1 5.3	32.1 20.0 15.8 11.0 7.8 3.2 3.2 3.2 3.2 3.2 4.3 4.2 4.3 4.2 3.0	51.8 28.5 14.3 7.6 8.6 U <1.6 U 3.2 U U <3.2 U U <3.2 U J 2.0 J 0.8 J 2.3 2.5 1.4
C1-Fluorenes C2-Fluorenes C3-Fluorenes Carbazole Anthracene Phenanthrene C1-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes Dibenzothiophene C1-Dibenzothiophenes C2-Dibenzothiophenes C3-Dibenzothiophenes	4.8 13.6 <1.3 U <1.9 U 2.3 16.7 23.0 17.0 19.2 <2.9 U 1.9 6.4 13.6 9.8	55.1 74.8 80.3 9.1 9.3 89.6 107 145 95.9 46.9 20.2 49.0 90.1	88.3 188 223 <1.9 U 6.4 92.1 208 347 325 186 23.8 115 281	4.0 <1.2 L 1.5 . 4.3 17.7 22.9 11.0 9.2 <2.8 L 1.4 3.5 4.7	J <1.2 U J <1.8 U 1.4 10.1 20.8 21.4 29.9	J <1.2 U J <1.2 U C1.8 U 1.0 5.1 9.7 4.4 4.9 C2.7 U 0.3 J U <1.7 U <1.7 U
Fluoranthene Pyrene C1-Fluoranthenes/Pyrenes C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophene C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C1-Chrysene C1-Chrysenes C2-Chrysenes	24.8 36.9 14.5 10.1 3.5 3.8 6.3 <2.4 U <2.4 U 11.7 20.5 11.4 7.2	69.0 97.3 54.3 35.0 15.1 19.6 34.7 48.9 33.6 37.4 59.0 44.7 32.4	48.7 66.6 73.7 100 61.3 44.7 118 183 159 28.2 66.8 89.3 56.9	29.9 33.0 14.6 7.1 <1.4 l 5.8 5.4 <2.3 l <2.3 l 20.3 28.9 15.3 <1.6 l	16.8 28.3 12.0 8.3 J 5.1 4.9 12.8 J 15.0 J 12.2 9.2 14.7 12.3	10.0 16.6 5.2 3.1 <1.4 U 0.8 J 1.4 J <2.2 U <2.2 U 4.7 7.6 3.8 <1.6 U
C3-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	<1.7 U <1.7 U 20.5 7.1 11.1 13.6 4.5 8.6 1 J 7.7	14.1 <1.7 U 55.0 20.0 30.1 41.3 13.8 25.9 4.0 26.5	42.9 7.0 27.3 9.4 21.2 18.6 12.4 15.4 3.1	<1.6 L <1.6 L 34.9 14.9 19.9 24.4 5.5 16.7 2.7 14.1	J <1.6 l	J <1.6 U
Total PAHs Individual Alkyl Isomers and Hope	481 anes	2531	4927	586	407	225
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	24.1 14.1 8.0 2.6 15.1 19.8 <10.3 U 25.5	76.2 63.3 58.2 21.8 37.8 60.5 <10.4 U 66.4	145 96.3 90 39.1 61 75.4 12.3 68.7	54.8 30.8 12.9 1.2 12.6 16.1 <10 U 9.7 J	20.9 11.4 5.4 1.1 12.4 16.6 <9.6 U 18.2	30.8 15.2 5.1 0.6 J 8.6 <9.6 U <9.6 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	66 73 73 80 76	68 79 75 80 77	65 80 90 94 73	70 84 88 80 74	64 76 87 90 66	66 80 92 83 69

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3858.D W-CBB-06 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3860.D W-DER-2 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3862.D M-MAN-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3864.D M-MAN-03 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3866.D WMH-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3868.D WMH-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C1-Naphthobenzothiophenes C1-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C4-Chrysenes C4-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)pyrene Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	46.1 24.8 13.9 9.5 7.0 <1.6 U <3.2 U <3.2 U <3.2 U <3.2 U <1.2 U <1.1.1 4.5 4.5 4.5 4.5 4.7 <1.2 U <1.2 U <1.8 U 1.3 8.0 12.1 <2.7 U 0.6 J 1.7 U <1.7 U <1.7 U <1.7 U 14.1 23.2 7.6 3.4 <1.4 U 1.8 1.8 J <2.2 U 6.7 10.1 3.8 <1.6 U 1.8 1.8 J <2.2 U <2.2 U 6.7 10.1 3.8 <1.6 U 1.8 1.8 J <2.2 U <2.2 U 6.7 10.1 3.8 <1.6 U 1.8 1.8 J <2.2 U <2.2 U 6.7 10.1 3.8 <1.6 U 10.2 4.2 6.2 6.9 2.4 3.7 <1.5 U 4.0	222 131 42.3 18.1 7.7 <1.7 U <3.5 U <3.5 U <3.5 U <4.0 4.8 7.2 6.8 6.6 4.9 <1.3 U 1.6 J 2.4 13.6 18 6.9 5.4 3.9 1.0 1.8 U <1.8 U <1.8 U <1.8 U <21.4 24.5 7.6 2.7 <1.5 U 2.1 2.4 J <2.4 U <2.4 U <1.7 U <1.7 U <1.7 U <1.7 U <1.7 U <1.7 U 5.8 8.3 8.7 2.8 5.0 <1.6 U 5.3	51.0 36.6 22.2 17.4 13.7 <1.7 U <3.5 U <3.5 U <3.5 U <3.5 U <3.5 U 3.3 3.0 5.0 3.5 4.6 <1.3 U <2 U 2.0 2.1 11.4 19.3 12.1 11.3 2.7 J 1.1 5.0 7.3 11.2 15.6 6.5 <1.5 U 3.2 5.1 5.9 4.5 7.9 6.9 <1.7 U 5.6 8.4 9.3 3.7 5.8 1.5 J 6.8	56.6 39.1 31.2 27.5 21.6 <1.7 U <3.5 U <3.5 U <3.5 U <3.5 S.0 3.2 3.6 4.2 5.0 7.6 19.4 39.4 <1.9 U 1.8 16.1 32.8 31.9 36.8 22.2 2.4 11.1 29.3 39.2 20.5 25.2 15.6 13.1 6.3 7.6 14.1 20.0 14.5 10.4 17.2 12.6 9.0 <1.7 U <1.7 U 13.9 6.0 9.3 10.4 3.8 5.2 1.1 J 6.6	<3.2 U <3.2 U <3.2 U 2.1 J 1.4 5.0 5.0 3.2 <1.2 U <1.2 U <1.2 U <1.2 U <1.2 U	<3.2 U
Total PAHs	249	646	403	729	439	289
Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6.7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	26.6 13.3 5.1 0.7 J 10.0 <9.6 U <9.6 U	134 78.4 19.6 1.6 12.2 12.1 <10.4 U	38.5 20.6 9.6 2.1 11.8 15.2 <10.4 U	39.5 23.8 12.2 2.9 16.3 21.9 <10.3 U 19.1	31.4 16.2 6.4 0.8 J 11.1 14.3 <9.6 U 22.0	38.1 19.7 7.7 1.0 10.2 <9.6 U <9.6 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	65 77 86 82 71	66 80 86 81 72	68 77 88 82 77	66 81 87 86 72	61 76 77 76 67	64 73 83 77 72

Sample Name	ETX3870.D
Client Name 2) Matrix	WMH-06 (1 of Water
Collection Date	11/30/04
Received Date	12/04/04
Extraction Date	12/06/04
Extraction Batch Date Acquired	ENV 1058 12/15/04
Method	PAH-2002
Sample Volume (L)	1.0
Dilution	NA
Target Compounds	Su Corrected
	Q Conc. (ng/L)
Naphthalene	24.0
C1-Naphthalenes	31.0 20.1
C2-Naphthalenes	16.3
C3-Naphthalenes	12.5
C4-Naphthalenes Benzothiophene	11.5 <1.6 U
C1-Benzothiophenes	<3.2 U
C2-Benzothiophenes	<3.2 U
C3-Benzothiophenes	<3.2 U
Biphenyl Acenaphthylene	2.5 1.7
Acenaphthene	5.2
Dibenzofuran	4.2
Fluorene	3.5
C1-Fluorenes C2-Fluorenes	<1.2 U <1.2 U
C3-Fluorenes	<1.2 U
Carbazole	<1.8 U
Anthracene	1.5
Phenanthrene C1-Phenanthrene/Anthracenes	7.9 12.9
C2-Phenanthrene/Anthracenes	8.8
C3-Phenanthrene/Anthracenes	7.4
C4-Phenanthrene/Anthracenes	3.2
Dibenzothiophene C1-Dibenzothiophenes	0.6 J 2.5
C2-Dibenzothiophenes	4.3
C3-Dibenzothiophenes	6.4
Fluoranthene	12.9
Pyrene C1-Fluoranthenes/Pyrenes	22.6 6.6
C2-Fluoranthenes/Pyrenes	3.5
C3-Fluoranthenes/Pyrenes	<1.4 U
Naphthobenzothiophene	2.3 2.2 J
C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes	2.2 J <2.2 U
C3-Naphthobenzothiophenes	<2.2 U
Benz(a)anthracene	6.3
Chrysene C1-Chrysenes	10.4 4.7
C1-Chrysenes C2-Chrysenes	4.7 <1.6 U
C3-Chrysenes	<1.6 U
C4-Chrysenes	<1.6 U
Benzo(b)fluoranthene	10.8
Benzo(k)fluoranthene Benzo(e)pyrene	4.1 6.4
Benzo(a)pyrene	6.3
Perylene	2.3
Indeno(1,2,3-c,d)pyrene	3.7
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	<1.5 U 4.1
	7.1
Total PAHs	273
Individual Isomers	
2-Methylnaphthalene	20.6
2-Methylnaphthalene 1-Methylnaphthalene	20.6 11.9
2,6-Dimethylnaphthalene	6.2
1,6,7-Trimethylnaphthalene	1.1
1-Methylphenanthrene	9.8
C29-Hopane 18a-Oleanane	<9.6 U <9.6 U
C30-Hopane	<9.6 U
Surrogate (Su)	Su Recovery (%)
Naphthalene-d8	69
Acenaphthene-d10	65
Phenanthrene-d10	90
Chrysene-d12	79
Perylene-d12	70

