Rapid Assessment Reference Condition Model

The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004-2005. For more information, please visit www.landfire.gov. Please direct questions to helpdesk@landfire.gov.

Potential Natural Vegetation Group (PNVG):

R1MCONns

Mixed Conifer - North Slopes

General Information							
Contributors (additional contributors may be listed under "Model Evolution and Comments")							
Modelers Joe Sherlock	jsherlock@fs.fed.us	Reviewers 2 anonymous reviewers					
Neil Sugihara Ayn Shlisky	nsugihara@fs.fed.us ashlisky@tnc.org						
Vegetation Type	General Model Sources	l	Rapid Assessment Model Zones				
Forested	✓ Literature		✔ California	Pacific Northwest			
Dominant Species*	□Local Data ✓Expert Estimate		Great Basin Great Lakes	South Central			
ABCO PIPO PILA	LANDFIRE Mapping Zones 3 6		Northeast Northern Plains	S. Appalachians			
PSME	4 5						

Geographic Range

California, from the San Bernardino mountain range thru the western slope of the Sierra Nevada mountain range, to the Klamath-Siskiyou region. May include interior coast ranges. Type intergrades with mixed conifer in southern Oregon, and may be extremely similar to it.

Biophysical Site Description

Favorable slopes, primarily north and east aspects throughout the geographic range. Generally above 5,000 feet elevation at the southern extent to above 1,000 feet in the north. Upper elevations defined by ecotone with red fir, lodgepole, and mixed evergreen.

Vegetation Description

Mixed conifer forests are typically composed of 3 or more species, with ponderosa pine, sugar pine, and Douglas-fir, white fir, and incense cedar. California black oak, or other hardwood species, are also common components. Giant sequoia forests are included within this PNVG. Douglas-fir drops out south of Yosemite National Park. Incense cedar may compose a larger proportion of PNVG in the south.

Disturbance Description

Surface fire occurs at an average generally between 10-15 years (Taylor and Skinner 2003, Taylor and Skinner 1998). Kilgore and Taylor (1979) reported a FRI of 19-39 years (N/NE aspects), which may favor mixed and replacement fires of longer return intervals. Insect/pathogen and drought-related mortality that does not cause a change in state occurs every 7-10 years in closed states; that which causes a transition from a late-seral closed to open state occurs about every 100 years. Snow breakage occurs in the mid-seral closed state (class B) about every 5 years. While model is aspatial, most medium and high severity fire may actually occur on mid and upper slope positions (Taylor and Skinner 1998, Taylor 2002, Beaty and Taylor 2001).

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Adjacency or Identification Concerns

Extends between the low elevation hardwood forests to the red fir forests of the upper elevations.

This PNVG may be similar to the PNVG R#MCONsw from the Pacific Northwest model zone with some differences in species composition.

Scale Description

Sources of Scale Data 🖌 Literature 🗌 Local Data 🖌 Expert Estimate

Small to medium patch size mosaic, driven by variations of surface fire intensity and insect/pathogen-related mortality. Also includes coarser texture, at the 100's to 1,000's of acres scale, that are less frequent.

Issues/Problems

It is unknown if there is a need for a northern (latitude) versus a southern MCON PNVG. This version is intended to respond to literature inferences that "north" slopes, perhaps especially in the northern Sierra Nevada through the Klamath region, have a longer fire regime and larger patch size than estimated by work in the southern and central Sierra Nevada. Likewise, the Klamath region literature also indicates that the topographic complexity also contributes to disparity between the two types. Even though a FRI difference may exist between N and S aspects, Skinner and Taylor 1998 found that the numbers were not statistically significant in their study. Difference in severity between aspects may be more important.

Model Evolution and Comments

Shlisky adjusted ratio of replacement to mixed fire from 0.8 to 1.25 from previous version based on reviewer feedback. Shlisky also added insect/pathogen and snow breakage (wind/weather/stress) probabilities included in description but not in previous model version. Very little data on reference % of PNVG by state. Current pathways show late-seral open succeeding to late-seral closed - need to consider if late-seral open can succeed to itself; then succeeding to late-seral closed in the absence of fire.

Succession Classes

Succession classes are the equivalent of "Vegetation Fuel Classes" as defined in the Interagency FRCC Guidebook (www.frcc.gov).

Class A 5%	Indicator Species* and	Structure Data (for upper layer lifeform)			
Early1 PostRep <u>Description</u> Early succession, after localized mortality, or mixed severity fire, comprised of grass, shrubs, and tree seedlings to saplings. PSME may drop out south of Yosemite National Park.	Canopy Position ABCO PIPO PILA PSME Upper Layer Lifeform Herbaceous Shrub Tree Fuel Model no data	Cover Height Tree Size C	Min 0% no data	Max 80 % no data dominant lifeform.	