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3885.D W-WOOD-06 Water 12/08/04 12/10/04 12/13/04 ENV 1063 12/15/04 PAH-2002 0.9 NA	ETX3886.D W-WOOD-07 Water 12/08/04 12/10/04 12/13/04 ENV 1063 12/15/04 PAH-2002 0.9 NA	ETX3887.D W-WOOD-08 Water 12/08/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3895.D W-UL-01 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3896.D W-UL-02 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3897.D W-UL-03 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Dibenzothiophene C1-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C1-Dibenzothiophenes C3-Fluoranthene Pyrene C1-Fluoranthenes/Pyrenes	15.0 9.5 10.3 16.1 12 1.9 <3.6 U <3.6 U <3.6 U 1.6 J 2.6 2.4 2.1 2.5 <1.3 U <1.3 U <1.3 U <2.2 U 3.3 8.7 7.1 10.2 10.0 <3.5 4.8 <1.9 U 18.0 17.1 9.4	16.1 10.7 11.8 15.8 14.5 1.5 J 3.6 U 3.6 U 2.7 2.8 2.6 2.9 2.5 <1.3 U <1.3 U <1.3 U 1.4 J 3.2 8.4 6.4 10.3 11.2 <3 0 1.9 2.3 3.6 6.0 <1.9 U 13.3 14.0 9.9	18.3 11.4 12.5 15.4 <6.7 U 1.8 <3.6 U <3.6 U <3.6 G 2.6 3.7 9.4 3.6 7.6 <1.3 U <1.3 U <1.3 U <1.3 U <1.3 U <1.5 U	15.6 10.3 8.5 <6.9 U <6.9 U <5.8 U <3.6 U <3.6 U <3.6 U <2.0 J 2.5 1.7 2.2 2.1 <1.4 U <1.4 U <1.4 U <2.1 U <2.1 U <3.1 U <3.1 U <3.1 U <3.1 U <3.1 U <1.9 U <1.5 T 7.7	13.3 6.9 5.4 J 6.9 U 6.9 U 6.9 U 6.8 U 6.3.6 U 6.3.6 U 1.7 J 1.8 1.1 J 2.3 2.1 61.4 U 61.4 U 61.4 U 61.4 U 61.4 U 61.4 U 61.9 U	13.6 6.0 6.4 J <6.6 U <6.6 U <7.7 J <7.5 U <7.5 U <7.5 U <7.5 U <7.5 U <7.3 U <
C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophene C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes Benz(a) anthracene Chrysene C1-Chrysenes C2-Chrysenes C3-Chrysenes C4-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	6.3 <1.5 U 3.1 <2.5 U <2.5 U 4.9 10.6 <1.7 U <1.7 U <1.7 U <2.5 U 2.5 3.6 6.5 7.2 2.5 3.7 2 J 2.6	6.2 <1.5 U <1.3 U <2.5 U <2.5 U <2.5 U 4.9 9.1 8.0 <1.8 U <1.8 U 12.0 3.8 8.9 2.5 6.2 2 4.8	15.0 <1.5 U 12.0 8.6 8.9 <2.5 U 10.5 31.2 14.1 <1.7 U <1.7 U <1.7 U 38.7 9.8 20.4 16.3 5.2 17.4 3.0 17.7	<1.5 U <1.5 U <1.5 U <2.5 U <2.5 U <2.5 U <2.5 U <3.3 10.1 <1.8 U <1.8 U <1.8 U <1.8 U <1.8 U <1.7 U <1.8 U	<1.5 U <1.5 U <1.3 U <2.5 U <2.5 U <2.5 U <2.5 U <3.6 C 1.8 U <1.8 U <1	2.7 <1.5 U 2.9 <2.4 U <2.4 U <2.4 U 6.1 11.8 <1.7 U <1.7 U <1.7 U <1.7 U 2.8 9.0 <1.6 U 7.0
Total PAHs	235	250	533	177	105	179
Individual Alkyl Isomers and Hopar 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	9.3 6.4 2.8 1.4 2.0 <10.6 U <10.6 U	9.8 7.9 4.9 1.0 J 2.1 <10.8 U <10.8 U	8.3 10.7 3.8 1.2 3.8 44.8 <10.6 U 40.7	10.3 6.8 3.0 <1.1 U 1.4 <10.9 U <10.9 U	6.4 5.1 1.9 <1.1 U 1.1 J <10.9 U <10.9 U	5.1 4.8 2.3 <1.1 U 1.1 J <10.4 U <10.4 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	88 88 88 75 86	86 87 86 76 98	82 86 85 88	82 85 88 78 85	90 91 94 72 98	92 96 97 69 95

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3898.D W-TPB-01 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3899.D W-TPB-02 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3900.D W-TPB-03 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3901.D W-BTC-07 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3902.D W-BTC-08 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3903.D W-BTC-09 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Pluorenes C3-Phenanthrene/Anthracenes C1-Phenanthrene C1-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrenes/Pyrenes C3-Phenanthrenes/Pyrenes C3-Phenanthrenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Aphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(g)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)phipperylene	11.4 5.9 8.4 <6.8 U <6.8 U <1.8 U <3.6 U <3.6 U <3.6 U <3.6 U 1.8 J 1.9 1.7 2.0 1.6 <1.3 U <1.3 U <2.0 7.6 3.8 <3 U <3.0 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.5 U <2.5 U	19.5 8.3 7.2 <7 U <7 U <1.8 U <3.7 U <3.7 U <3.7 U <3.7 U <3.7 U <3.7 U <3.1 U <3.1 U <1.4 U <2.1 U <1.1 U <1.9 U <1.9 U <1.8 U <2.6 U <2.6 U <2.6 U <2.6 U <2.6 U <2.6 U <3.1 U <3.1 U <3.1 U <3.1 U <4.8 U <4.9 U	20.2 11.1 9.8 <6.8 U 6.6.8 U 2.3 <3.6 U 3.6 U 3.6 U 3.6 1.4 J 2.8 2.4 2.4 3.0 <1.3 U <1.3 U 2.3 3.2 14.3 6.8 7.9 5.9 <3 U 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	12.4 9.2 9.7 11.9 10.0 1.7 J <3.5 U <3.5 U <3.5 U <3.5 I <4.3 I <5.7 16.4 10.4 12.4 13.6 <3 I 3.0 5.7 16.4 10.4 12.4 13.6 <3 U 3.3 4.5 7.1 4.5 6.3 3.0 5.7 16.6 2.1 8.8 32.1 32.9 15.1 9.2 <1.5 U 7.1 4.5 6.3 <2.5 U 10.6 21.8 14.8 <1.7 U	3.5 U 3.5 U 3.5 U 3.5 U 3.5 U 3.6 U 4.3 U 4.3 U 4.3 U 3.2 3.1 4.9 4.9 4.9 U 27.1 26.4 10.2 6.8 4.15 U 4.1 4.25 U 4.1 4.25 U 4.1 4.1 4.5 U 4.1 4.1 4.5 U 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	12.1 7.3 8.7 11.7 6.9 U 1.3 J 3.6 U 3.6 U 3.6 U 1.9 J 2.2 1.9 1.8 2.7 1.4 U 1.0 J 2.9 9.1 6.5 10.7 8.9 9.1 6.5 10.7 8.9 9.1 1.6 2.2 5.4 <1.9 U 12.9 13.1 7.7 <1.5 U 2.2 <2.5 U <2.5 U <2.5 U <1.8 U <1
Total PAHs	141	213	320	409	287	190
Individual Alkyl Isomers and Hopan 2-Methy/naphthalene 1-Methy/naphthalene 2,6-Dimethy/naphthalene 1,6,7-Timethy/naphthalene 1-Methy/phenanthrene C29-Hopane 18a-Oleanane C30-Hopane	5.2 4.6 1.7 J <1.1 U 0.9 J <10.8 U <10.8 U <10.8 U	7.5 6.4 2.5 <1.1 U 1.8 <11 U <11 U	9.0 9.4 3.9 <1.1 U 1.5 <10.8 U <10.8 U	7.6 7.7 4.0 0.9 J 2.6 26.6 <10.5 U 27.9	6.2 7.9 1.9 <1.1 U 2.6 22.8 <10.5 U 23.2	6.6 5.5 3.7 0.7 J 1.9 <10.9 U <10.9 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)		Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	91 90 94 82 98	66 70 71 52 63	96 97 94 86 94	90 94 95 96 94	92 96 95 91 90	98 94 99 87 90

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3904.D W-DUP-01 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3905.D WLP #1-5 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3906.D WLP #2-5 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 1.0 NA	ETX3907.D WLP #3-5 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3910.D WSUB-01 (1 of 2) Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3911.D WSUB-01 (2 of 2) Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Pluorenes C1-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophene C1-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C1-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes	12.8 9.4 10.4 11.6 9.9 2.0 <3.6 U <3.6 U <3.6 U <3.6 U 2.0 3.1 5.0 2.6 4.8 <1.3 U <1.3 U <1.3 U <1.3 U <2.5 3.6 5.3 15.1 9.7 14.2 12.4 <3 U 3.2 4.2 6.8 10.2 28.5 30.1 13.6 7.7 <1.5 U 6.6 <2.5 U	15.7 8.7 7.7 4.5 U 4.1 U	11.4 6.9 7.0 46.3 U 46.3 U 41.7 U 43.3 U 43.3 U 43.3 U 1.8 J 2.0 41.4 U 41.2 U 41.2 U 41.9 U 41.9 U 42.8 U 43.8 U 43.8 U 44.8 U 45.8 U 46.8 U 47.8 U	20.0 12.7 49.9 97.0 76.3 <1.8 L <3.6 L <3.6 L <3.6 L <3.6 S 1.1 28.5 110 80.1 127 104 56.1 10,7 53.8 114 131 43.1 48.8 54.1 60.4 41.1 25.9 54.5 92.2 70.1 21.1 50.9	15.1 9.5 7.8 <6.9 L <6.9 L <3.6 L <3.6 L <3.6 L 2.2 . 6.5 <1.5 L 2.8 2.9 <1.4 L <1.4 L	12.3 6.5 6.9 U 6.9 U 7.8
C1-Chrysenes C2-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene	13.7 U <1.7 U <1.7 U <1.7 U 26.4 6.4 14.7 14.3	<1.7 U <1.7 U <1.7 U <1.7 U 9.5 3.1 5.3 6.4	<1.6 U <1.6 U <1.6 U 10.0 3.4 6.5 6.5	68.8 58.6 34.9 <1.7 U 43.2 10.1 30.3 25.0	16.6 <1.8 U <1.8 L	<1.8 U <1.8 U I <1.8 U
Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	5.0 9.3 <1.7 U 11.0	5.9 4.7 <1.6 U 5.0	6.2 3.6 <1.5 U 4.6	33.6 18.9 3.0 19.3	7.9 19.7 4.4 18.7	<0.8 U <2.2 U <1.7 U <2.5 U
Total PAHs	378	130	132	2154	478	31.6
Individual Isomers						
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	8.6 7.1 3.3 0.9 J 2.8 28.4 <10.6 U 30.7	8.8 5.7 2.6 <1 U 1.1 J <10.3 U <10.3 U <10.3 U	6.4 5.1 2.8 <1 U 1.7 <10 U <10 U	11.8 9.4 28.6 9.9 23.7 55.9 <10.6 U 69.1	9.0 6.8 3.8 <1.1 U 3.6 22.2 <10.9 U 37.9	6.2 4.6 <1.8 U <1.1 U <1.2 U <10.9 U <10.9 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	96 96 99 92 97	92 92 99 85 98	95 96 99 90 94	93 94 93 91 93	93 94 97 94 97	93 89 98 82 91

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3888.D W-MAN-05 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3889.D W-MAN-06 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3890.D W-MAN-07 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3891.D W-TN-01 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3892.D W-TN-02 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3893.D W-TN-03 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes E4-Naphthalenes E6-Naphthalenes E7-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes E3-Benzothiophenes E3-Benzothiophenes E4-Pluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Pluorenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C1-Naphthobenzothiophenes C1-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes E6nzo(B)fluoranthene E6nzo(R)fluoranthene E6nzo(R)fluoranthene E6nzo(B)pyrene E6nzo(A)pyrene E6nzo(A)pyrene E6nzo(A)phanthracene	8.8 9.6 9.2 10.7 14.8 2.6 <3.5 U <3.5 U <3.5 U 1.7 J 3.0 1.6 2.0 3.0 <1.3 U <1.3 U <2.3 U 2.4 6.3 5.5 9.4 9.0 <3 U 1.8 13.5 9.4 <1.5 U <1.9 U <1.5 U	7.0 8.4 9.4 10.9 46.7 U 2.6 43.6 U 43.6 U 43.6 U 43.1 U 41.3 U 42.5 1.3 U 41.3 U 42.7 62 7.4 10.1 10.9 43 U 1.4 4.1 7.4 9.8 12.6 14.4 8.3 6.0 4.5 U 42.5 U	7.3 6.2 7.3 6.7 U 2.5 <3.5 U 2.5 U 3.5 U 2.2 J <1.4 U 1.9 <0.7 U <1.3 U <1.3 U <1.3 U <1.3 U <1.9 U <1.9 U <1.9 U <1.9 U <2.5 U <2.5 U <2.5 U <2.5 U <4.5 U <4.5 U <4.5 U <4.7 U <4.7 U <4.8 U <4.9 U <4.1 U <4.5 U	11.5 13.2 20.1 29.8 21.1 4.0 <3.5 U <3.5 U <3.5 U <3.5 U 2.9 3.9 3.8 3.4 5.2 9.9 <1.3 U <1.3 U <3.0 5.5 10.2 12.3 17.0 13 12.1 3.1 6.2 8.3 11.9 23.5 28.5 17.3 8.3 <1.5 U <2.5 U <2.5 U <2.5 U <2.5 U <2.5 U <2.5 U <2.1 U <2.3 5.0 10.5 10.8 5.0 8.6 <1.6 U	12.2 13.2 14.1 19.7 13.6 3.1 3.5 U 3.5 U 3.5 U 3.6 3.4 2.7 2.8 4.6 <1.3 U <1.3 U <1.3 U <1.3 U 1.4 J 6.2 12.1 11.6 14.8 12.0 <3 U 2.3 5.2 7.1 <1.9 U 25.3 30.4 14.4 8.5 <1.5 U 10.2 5.9 8.0 <2.5 U 13.7 14.6 9.4 <1.7 U <1.7 U <1.7 U 23.6 5.8 11.5 12.4 4.9 9.5 2.1	9.2 7.1 10.1 <6.7 U 3.9 <3.5 U <3.5 U 2.9 2.4 2.3 2.6 <1.3 U <1.3 U <1.3 U <1.3 U <2.1 3.9 2.9 2.4 2.5 <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.9 U <1.5 U <1.5 U <1.7 12.8 10.4 <1.5 U <1.7 U <1.6 U <8.9 3.0 7.6 4.1.6 U
Benzo(g,h,i)perylene	5.3	4.9	6.5	8.4	8.3	6.8
Total PAHs Individual Alkyl Isomers and Hopar	188 nes	214	255	437	383	244
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	8.8 6.0 3.5 0.7 J 2.0 <10.5 U <10.5 U	6.9 6.2 3.6 0.7 J 2.7 <10.6 U <10.6 U <10.6 U	5.2 4.4 2.4 <1.1 U 2.0 21.9 <10.5 U 20.9	10.6 9.9 5.6 3.8 3.7 <10.5 U <10.5 U	12.2 8.2 5.2 1.4 3.4 <10.5 U <10.5 U	6.7 4.3 3.1 <1.1 U 3.3 32.2 <10.5 U 19.8
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	81 83 90 89 86	85 91 89 89	88 97 91 94 94	77 85 82 100 78	88 98 85 105 90	86 90 86 92 87

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3894.D W-TN-04 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3908.D WMH #1-5 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3909.D AG SAMPLE BL Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 1.0 NA	ETX3913.D WCR #2S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3914.D WCR #20 (1 of 2) Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3916.D WCR #1D (1 of 2) Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Dibenzofuran Fluorene C1-Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C4-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes	8.7 7.2 8.9 11.4 14.9 2.2 <3.6 U <3.6 U <3.6 U 1.9 J 2.2 1.7 2.0 3.0 <1.3 U <1.3 U <4.3 U <4.4 8.9 9.6 14.2 12.5 <3 U	32.6 140 792 1340 1170 11.2 44.9 185 325 20.3 <1.2 U 44.1 34.1 112 354 888 939 43.0 <0.9 U 378 1010 1740 1600	20.5 4.8 4.6.3 U 46.3 U 47.7 U 43.3 U 43.3 U 43.3 U 41.4 U 41.2 U 40.6 U 41.2 U 41.8 U 41.2 U 42.8 U 42.8 U 42.8 U 42.8 U	6.7 5.0 <6.7 U <6.7 U 2.2 <3.6 L <3.6 L	9,5 7,2 10,7 <6,7 U <6,7 U 2,5 3,5 3,5 3,5 3,6 4,1,6 4,1,4 4,5 6,2 <1,3 U <1,3	5.3 5.7 13.2 29.8 18.9 1.7 J U <3.6 U U <3.6 U 2.2 J 5.9 2.5 2.8 4.6 9.6 U <1.3 U
Dibenzothiophene C1-Dibenzothiophenes C2-Dibenzothiophenes C3-Dibenzothiophenes Fluoranthene Pyrene C1-Fluoranthenes/Pyrenes C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophene C1-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C2-Chysenes C1-Chrysenes C3-Chrysenes C3-Chrysenes C4-Chrysenes	1.6 3.9 9.7 <1.9 U 17.6 20.4 12.5 9.2 <1.5 U 5.1 9.7 11.0 <2.5 U 10.1 10.3 9.8 <1.7 U <1.7 U <1.7 U	146 743 1790 1950 79.9 135 452 661 620 343 1130 2090 1340 90.3 267 734 921 314 113.0	<0.9 U <1.8 U <1.8 U <1.8 U <0.7 U <1.4 U <1.4 U <1.4 U <1.4 U <2.3 U <2.3 U <2.3 U <2.3 U <1.6 U	1.9		
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Total PAHs	15.9 5.2 7.7 9.6 3.5 5.8 <1.7 U 6.6	73.4 15.4 91.1 46.6 56.6 23.2 11.2 34.5	<2.8 U <2.9 U <3 U <1.8 U <0.8 U <2.1 U <1.5 U <2.3 U	13.0 4.2 7.7 8.9 6.2 <1.7 U 7.0	48.6 15.4 26.6 29.0 20.0 20.8 4.7 20.8	37.0 11.3 18.9 19.2 14.1 17.0 3.3 14.3
Individual Alkyl Isomers and Hopan	es					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	6.0 5.2 2.8 0.7 J 3.1 26.1 <10.6 U 26.1	96.7 123 388 205 323 369 66.2 412	5.0 2.3 <1.7 U <1 U <1.1 U <10 U <10 U <10 U	3.6 4.2 <1.8 U <1.1 U 2.1 <10.6 U <10.6 U <10.6 U	6.2 5.0 4.0 <1.1 U 6.8 64.9 <10.5 U 93.4	5.4 3.4 4.2 1.3 6.5 93.2 22.1 126
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	87 90 86 98 86	71 87 85 82 81	85 90 86 95 99	87 90 89 93 83	93 89 81 94 83	90 88 83 98 84

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3918.D WCR #3S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3919.D WCR #1S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3920.D WCD #2D (1 of 2) Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3922.D WCD #1S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA	ETX3923.D WCD #2S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA	ETX3924.D WCR #3S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes C4-Naphthalenes Eenzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzothran Fluorene C1-Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dhenzothiophenes C1-Dibenzothiophenes C3-Dibenzothiophenes C1-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(s)/fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a),i)perylene Total PAHs	5.6 5.2 <.7 U <.7 U <.7 U <.7 U <.7 U 1.1 J <.3.6 U <.3.6 U <.2.2 J 2.4 <.1.4 U 1.5 2.6 <.1.3 U <.1.3 U <.1.3 U <.1.3 U <.1.4 U 1.5 5.0 <.2 U <.2 U <.2 U <.3 U .3 U </.3 U </.3</td <td>7.2 5.0 6.7 U 6.7 U 2.3 3.6 U 3.6 U 3.6 U 3.6 U 1.7 J 1.8 1.2 <1.3 U <1.3 U <1.3 U <1.3 U <1.3 U <1.5 U 3.6 1.7 U 3.9 9.2 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2</td> <td>8.1 4.6 <6.8 U <6.8 U 2.1 <3.6 U <3.6 U <3.6 U <3.6 U <3.5 U <1.5 U 1.8 3.0 <1.3 U <1.3 U <1.3 U <1.3 U <1.3 U <1.9 U <1.8 U <1</td> <td>6.6 4.7 6.6 4.7 6.6 7 U 1.9 4.6 7 U 4.9 4.6 1.9 4.1 6.6 1.9 4.1 4.1 4.3 4.1 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3</td> <td>6.5 5.1 -6.7 U -6.7 U -6.8 U -3.6 U -3.6 U -3.6 U -3.5 -1.4 U -1.5 -2.4 -1.3 U -1.3 U -1.3 U -1.9 U -1.9 U -1.9 U -1.9 U -1.9 U -1.5 U -2.5 U</td> <td><1.1 U <1.4 U 1.7 2.2 <1.3 U <1.3 U <1.3 U</td>	7.2 5.0 6.7 U 6.7 U 2.3 3.6 U 3.6 U 3.6 U 3.6 U 1.7 J 1.8 1.2 <1.3 U <1.3 U <1.3 U <1.3 U <1.3 U <1.5 U 3.6 1.7 U 3.9 9.2 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	8.1 4.6 <6.8 U <6.8 U 2.1 <3.6 U <3.6 U <3.6 U <3.6 U <3.5 U <1.5 U 1.8 3.0 <1.3 U <1.3 U <1.3 U <1.3 U <1.3 U <1.9 U <1.8 U <1	6.6 4.7 6.6 4.7 6.6 7 U 1.9 4.6 7 U 4.9 4.6 1.9 4.1 6.6 1.9 4.1 4.1 4.3 4.1 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	6.5 5.1 -6.7 U -6.7 U -6.8 U -3.6 U -3.6 U -3.6 U -3.5 -1.4 U -1.5 -2.4 -1.3 U -1.3 U -1.3 U -1.9 U -1.9 U -1.9 U -1.9 U -1.9 U -1.5 U -2.5 U	<1.1 U <1.4 U 1.7 2.2 <1.3 U <1.3 U <1.3 U
Individual Isomers						
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	3.7 4.4 <1.8 U <1.1 U 1.7 <10.6 U <10.6 U	4.0 3.7 <1.8 U <1.1 U 1.5 <10.6 U <10.6 U <10.6 U	3.3 4.0 <1.8 U <1.1 U 3.3 46.4 <10.8 U 54.3	4.1 3.3 2.6 <1.1 U 2.1 12.5 <10.6 U 17.3	4.0 3.9 <1.8 U <1.1 U 1.6 <10.6 U <10.6 U <10.6 U	4.4 4.6 <1.8 U <1.1 U 1.7 <10.5 U <10.5 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	91 93 85 100 89	83 90 85 96 93	94 96 84 93 83	92 94 85 83 88	92 96 94 84 91	81 90 97 85 97