Class B5 %Mid1 ClosedDescriptionPole to medium sized conifers with canopy cover greater than 40%.		Indicator Species* and Canopy Position ABCO PIPO PSME PILA Upper Layer Lifeform Herbaceous Shrub Tree Fuel Model no data	Structure Data (for upper layer lifeform) Min Max Cover 40 % 70 % Height no data no data Tree Size Class no data Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:				
Mid1 Open Description	15% In sized conifers with ess than 40%.	Indicator Species* and Canopy Position ABCO PIPO PILA PS Upper Laver Lifeform Herbaceous Shrub Shrub Tree Fuel Model no data	Structure Data (for upper layer lifefor Min Cover 0 % Height no data Tree Size Class no data Upper layer lifeform differs from domin Height and cover of dominant lifeform			Max 39 % no data dominant lifeform.	
Class D 50 % Late1 Open Description Overstory of large and very large trees with canopy cover less than 40%. Occurring in small to moderately-sized patches on southerly aspects and ridgetops.		Indicator Species* and Canopy Position ABCO PIPO PILA PSME Upper Laver Lifeform Herbaceous Shrub Tree Fuel Model no data	Structure Data (for upper layer lifeform Min Cover 0 % Height no data Tree Size Class no data Upper layer lifeform differs from domin Height and cover of dominant lifeform is		Max 39 % no data dominant lifeform.		

Indicator Species* and Structure Data (for upper layer lifeform) Class E 25% Canopy Position Min Max Late1 Closed ABCO Cover 40% 70% Description PIPO Height no data no data Overstory of large and very large PILA Tree Size Class no data trees with canopy cover greater **PSME** than 40%. Occurring in small to Upper Layer Lifeform Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are: moderately-sized patches on north Herbaceous aspects and lower slope positions. Shrub \Box_{Tree} Understory characterized by medium and smaller-sized shade-Fuel Model no data tolerant conifers Disturbances **Non-Fire Disturbances Modeled** Fire Regime Group: 1 I: 0-35 year frequency, low and mixed severity ✓ Insects/Disease II: 0-35 year frequency, replacement severity ✓ Wind/Weather/Stress III: 35-200 year frequency, low and mixed severity IV: 35-200 year frequency, replacement severity Native Grazing V: 200+ year frequency, replacement severity Competition Other: Other: Fire Intervals (FI): Fire interval is expressed in years for each fire severity class and for all types of Historical Fire Size (acres) fire combined (All Fires). Average FI is the central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is Avg: the inverse of fire interval in years and is used in reference condition modeling. Min: Percent of all fires is the percent of all fires in that severity class. All values are Max: estimates and not precise.

		Avg Fl	Min Fl	Max FI	Probability	Percent of All Fires
Sources of Fire Regime Data	Replacement	250			0.004	5
✓ Literature	Mixed	200			0.005	7
Local Data	Surface	15	10	40	0.06667	88
Expert Estimate	All Fires	13			0.07567	
	_	-				

References

Beaty R. M. and A. H. Taylor. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA Department of Geography, The Pennsylvania State University, University Park, PA, USA. Journal of Biogeography 28: 955±966

Bekker, M. F. and A. H. Taylor. 2001. Gradient Analysis of Fire Regimes in Montane Forests of the Southern Cascade Range, Thousand Lakes Wilderness, California, USA. Plant Ecology 155: 15–28.

Brown, James K.; Smith, Jane Kapler, eds. 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 257 p.

Caprio, A.C. and T.W.Swetnam. 1995. Historic fire regimes along an elevational gradient on the west slope

^{*}Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

of the Sierra Nevada, California. In: Brown, James K.; Mutch, Robert W.; Spoon, Charles W.; Wakimoto, Ronald H., tech. coord. 1995. Proceedings: Symposium on Fire in Wilderness and Park Management: Past Lessons and Future Opportunities, March 30-April 1, 1993. Missoula, MT. Gen. Tech. Rep. INT-GTR-320. Ogden, UT; U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

Evan J. Frost and Rob Sweeney. 2000. Fire Regimes, Fire History and Forest Conditions in the Klamath-Siskiyou Region: An Overview and Synthesis of Knowledge. Wildwood Environmental Consulting. Prepared for the World Wildlife Fund, Klamath-Siskiyou Ecoregion Program, Ashland, OR. December, 2000

Kilgore, B. M. And D. Taylor. 1979. Fire history of a sequoia-mixed conifer forest. Ecology, 60(1), 1979, pp. 129 – 142 1979

McKelvey, K.S. and seven other authors. 1996. An Overview of Fire. In: the Sierra Nevada Sierra Nevada Ecosystem Project: Final report to Congress, vol. II, Assessments and scientific basis for management options. Davis: University of California, Centers for Water and Wildland Resources, 1996.

Skinner, C.N. and C. Chang. 1996. Fire Regimes, Past and Present. In: the Sierra Nevada Sierra Nevada Ecosystem Project: Final report to Congress, vol. II, Assessments and scientific basis for management options. Davis: University of California, Centers for Water and Wildland Resources, 1996.

Taylor, A. H. 2000. Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A. Journal of Biogeography 27: 87–104.

Taylor, A.H., and C.N. Skinner. 1998. Fire history and landscape dynamics in a late-successional reserve, Klamath Mountains, California, USA. Forest Ecology and Management 111:285-301.

Taylor, A.H. and C.N. Skinner. 2003. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecological Applications 13:704-719.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.