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L)	ETX3927.D WMH #2D Water 12/08/04 12/10/04 12/14/04 ENV 1065 12/24/04 PAH-2002 0.9	Water 12/08/04 12/10/04 12/14/04 ENV 1065 12/24/04 PAH-2002 0.9	ETX3929 D WSUB-TN-01 (1 of 2) Water 12/08/04 12/10/04 12/14/04 ENV 1085 12/24/04 PAH-2002 0.9	Water 12/08/04 12/10/04 12/14/04 ENV 1065 12/24/04 PAH-2002 1.0	Water 12/08/04 12/10/04 12/14/04 ENV 1085 12/24/04 PAH-2002 0.9	ETX3932.D WSUB-TN-02 (2 of 2) Water 12/08/04 12/14/04 12/14/04 ENV 1085 12/24/04 PAH-2002 1.0
Dilution Target Compounds	NA Su Corrected Q	NA Su Corrected Q	NA Su Corrected Q	NA Su Corrected Q	NA Su Corrected Q	NA Su Corrected Q
	Conc. (ng/L.)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)	Conc. (ng/L)
Naphthalene	5.1	4.8	12.0	13.2	8.2	3.1 J
C1-Naphthalenes C2-Naphthalenes	5.8 7.3	4.3 7.7	13.1 34.2	15.5 17.4	6.7 8.7	3.1 J <6.2 U
C3-Naphthalenes	<6.9 U	<7 U	94.7	19.9	<6.8 U	<6.2 U
C4-Naphthalenes	<6.9 U	<7 U	89.4	22.1	<6.8 U	<6.2 U
Benzothiophene	1.3 J	1.2 J	1.9	2.5	2.7	1.4 J
C1-Benzothiophenes C2-Benzothiophenes	<3.6 U <3.6 U	<3.7 U <3.7 U	4.5 <3.6 U	<3.2 U <3.2 U	<3.6 U <3.6 U	<3.3 U <3.3 U
C3-Benzothiophenes	<3.6 U	<3.7 U	<3.6 U	<3.2 U	<3.6 U	<3.3 U
Biphenyl	1.7 J	1.4 J	1.6 J	2.2	1.2 J	0.7 J
Acenaphthylene	3.8	0.8 J	2.8	0.8 J	1.6	<1.1 U
Acenaphthene Dibenzofuran	1.0 J 1.7	0.5 J 1.1 J	3.1 3.5	2.6 2.3	1.6 1.5	0.7 J 0.6 J
Fluorene	2.3	1.7	5.1	2.9	2.3	1.2
C1-Fluorenes	<1,4 U	<1.4 U	20.5	5.5	4.6	<1.2 U
C2-Fluorenes	<1.4 U	<1.4 U	134	<1.2 U	<1.3 U	<1.2 U
C3-Fluorenes Carbazole	<1.4 U 1.0 J	<1.4 U 1.5 J	89.4 <2.1 U	<1.2 U <1.8 U	<1.3 U <2 U	<1.2 U <1.9 U
Anthracene	3.7	2.2	5.0	0.9	3.0	0.9
Phenanthrene	15.6	7.9	36.2	4.9	9.7	1.8
C1-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes	14.6	4.0	65.0	5.0	7.6	1.5 J
C3-Phenanthrene/Anthracenes	26.5 29.1	9.3 7.6	131 140	7.4 <2.7 U	14.9 14.7	<2.8 U <2.8 U
C4-Phenanthrene/Anthracenes	15.9	<3.1 U	97.2	<2.7 U	9.5	<2.8 U
Dibenzothiophene	2.1	1.4	6.5	1.4	1.5	0.8 J
C1-Dibenzothiophenes C2-Dibenzothiophenes	5.3 18.9	2.3 <1.9 U	41.7	3.1	3.4	2.0 <1.7 U
C3-Diberzothiophenes	25.3	<1.9 U	122 163	5.4 5.0	9.5 15.5	<1.7 U
Fluoranthene	40.3	13.7	54.3	7.8	20.1	2.3
Pyrene	42.4	16.7	53.3	11.3	23.0	5.2
C1-Fluoranthenes/Pyrenes C2-Fluoranthenes/Pyrenes	27.8 16.5	10.2 6.7	57.9	5.6	14.7	4.2
C3-Fluoranthenes/Pyrenes	6.7	2.8	56.2 35.0	<1.4 U <1.4 U		<1.4 U <1.4 U
Naphthobenzothiophene	11.6	2.9	23.5	2.0	4.2	<1.2 U
C1-Naphthobenzothiophenes	14.4	4.2	61.7	<2.2 U		<2.3 U
C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes	21.8 16.3	<2.6 U <2.6 U	82.3 80.8	<2.2 U <2.2 U		<2.3 U
Benz(a)anthracene	17.8	5.5	21.7	2.8	7.3 8.1	<2.3 U 0.8 J
Chrysene	25.0	7.9	32.2	4.2	10.4	1.6
C1-Chrysenes	12.8	3.7	32.8	<1.6 U		<1.6 ∪
C2-Chrysenes C3-Chrysenes	8.9 <1.8 U	<1.8 U <1.8 U	34.3 18.8	<1.6 U <1.6 U		<1.6 U <1.6 U
C4-Chrysenes	<1.8 U	<1.8 U	<1.8 U			<1.6 U
Benzo(b)fluoranthene	32.9	10.8	32.2	6.4	15.8	1.4 J
Benzo(k)fluoranthene Benzo(e)pyrene	9.5 18.2	2.9 J	10.7	2.3 J		0.4 J
Benzo(a)pyrene	21.0	6.5 5.8	19.7 20.9	4.0 3.7	9.1 9.5	1.6 J 1.2 J
Perylene	6.7	2.5	7.6	1.0	2.7	<0.8 U
Indeno(1,2,3-c,d)pyrene	16.4	4.1	15.2	2.6	6.8	0.6 J
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	1.7 13.7	0.8 J 4.3	2.9 12.0	0.8 J 2.6	0.9 J 6.2	<1.5 U 0.7 J
Total PAHs	570	172	2083	197	317	37.8
Individual Alkyl Isomers and Hop						41.4
2-Methylnaphthalene	4.9	2.9	8.6	11.3	4.8	2.2 J
1-Methylnaphthalene	3.1	3.2	9.7	10.3	4.5	2.1
2,6-Dimethylnaphthalene	1.9	1.3 J	10.9	3.5	2.1	<1.7 U
1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	<1.1 U 3.8	<1.1 U 1.2 J	8.4 15.8	1.2 1.3	<1.1 U 2.4	<1 U 0.5 J
C29-Hopane	51.2	14.0	73.0	1.3 <9.6 U		<9.9 U
18a-Oleanane	<10.9 U	<11 U	<10.9 U	<9.6 U	<10.8 U	<9.9 U
C30-Hopane	Su Recovery (%)	15.0	80.6	<9.6 U		<9.9 U
Surrogate (Su)		Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Surrogate (Su)		74	70	50	0.0	0.4
Naphthalene-d8	79	74 85	78 89	58 66	69 76	81 84
		74 85 75	78 89 72	58 66 63	69 76 66	81 84 76
Naphthalene-d8 Acenaphthene-d10	79 82	85	89	66	76	84

Polaris Applied Sciences, Inc. TV Athos I Oil Spill Project Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

	ETY3021 D	ETX3
ample Name lient Name	ETX3921.D WCD #2D (2 of 2)	WMH
atrix	Water	Wa
ollection Date	12/08/04	12/0
eceived Date	12/10/04	12/1
xtraction Date	12/14/04	12/1
xtraction Batch	ENV 1065	ENV
ate Acquired	12/23/04 PAH-2002	12/2 PAH
lethod ampie Volume (L)	1.0	0
ilution	NA.	N
arget Compounds	Su Corrected Q	Su Co
arget Compounds	Conc. (ng/L)	Conc.
aphthalene	3.5	
1-Naphthalenes	3.6 J	
2-Naphthalenes	<6.1 U	
3-Naphthalenes	<6.1 U	
4-Naphthalenes	<6.1 U	
enzothiophene 1-Benzothiophenes	0.8 J <3.2 U	
2-Benzothiophenes	<3.2 U	
3-Benzothiophenes	<3.2 U	
phenyl	1.8 J	
cenaphthylene	<1 U	
cenaphthene	<1.3 U	
ibenzofuran	0.8 J	
luorene	0.7	
1-Fluorenes 2-Fluorenes	<1.2 U <1.2 U	
2-Fluorenes 3-Fluorenes	<1.2 U	
arbazole	<1.8 U	
nthracene	<0.8 U	
henanthrene	2.4	
1-Phenanthrene/Anthracenes	1.3 J	
2-Phenanthrene/Anthracenes	<2.7 U	
3-Phenanthrene/Anthracenes	<2.7 U	
4-Phenanthrene/Anthracenes lbenzothiophene	<2.7 U 0.9	
1-Dibenzothiophenes	2.1	
2-Dibenzothiophenes	<1.7 U	
3-Dibenzothiophenes	<1.7 U	
luoranthene	2.3	
yrene	5.4	
1-Fluoranthenes/Pyrenes	3.3	
2-Fluoranthenes/Pyrenes	<1.4 U	
3-Fluoranthenes/Pyrenes	<1.4 U	
aphthobenzothiophene	<1.1 U	
1-Naphthobenzothiophenes 2-Naphthobenzothiophenes	<2.3 U <2.3 U	
3-Naphthobenzothiophenes	<2.3 U	
enz(a)anthracene	1.2	
hrysene	1.4	
1-Chrysenes	<1.6 U	
2-Chrysenes	<1.6 U	
3-Chrysenes	<1.6 U	
4-Chrysenes	<1.6 U	
enzo(b)fluoranthene	2.1 J	
enzo(k)fluoranthene enzo(e)pyrene	0.9 J 1.2 J	
enzo(a)pyrene	0.9 J	
erylene	0.5 J	
deno(1,2,3-c,d)pyrene	0.7 J	
Abenzo(a,h)anthracene	<1.5 U	
lenzo(g,h,i)perylene	0.6 J	
otal PAHs	38.4	
ndividual Alkyl Isomers and Ho	panes	
-Methylnaphthalene	2.5	
-Methylnaphthaiene	2.5	
6-Dimethylnaphthalene	<1.6 U	
6,7-Trimethylnaphthalene	<1 U	
-Methylphenanthrene	0.4 J	
29-Hopane	<9.7 U	
	<9.7 U <9.7 U	
8a-Oleanane C30-Hopane		Su Rec
Ba-Oleanane C30-Hopane Surrogate (Su)	Su Recovery (%)	
GU-Hopane Surrogate (Su)		
30-Hopane Surrogate (Su) Japhthalene-d8	76	
Gurrogate (Su) Aphthalene-d8 Accenaphthene-d10	76 85	
30-Hopane Surrogate (Su) Japhthalene-d8	76	

Qualifiers (Q): J=Below the MDL, U=Not detected, B=in procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, "=Outside QA limits, refer to narrative

ample Name	ETX3915.D	ETX3917.D
llent Name	WCR #2D (2 of 2)	CR #1D (2 of 2)
latrix	Water 12/08/04	Water 12/08/04
ollection Date	12/10/04	12/10/04
xtraction Date	12/14/04	12/14/04
xtraction Batch	ENV 1065	ENV 1065
ate Acquired	12/23/04	12/23/04 PAH-2002
fethod iample Volume (L)	PAH-2002 1.0	1.0
Mution	NA	NA NA
arget Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
laphthalene	3.3	4.0
1-Naphthalenes	2.9 J	5.1
2-Naphthalenes	<6.1 U <6.1 U	6.9 <6.1 U
3-Naphthalenes 4-Naphthalenes	<6.1 U	<6.1 U
Benzothiophene	1.1 J	1.2 J
1-Benzothiophenes	<3.2 U	<3.2 U
2-Benzothiophenes	<3.2 U	<3.2 U <3.2 U
3-Benzothiophenes Siphenyl	<3.2 U 1.3 J	<3.2 U 1.6 J
kcenaphthylene	<1 U	0.9 J
cenaphthene	<1.3 U	<1.3 U
Dibenzofuran	0.6 J	1.1 J
Fluorene C1-Fluorenes	0.9 <1.2 U	1.0 <1.2 U
2-Fluorenes	<1.2 U	<1.2 U
C3-Fluorenes	<1.2 U	<1.2 U
Carbazole	<1.8 U	0.8 J
Anthracene Phenanthrene	<0.8 U 1.5	1.4 4.1
nenanthrene C1-Phenanthrene/Anthracenes	1.5 <2.7 U	• 2.8
22-Phenanthrene/Anthracenes	<2.7 U	5.5
C3-Phenanthrene/Anthracenes	<2.7 ∪	6.3
C4-Phenanthrene/Anthracenes Dibenzothiophene	<2.7 U <0.8 U	<2.7 U <0.9 U
Dibenzotniophene C1-Dibenzothiophenes	<0.8 U <1.7 U	<1.7 U
C2-Dibenzothiophenes	<1.7 U	<1.7 U
C3-Dibenzothiophenes	<1.7 U	<1.7 U
luoranthene	1.8 5.5	8.4 11.6
Pyrene C1-Fluoranthenes/Pyrenes	5.5 <1.4 U	11.6 6.0
2-Fluoranthenes/Pyrenes	<1.4 U	<1.4 U
C3-Fluoranthenes/Pyrenes	<1.4 U	<1.4 U
Naphthobenzothiophene	<1.1 U	2.0
C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes	<2.2 U <2.2 U	<2.3 U <2.3 U
C3-Naphthobenzothiophenes	<2.2 U	<2.3 U
enz(a)anthracene	<0.9 U	2.9
Chrysene	<0.8 U	4.0
C1-Chrysenes C2-Chrysenes	<1.6 U <1.6 U	2.3 <1.6 U
23-Chrysenes 23-Chrysenes	<1.6 U	<1.6 U
C4-Chrysenes	<1.6 U	<1.6 U
Benzo(b)fluoranthene	1.3 J	5.2
Benzo(k)fluoranthena Benzo(e)pyrene	0.9 J	2.2 J 3.8
Benzo(e)pyrene Benzo(a)pyrene	0.9 J 1.1 J	3.5
Perylene	0.7 J	1.6
ndeno(1,2,3-c,d)pyrene	0.8 J	2.1
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	<1.5 U 0.8 J	<1.5 U 1.9 J
Total PAHs	25.1	100.3
Individual Alkyl Isomers and Ho	panes	
2-Methylnaphthalene	2.3	3.2
1-Methylnaphthalene 2,6-Dimethylnaphthalene	1.7 <1.6 U	3.8 1.2 J
z,o-Dimethylnaphthalene	<1.6 U	1.2 J <1 U
1-Methylphenanthrene	<1.1 U	0.6 J
C29-Hopane	<9.6 U	<9.7 U
18a-Oleanane C30-Hopane	<9.6 U <9.6 U	<9.7 U <9.7 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8	72	66
Acenaphthene-d10	84	80
Phenanthrene-d10	85	83
Chrysene-d12	88	86
Perylene-d12	95	93

B.3. Total suspended solids (TSS) of water samples collected on December 7-8, 2004.

Client Name Matrix Received Date Batch Method	ETX3885 W-Wood-06 Filter 12/10/04 TS-050 EMAP-TSS	ETX3886 W-Wood-07 Filter 12/10/04 TS-050 EMAP-TSS	ETX3887 W-Wood-08 Filter 12/10/04 TS-050 EMAP-TSS	ETX3888 W-Man-05 Filter 12/10/04 TS-050 EMAP-TSS	ETX38 W-Man Filte 12/10/ TS-0: EMAP-
Analysis	mg/L	mg/L	mg/L	mg/L	mg/
TSS Qualifiers (Q): NA=Not app	8.5 blicable, *=Outside QA limits, re	7.0 eter to narrative	12.0	10.0	28.
Sample Name Client Name Matrix Received Date Batch Method	ETX3890 W-Man-07 Filter 12/10/04 TS-050 EMAP-TSS	ETX3891 W-TN-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3892 W-TN-02 Filter 12/10/04 TS-050 EMAP-TSS	ETX3893 W-TN-03 Filter 12/10/04 TS-050 EMAP-TSS	ETX3: W-TN Filt 12/10 TS-C EMAP-
Analysis	mg/L	mg/L	mg/L	mg/L	mg
TSS Qualifiers (Q): NA=Not app	27.0 Dicable, *=Outside QA limits, re	39.5 efer to narrative	37.5	35.0	28
			37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS	35.0 ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3: W-TPE Filt 12/10 TS-C EMAP-
Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch	ETX3895 W-UR-01 Filter 12/10/04 TS-050	ETX3896 W-UR-02 Filter 12/10/04 TS-050	ETX3897 W-UR-03 Filter 12/10/04 TS-050	ETX3898 W-TPB-01 Filter 12/10/04 TS-050	ETX3 W-TPI Filt 12/10 TS-0
Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method	ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS	ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3 W-TPi Filt 12/10 TS-(EMAP-
Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis	ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS	ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3 W-TPF Fillt 12/10 TS-C EMAP-
Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis	ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS	ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS	ETX3 W-TPF Filt 12/10 TS-(EMAP- mg 32 ETX3 W-Dup Filt 12/10 TS-(
Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch	ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Dicable, *=Outside QA limits, re ETX3900F W-TPB-03 Filter 12/10/04 TS-050	ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 ETX3901 W-BTC-07 Filter 12/10/04 TS-050	ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0 ETX3902 W-BTC-08 Filter 12/10/04 TS-050	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5 ETX3903 W-BTC-09 Filter 12/10/04 TS-050	ETX3 W-TPE Filt 12/10 TS-C EMAP-

ample Name Client Name	ETX3905 WLP#1-5	ETX3906 WLP#2-5	ETX3907 WLP#3-5	ETX3908 WMP#1-5	
latrix	Filter	Filter	Filter	Filter	
leceived Date	12/10/04	12/10/04	12/10/04	12/10/04	
atch	TS-050	TS-050	TS-051	TS-051	
lethod	EMAP-TSS	EMAP-TSS	EMAP-TSS	EMAP-TSS	
nalysis	mg/L	mg/L	mg/L	mg/L	
rss	4.5	20.0	183.0	57.0	
ualifiers (Q): NA=Not ap	plicable, *=Outside QA limits, rel	fer to narrative			
ample Name	ETX3910	ETX3913	ETX3914	ETX3916	
lient Name	WSUB-01(1 of 2)	WCR#25	WCR#2D (1 of 2)	WCR#1D (1 of 2)	
latrix	Filter	Filter	Filter	Filter	
eceived Date	12/10/04	08/21/03	08/21/03	08/21/03	
Batch	TS-051	TS-051	TS-051	TS-051	
lethod	EMAP-TSS	EMAP-TSS	EMAP-TSS	EMAP-TSS	
Analysis	mg/L	mg/L	mg/L	mg/L	
rss	35.0	46.5	118.5	102.0	
tualifiers (Q): NA=Not ap	plicable, *=Outside QA limits, rel ETX3918	ETX3919	ETX3920	ETX3922	ETX3923
ualifiers (Q): NA=Not ap Sample Name Client Name Matrix Received Date Batch	ETX3918 WCR#3S Filter 08/21/03 TS-051	ETX3919 WCR#1S Filter 08/21/03 TS-051	WCD#2D (1 of 2) Filter 08/21/03 TS-051	WCD#1S Filter 08/21/03 TS-051	ETX3923 WCD#2S Filter 08/21/03 TS-051 EMAP-TSS
ualifiers (Q): NA=Not ap Sample Name Client Name Matrix Received Date Batch Method	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS
tualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051	ETX3919 WCR#1S Filter 08/21/03 TS-051	WCD#2D (1 of 2) Filter 08/21/03 TS-051	WCD#1S Filter 08/21/03 TS-051	WCD#2S Filter 08/21/03 TS-051
ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS
ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS
ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS
ample Name lient Name lient Name latrix eccived Date atch lethod nalysis SS ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, ref	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0
ample Name client Name latrix eceived Date latch lethod analysis SS ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, ref	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5 fer to narrative	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 39.0	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0
ample Name lient Name latrix leceived Date latch lethod analysis SS ualifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, rel	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5 Ter to narrative ETX3925 Methhod Blank	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 39.0 ETX3927 WMH#2D	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0
ample Name lient Name lient Name latrix eceived Date atch lethod nalysis SS salifiers (Q): NA=Not ap	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, rel ETX3924 WCR#3S Filter	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5 Ter to narrative ETX3925 Methhod Blank Filter	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0 ETX3926 WMH#1S Filter	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 39.0 ETX3927 WMH#2D Filter	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0 ETX3928 WMH#3S Filter
isample Name Silient Name Sample Name Satrix Seceived Date Satch Set Satron Sat	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, ref ETX3924 WCR#3S Filter 08/21/03	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5 fer to narrative ETX3925 Methhod Blank Filter 08/21/03	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0 ETX3926 WMH#1S Filter 08/21/03	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 39.0 ETX3927 WMH#2D Filter 08/21/03	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0 ETX3928 WMH#3S Filter 08/21/03
tample Name Slient Name Slient Name Slatrix Sleceived Date Slatch	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS mg/L 18.0 plicable, *=Outside QA limits, ref ETX3924 WCR#3S Filter 08/21/03 TS-051	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 27.5 fer to narrative ETX3925 Methhod Blank Filter 08/21/03 TS-051	WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS mg/L 46.0 ETX3926 WMH#1S Filter 08/21/03 TS-051	WCD#1S Filter 08/21/03 TS-051 EMAP-TSS mg/L 39.0 ETX3927 WMH#2D Filter 08/21/03 TS-051	WCD#2S Filter 08/21/03 TS-051 EMAP-TSS mg/L 63.0 ETX3928 WMH#3S Filter 08/21/03 TS-051

Sample Name	ETX3929	ETX3931	
Client Name	WSUB-TN-01 (1 of 2)	WSUB-TN-0 (1 of 2)	
Matrix	Filter	Filter	
Received Date	08/21/03	08/21/03	
Batch	TS-051	TS-051	
Method	EMAP-TSS	EMAP-TSS	
Analysis	mg/L	mg/L	
TSS	66.5	32.5	

Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative

B.4. Volatile organic analyses. Water sample collected on November 27, 2004 near the Commodore Barry Bridge.

	LABORATORY Job Number: 228205	TEST RESULT	Date: 12/29/2	004		
USTOMER: 848	Laboratories PROJECT: TV	ATHOS	ATTN: Tommy	McDonald		
Date San Time San	Sample ID: VOA-1 pled: 11/27/2004 pled: 15:55 letrix: Water		Laboratory Sampl Date Received Time Received	: 12/	16/2004	
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LINIT	UNITS	DATE	TE
N-846 82608	Volatile Organics					
	Acetone	ND	100	ug/L	12/20/04	
	Acetonitrile	ND	50 50	ug/L	12/20/04	
	Acrolein Acrylonitrile	ND ND	50	ug/L ug/L	12/20/04	
	Benzene	ND ND	5 5	ug/L	12/20/04	
	Bromodichloromethane	ND	5	ug/L	12/20/04	
	Bromoform (Tribromomethane)	MD	5	ug/L	12/20/04	
	Bromomethane (methyl bromide)	MD	5	ug/L	12/20/04	
	Carbon Disulfide	MD	5	ug/L	12/20/04	
	Carbon Tetrachloride Chlorobenzene	MD MD	5 5	ug/L ug/L	12/20/04	
	Chloroethane (Ethyl chloride)	ND ND	ś	ug/L	12/20/04	
	Chloroform	ND	5	ug/L	12/20/04	
	Chloromethane (methyl chloride)	ND	5	ug/L	12/20/04	
	Dibromochloromethane	HD	5	ug/L	12/20/04	
	Dibromomethane	NO NO	5	ug/L	12/20/04	
	1,2-Dibromoethane (EDB) Dichlorodifluoromethane	NO NO	5 5	ug/L ug/L	12/20/04	
	1.1-Dichloroethane	ND ND	5	ug/L	12/20/04	
	1,2-Dichloroethane (EDC)	ND ND	5	ug/L	12/20/04	
	1.1-Dichloroethene (Vinylidene chloride)	ND	5	ug/L	12/20/04	
	cis-1,2-Dichloroethene	ND	5	ug/L	12/20/04	
	trans-1,2-Dichloroethene	ND ND	5	ug/L	12/20/04	
	1,2-Dichloropropane	ND	5	ug/L	12/20/04	
	1,3-Dichloropropane 2,2-Dichloropropane	ND ND	5	ug/L ug/L	12/20/04	
	1,1-Dichloropropene	ND ND	5	ug/L	12/20/04	
	cis-1,3-Dichloropropene	ND	5	ug/L	12/20/04	
	trans-1,3-Dichloropropene	ND	5	ug/L	12/20/04	
	1,4-Dioxane	ND	100	ug/L	12/20/04	ŀ
	Ethyl Acetate	ND	5	ug/L	12/20/04	1
	Ethylbenzene Ethyl Ether (Diethyl Ether)	ND ND	5 5	ug/L ug/L	12/20/04	
	Ethyl Methacrylate	ND ND	5	ug/L	12/20/04	
	2-Rexamme	ND.	5	ug/L	12/20/04	
	Iodomethane (Wethyl Iodide)	ND	5	ug/L	12/20/04	
	Methylene Chloride (Dichloromethane)	ND	50	ug/L	12/20/04	
	Methyl Ethyl Ketone (2-Butanone)	ND	10	ug/L	12/20/04	
	4-Methyl-2-Pentanone (MIBK) Methyl Methacrylate	ND ND	5	ug/L	12/20/04	
	tert-Butyl Methyl Ether (MTBE)	ND ND	5	ug/L	12/20/04	
	2-Nitropropene	MD	5	ug/L	12/20/04	
	Styrene	MD	5	ug/L	12/20/04	ŀ
	1,1,2,2-TetrachLoroethane	MD	5	ug/L	12/20/04	
	Tetrachloroethene	MD	5	ug/L	12/20/04	
	Toluene	MD MD	5	ug/L	12/20/04	
	1,2,3-Trichlorobenzene 1,1,1-Trichloroethane	MD MD	5 5	ug/L ug/L	12/20/04	
						100

Page 2 000007

1733 North Padre Island Drive • Corpus Christi, TX 78408 • Tel: 361 289 2673 • Fax: 361 289 2471 • www.sti-inc.com

LABORATORY TEST RESULTS

Job Humber: 228205

Date: 12/29/2004

CUSTOMER: 868 Laboratories

PROJECT: TV ATHOS

ATTN: Tonmy McDoneld

Customer Sample ID: VOA-1 Date Sampled.....: 11/27/2004 Time Sampled.....: 15:55 Sample Matrix....: Water Laboratory Sample ID: 228205-1 Date Received.....: 12/16/2004 Time Received.....: 09:20

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LINIT	UNITS	DATE	TEC
	1,1,2-Trichloroethane	ND	5	ug/L	12/20/04	rjt
	Trichloroethene	ND	5	ug/L	12/20/04	rjt
	Trichlorofluoromethane	ND	5	ug/L	12/20/04	rjt
	1,1,2-Trichloro-1,2,2-Trifluoroethane	MD	50	∪g/L	12/20/04	rjt
	1,2,4-Trimethylbenzene	MD	5 5 5 5	ug/L	12/20/04	rjt
	1,3,5-Trimethylbenzene	MD	5	ug/L	12/20/04	
	1,2,3-Trichloropropane	MD	5	ug/L	12/20/04	
	Vinyl Acetate	MD	1 2 1	ug/L	12/20/04	
	Vinyl Chloride (Chloroethene)	ND ND	15	ug/L	12/20/04	
	Xylenes (total)	No.	''	ug/L	12/20/04	1,

Page 3

830900

APPENDIX C

Submerged Oil Report

SUBMERGED OIL ASSESSMENT - ATHOS 1 OIL SPILL

Submerged Oil Assessment Unit Planning Section Athos 1 Oil Spill Unified Command

11 December 2004

TABLE OF CONTENTS

I.	IN	TRODUCTION1	
	II.	CHARACTERISTICS OF THE SPILLED OIL	. • -
		Physical Properties of Source Oil	
III.	PH	YSICAL PROCESSES AND TRANSPORT3	
		Oil Trajectory and Physical Processes during the Spill	
IV.	. SP	LL INFORMATION5	
		Floating Oil 5 Non-floating Oil 5 a. Pooled Oil 5 i. Survey Methods 5 ii. Locations 6 iii. Volumes 6 iv. Pooled Oil Recovery Methods 6 b. Mobile Oil 7 i. Survey Methods 7 ii. Locations 9 iii. Results 13 iv. Recovery Methods and Results 13	
	V.	SUMMARY17	

APPENDIX 1 – Maps showing the results of the submerged oil monitoring

SUBMERGED OIL ASSESSMENT – ATHOS 1 OIL SPILL

I. INTRODUCTION

At 9:30 pm on 26 November, the *T/V Athos* 1 struck a submerged object while preparing to dock at the Citgo facilities, resulting in two holes in the No. 7 port and center tanks. It was carrying a heavy Venezuelan crude oil. The initial report was that 30,000 gallons were released; on 30 November, the volume was increased to a maximum potential of 473,500 gallons. The final estimate will be available once the oil from the holed tanks has been offloaded from the tanker.

There was concern that some of the heavy oil would mix with sediment and not float. Pooled oil was reported on the bottom at the collision site, and shoreline assessment teams reported that oil stranded on the intertidal zone had started to become submerged during the rising tide. Therefore, a special team was assigned to assess the extent and degree of submerged oil and develop recovery options. The Salem Nuclear Power Plant started shut-down procedures for the No. 2 unit on 3 December and No. 1 unit on 4 December because of the threat of oil contamination of the circulation and service water intake systems. The Logan Power Plant in New Jersey stopped using water from the river for a day. Other utility and industrial water intakes along the river have been concerned about the impacts on the oil on their water intakes and water use within the facility, though none have reported shut-downs. The submerged oil also posed risks to shellfish resources in Delaware Bay.

II. CHARACTERISTICS OF THE SPILLED OIL

Physical Properties of Source Oil

Two samples of the oil from hold No. 7 center (the source oil) were analyzed for physical properties and chemical characteristics, with the following results:

<u>Density</u>: 0.973 and 0.978 grams per milliliter; fresh water is 1.00 and oceanic sea water is 1.025 g/ml. Therefore, the oil is lighter than both fresh water and sea water.

<u>Viscosity</u>: greater than 5,000 centiStokes (cSt) at 100°F and at ambient water temperature greater than 50,000 cSt, meaning that the oil's viscosity is similar to cold honey;

<u>Composition</u>: the oil is composed of a large amount of asphaltenes and other high molecular weight compounds. The aromatic hydrocarbon content is very low (0.06%), and the oil has a very low dissolved fraction. Figure 1 is the normal alkane distribution in the fresh oil. Note that there are few individual peaks and a large "hump" of unresolved hydrocarbons. This oil can be characterized as a heavy, degraded crude oil.

Figure 1. Normal alkane profiles of the source oil from hold No. 7 center. Note there are few identifiable peaks and a large "hump" of unresolved compounds.

Behavior of the Spilled Oil

One of the key concerns was whether the oil would not float after release to the environment and loss of the light fractions due to evaporation. The fresh source oil was "evaporatively weathered" by heating it to 90°C under vacuum and less than 3 % was lost by evaporation after 4 hours. Therefore, the weathered oil (after evaporation) is still expected to float. Using the National Oceanic and Atmospheric Administration (NOAA) oil weathering model ADIOS, up to 13% of the oil could have evaporated within 5 days of the release. Based on the chemical analysis and model results, the amount of oil lost via evaporation is likely 3-13%.

With only 0.06% aromatic hydrocarbons (which are the primary compounds in the oil that dissolve), lost via dissolution was estimated as less than 1%. The oil is very viscous and did not form a stable emulsion even when exposed to high wave energy. The model ADIOS estimated less than 1% of the fresh oil dispersed into the water column. The Delaware River contains a high suspended load, but due to the viscous nature of the oil, very little of the oil (less than 1%) adhered to particles in the water column (as opposed to sandy sediments on the shoreline).

While the exact amount released is unknown, the amount lost to oil weathering processes (evaporation, dissolution, emulsification, dispersion, and adsorption to suspended particulate matter) is likely tens of thousands of gallons (Table 1).

The shoreline cleanup assessment teams provide some indication of the length of shoreline oiled. However, the technology does not exist to accurately measure shoreline thickness. This information is needed to calculate oil volume. The amount of oil recovered from the shoreline is mixed with debris and sediments, and the oil content of the oily waste is unknown.

As discussed later, some of the oil that stranded on the shoreline picked up sediment. Samples collected from the oil stranded on the shoreline and recovered from the water column had a few % sand. Even 2-3 % of sand is enough to make the oil slightly heavier than fresh water.

A preliminary mass balance of the spilled oil is shown in Table 1.

Table 1. Preliminary mass balance of the spilled oil.

Physical Process	Estimates
Evaporation	3 – 13% of total volume spilled minus volume
	of oil in trench #1 and #2
Dissolution	< 1% of total volume spilled
Emulsification	0%
Dispersion	1% total volume spilled
Sedimentation (due to river load)	Unknown but likely < 1%
Oil on shoreline	~ 100 miles
Oil recovered from shoreline	Unknown
Oil floated off shoreline	Unknown
Oil with sediment mobilized off shoreline	Unknown
Tarballs in water column	Unknown
Tarballs on bottom	Unknown
Pooled oil (located in Trench #1 and #2)	~ 4000 gallons

PHYSICAL PROCESSES AND TRANSPORT

A. Oil Trajectory and Physical Processes during the Spill

The primary forcing function for currents in both the Delaware River and Bay are the semidiurnal tides. Near the spill site, maximum currents are about 2 knots with a tidal excursion of about 8 miles. In the middle of Delaware Bay, maximum currents are about 1 knot with a tidal excursion about 4 miles. The river inflow into the system results in a net displacement down river over each 12 hour cycle. The currents from the river outflow are small compared to the tidal currents but it is the major factor in any net down river displacement of subsurface oil.

Water levels in the River and Bay rise and fall as function of onshore/offshore winds. This can raise the water levels in the river 1-2 feet above or below predicted tide levels. Severe storm events, much stronger than reported during the spill event and more intense than the usual storm, could have a significant effect on the currents and oil transport.

In the Chesapeake – Delaware Canal, the tide wave moves from the Chesapeake into the canal towards Reedy Island in the Delaware River. Water level differences between Chesapeake Bay and Delaware River due to meteorological events and river discharge can result in water flowing from the Delaware into the Chesapeake.

For the most part, the River and Bay are well mixed vertically. The U.S. Environmental Protection Agency collected salinity measurements from the spill site to Raccoon River entrance and reported values of 1 to 2 ppt. In addition, NOAA measured salinity and conductivity near the Commodore Barry Bridge, which indicated the river, was well mixed. There is a broad salinity gradient or mixing zone in the lower river and in the bay. The gradient of mixing in winter and spring is largest near Ship John Lighthouse (39° 19'N, 75° 23'W). The gradient moves seaward with increases freshwater. The interface between the freshwater and saline water may be a collection area for floating oil. Since the mobile subsurface oil contains sediment, the density differences along the saltwater – freshwater mixing zone are less likely to cause submerged oil to refloat.

Outside the Bay, the circulation on the inner continental shelf is primarily controlled by winds and water density differences. Off the northeast coast, freshwater input from rivers such as the Hudson and Delaware result in a near shore density flow from the north to south. Currents due to density differences in the water will be within 10 miles of the shoreline, follow the shoreline and typically move to the south at speeds between 0.1 and 1 knot. Superimposed are the regional winds, which will generate a coastal current to the north with southerly winds and southward with northerly winds. At the Bay entrance, there is a net flow of fresh water along the south side and net inflow along the bottom of the north side.

Initially, the spill formed a thick film and moved upriver with the flood tide. A southeast wind moved oil to the Pennsylvania side of the river. With the second flood tide, the oil was transported as far north as the Petty Island area. Several days later, stronger winds transported oil to the New Jersey side. After the storm, the oil weathered and formed tarballs. By 28 November, oil extended down river to the Delaware Memorial Bridge. Overflight observations of the floating oil have consistently been within the uncertainties of the NOAA trajectory model predictions. The 24-48 hour forecasts of the floating oil will continue until the overflight observer is no longer able to detect the leading edge of the spill.

B. Long-term Transport

With the type and quantity of oil spilled, tarballs are expected to persist for several months in the Delaware River system. Over the next few weeks, scattered tarball are expected to contact shoreline anywhere along Delaware Bay. There is a possibility of oil movement through the Chesapeake – Delaware Canal into upper Chesapeake Bay. The exact location and amount of oil depends on the wind, oil fate, and amount of oil mobilizing upstream. Within several weeks of the initial spill, tarball contact is anticipated along the outer coast. The mean current along the outer coast is southward and anticipate most of the contacts south of Delaware Bay. Local wind events could push tarballs to the north up to 50 miles north of Cape May and as far south as the entrance to Chesapeake Bay. While the general trend for the number of tarballs contacting the outer coast is expected to decrease within a month or two, the amount of subsurface oil in the Delaware River remains unknown. Thus, there remains a possibility that a strong meteorological event or vessel movement could mobilize oil resulting in an episodic increase of tarballs.

IV. SPILL INFORMATION

A. Floating Oil

Weather permitting, overflights of the spill area have shown a general decline in floating oil. Observer have reported mostly scattered sheens with tarballs ranging from < 0.5 cm (pea size) to about 20 cm (dinner plate). The few exceptions occurred when the on-scene winds were calm or at slack tide. Without any waves or strong tidal mixing to disperse the sheening tarballs, large areas of continuous sheens were reported from the observers. Any increase in the wind generated waves dispersing the sheens. Without associated sheens, it is extremely difficult to track the tarballs. A decrease in the wind speed or at slack tide would allow the observer to once again see the sheens. This pattern repeated itself several times during the spill event. Finally, observers indicated that some of the tarballs had weathered to the point of not sheening.

For the long term, tarballs are very persistent in the environment and can travel hundreds of miles. They are expected to move out of Delaware Bay and through the C&D Canal into the upper Chesapeake Bay. Natural collection areas, such as the surface interface between the freshwater and saltwater and convergence zones on ebb tides, are good locations for finding the tarballs. If tarballs appear on the shoreline, it is likely they were nearshore, difficult to detect and onshore winds brought them ashore.

B. Non-floating Oil

- a. Pooled Oil
 - i. Survey Methods

Pooled oil is defined as oil that has accumulated in depressions and is not readily mobilized by normal riverine and tidal currents. Both NOAA and EPA used different sonar systems to detect areas of pooled oil. Experts from NOAA, EPA, and Navy Supervisor of Salvage reviewed these data and determined the systems could not identify pooled oil. Therefore, coring and sorbent probes were used to search for pooled oil in likely accumulation areas. The US Army Corps of Engineers bathymetric maps of the channel and adjacent areas (generated from data obtained on 5 December 2004) were used to identify targets for the pooled oil survey teams. Divers were also used to observe areas where pooled oil was found. The locations that were searched for pooled oil included:

- The shallow bay north of Tinicum Island, including two deep depressions
- Four depressions on the south side of the channel across from Tinicum Island (Tinicum Range channel)
- Tinicum Range channel
- Shallows around Chester Island

ii. Locations

Pooled oil was found only at the collision site, in a trench described as 6-8 ft wide, 2 ft deep, and 41 ft long. On 9 December, a diver surveyed the trench area and measured the oil thickness as between 1.5-2 ft deep. A second trench was also detected and estimated to be 2 ft wide by 2 ft deep by 15 ft long.

iii. Volumes

The volume of pooled oil in the trenches at the collision site was estimated to be approximately 3,390-3,610 gallons, depending on the assumed oil thickness in the second trench (Table 2).

A sample of the oil from the trench (density of 0.943 g/ml) floated in fresh water. It was tested for cohesiveness and found to adhere to sediments. Based all the information available, the oil in the trench at the collision site was "injected" into the sediment under the pressure of the release, creating it's own trench. The viscous oil adhered to the sediments and not refloated, even though it should based on density. The oil is immobile due to highly cohesive forces exerted by the viscous oil.

Table 2	Estimated	volume	of oil	on the bottom	at the	collision site	
i abic 4.	Esumateu	volunc	OI OII	OH THE DOLLOH	at the	COHISIOH SIIC	/ .

Length	Trench Width (feet)	Depth of Trench (feet)	Depth of Oil (feet)	Amount of Oil (gallons)
Trench 1				
0+00	6	2	1.5	910
0+10	8	3	2	310
0+13	6	2.67	2	890
0+23	6	2.5	1.5	610
0+33	5	2.5	1.5	450
0+41	0	0	0	3,170
Trench 2				
15	2	2	If assume 1	220
			If assume 2	440

iv. Pooled Oil Recovery Methods

Several methods were evaluated for recovery of the pooled oil in the trench. The viscous oil is expected to float when disturbed, therefore special containment systems are needed. Options include:

- Diver-directed pumping systems with positive displacement pumps that can move viscous oils
- Dredging systems of different sizes
- Subsurface recovery using sorbents, either by divers or remote techniques

Divers using viscous oil pumps will begin oil recovery on 12 December. Booms and sorbents will be used to recover any floating oil; a submerged bottom filter fence will recover any oil transported in the water column downcurrent from the recovery site. The oil recovery is estimated to be completed in four days.

b. Mobile Oil

i. Survey Methods

Mobile oil is defined as oil that is negatively buoyant and subject to transport by riverine and tidal currents. It is present throughout the water column, though it appears most of the mobile oil is within a few feet of the bottom. To track the vertical distribution of the oil and the geographical extent over time, two survey methods were used:

- Snare Samplers: These samplers consist of an anchor, 50 ft of snare on a rope, and a float (shown in Fig. 2). The snares are composed of thin sheets of polypropylene, and viscous oils readily adhere to them, even under water. They are visually inspected for the presence of oil with depth, and the amount of oil is estimated as a percent coverage. The snare/rope is replaced when oiled, and they are monitored over time, weather permitting.
- V-SORS: The Vessel-Submerged Oil Recovery System (V-SORS) consists of a pipe with attached chains and snare (Fig. 3). The V-SORS is towed behind a vessel on the bottom at slow speeds. It is pulled up regularly and inspected for oil. Five V-SORS were used to both identify areas of submerged oil (including in the navigation channels where it was not possible to place the snare samplers) and to recover oil in all potential accumulation areas.

ii. Locations

Figures 4-6 shows all the locations where snare samplers were deployed at any time. The spill area was divided into three monitoring zones: MA extends from the Tacony-Palmyra Bridge to the Delaware Memorial Bridge; MB extends from the Delaware Memorial Bridge to just below the Salem Nuclear Power Plant; MC extends from the Salem Nuclear Power Plant to mid-Delaware Bay. Appendix 1 includes the results plotted for each monitoring division for the different deployment and retrieval periods. Weather and logistics prevented inspection of all snare samplers every day. In areas with strong currents, the snares would often be lost between inspections. Existing samplers in areas with strong currents are being replaced with heavier anchors, more visible buoys, and better attachment methods.

Figure 2. The snare sampler system consists of an anchor, a 50 ft string of snare on a rope, and a float. The samplers are inspected regularly and the percent oil coverage at different intervals is recorded. Most of the time, the heaviest oiling is on the bottom several feet.

Figure 3. The Vessel-Submerged Oil Recovery System (V-SORS) that is being used to search for and recover submerged mobile oil on the river bottom. The chains keep the sorbents along the bottom. The oil readily adheres to the snares underwater.

M/V Athos I, Delaware River, NJ/PA M-A Monitoring Division Subsurface Oil Map created by NOAA USE ONLY AS A GENERAL REFERENCE Earliest Deploy: 12/3/04 Latest Recovery: 12/10/04 Graphic does not represent precise amounts or locations of oil

Figure 4. Location map showing the distribution of the snare sampling locations in the upper part of the spill zone (Division A).

M/V Athos I, Delaware River, NJ/PA

M-B Monitoring Division Subsurface Oil Map created by NOAA

Earliest Deploy: 12/3/04 Latest Recovery: 12/10/04

USE ONLY AS A GENERAL REFERENCE

Graphic does not represent precise amounts or locations of oil

Figure 5. Location map showing the distribution of the snare sampling locations in the middle part of the spill zone (Division B).

Figure 6. Location map showing the distribution of the snare sampling locations in the lower part of the spill zone (Division C).

iii. Results

Most of the submerged, mobile oil occurred several feet off the bottom, though small amounts of oil were present on the snares suspended in the middle and upper water column. Highest amounts of oil were detected around Tinicum Island. Refer to the maps in Appendix 1 for detailed data presentation for all monitoring sites. Figure 7 shows the temporal trend for station MA-1A that is located just north of Tinicum Island and consistently had the highest amount of oil on the snare. The snare was first deployed on 4 December and recovered on 5 December, and there was 50% oil coverage of the lower snares. The next day, the oil coverage was 30%. The snare was inspected two days later, on 8 December, and the coverage was 65%. For the next three days, the oil coverage was less than 15%. The steady decline for the last three days is consistent with the V-SORS tows, which also show decreasing amounts of oil recovery around Tinicum Island over the same period. There were scattered stations with high oil coverage observed on one day over the period 3-8 December. Many of the other snare samplers in the upper river never were oiled. Since 9 December, the maximum oil coverage on snares in this area was 10-15% (near Tinicum Island). It appears that the submerged oil in this upper spill zone has decreased significantly.

Figure 8 shows the temporal trend for station MB-3B, which is west of Pea Patch Island, and the detailed maps are included in Appendix 1. The distribution of the submerged oil in this area is difficult to assess because of the spotty data.

No oil or less than 1% was observed on any of the snare samplers in Division MC, which covers the upper Delaware Bay. Again, the data are spotty because many of the original stations were lost due to the strong currents in this area. However, it appears that little to no submerged oil has entered the upper bay as of 11 December.

iv. Mobile Oil Recovery Methods and Results

The V-SORS were towed in a wide range of locations that were identified as likely areas of submerged oil. The highest oil recovery was in the vicinity of Tinicum Island. Figure 9 shows the track lines of the V-SORS tows near Tinicum Island, color-coded with the amount of oil observed on the snares for each tow track. A large amount of oil stranded on the sandy tidal flat on the southern side of Tinicum Island. Oil stranded on many other shoreline areas but the shoreline types upstream of Tinicum Island are mostly seawalls, riprap, and mixed sand and gravel beaches. Tinicum Island is the main area with a largely sandy substrate. The oil is very sticky and would pick up sand, and only 2-4 % sand by weight would be enough to make the oil slightly negatively buoyant. By 30 November, oil on Tinicum Island did not re-float with the rising tide, and pieces of oil were being eroded from the shoreline by wave action. This area is thought to be the major source of the oil that became submerged and moved with the currents along the bottom of the river. Most of the oil recovered by the V-SORS was from the subtidal areas south of Tinicum Island. Very little oil was detected in the shallow area north of the island, both by the V-SORS tows and the pooled oil surveys.

M/V Athos I, Delaware River, NJ/PA

M-A Monitoring Division Subsurface Oil Map created by NOAA USE ONLY AS A GENERAL REFERENCE

Earliest Deploy: 12/3/04 Latest Recovery: 12/10/04

Graphic does not represent precise amounts or locations of oil

Figure 7. The oil coverage on the snare sampler just north of Tinicum Island (the location with the highest amount of oil consistently) over time. The oil coverage on 8 December represents two days of deployment, compared to the one-day deployment of the other dates. The amount of oil has been below 15% for the last three dates.

Figure 8. The oil coverage on the snare sampler west of Pea Patch Island. There was a peak on 8 December, representing two days of deployment.

Figure 9. Track lines for the V-SORS coded according to the percent of visual oil coverage on the snares.

Additional V-SORS tows were conducted off the Salem Nuclear Power Plant on 8 December, with no oil detected. Small amounts of oil (~10%) were detected in Division MA, between the Commodore Barry Bridge and the Delaware Memorial Bridge on 8 December. Little to no oil was detected in the main shipping channel.

On 11 December, the V-SORS were directed to search for and recover oil in seventeen potential accumulation areas. Table 3 is a summary of these results. Oil was detected in the Marcus Hook Anchorage 7; a trace amount was found near Penns Grove, New Jersey (Cherry Flats).

Table 3. V-SORS results for potential submerged oil accumulation sites on 11 December 2004.

Potential Oil Accumulation Site	Percent Oil on Snares
Camden	0
Pier slip in Philadelphia	0
Pier slip in Philadelphia	0
Philadelphia airport 1	0
Philadelphia airport 2	0
Philadelphia airport 3	0
Marcus Hook Anchorage 7	50
Cherry Flats DE side	0
Cherry Flats NJ side	2
DE Memorial bridge	0
Travis Cove	0
Pea Patch Island NJ side	0
Pea Patch Island anchorage	0
Delaware City	0
Reedy Island NJ side	0
Reedy Island DE side	0
Hope Creek jetty	low tide-did not survey

V. SUMMARY

A significant but unknown amount of oil from the *Athos 1* oil spill did not float. The oil itself is buoyant, even after weathering, however two different mechanisms caused the oil to become submerged:

- 1. During the initial release, the oil was released under high pressure, cutting it's own trench in to the bottom. The highly viscous oil was held in the trench by cohesive forces. This is the only location where "pooled" oil was found.
- 2. The rest of the released oil initially floated and formed thick slicks. Most of the heavy oil stranded on man-made shorelines (seawalls and riprap), coating the intertidal zone. However, some thick slicks stranded on sandy shorelines (e.g., the wide intertidal sand flats on Tinicum Island) where the sticky oil picked up enough sandy sediments to make the oil slightly negatively buoyant. When this oil was eroded from the shoreline, it moved

along the bottom with the tidal currents. The mobile oil has not accumulated in significant amounts in depressions along the upper river.

The recovery of the oil in the trench will remove the only known area of pooled oil. There have been significant efforts to remove as much of the mobile oil as possible through shoreline cleanup of the re-floatable oil stranded on the intertidal zone and recovery of mobile, submerged oil using the V-SORS. Data from both the snare samplers and the V-SORS tows indicate that the amount of submerged oil has decreased over time.

For more technical information, please contact:

Hazardous Materials Response Division Office of Response & Restoration National Oceanic and Atmospheric Administration Seattle, Washington (206) 526-6317