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ABSTRACT

A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty
motor vehicles is derived.  The nested multinomial logit (NML) mathematical framework is used. 
Calibration of the model is based on information in the existing literature and deduction based on assuming
a small number of key parameters, such as the value of time and discount rates.  A spreadsheet model
has been developed for calibration and preliminary testing of the model.
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1.  INTRODUCTION

This memorandum documents a revised method for forecasting market shares of alternative fuel and
advanced technology vehicles for the Transitional Alternative Fuels and Vehicles (TAFV) Model (Leiby
and Rubin, 1997; 2000).  The revision adds hybrid and fuel cell vehicle technologies and creates a
separate technology set for gaseous bi-fuel vehicles.  The model’s coefficients are derived from basic
assumptions and input data, rather than adopted from statistical estimates appearing in the literature.  The
purpose of the change is to insure that the valuations of attributes implied by the model are transparent,
plausible and defensible.

The nesting structure of the vehicle technology choice model and the variables that drive consumer choice
are explained in Section 2.  The mathematics of the nested multinomial logit (NMNL) model are explained
in Section 3.  The general approach to estimating coefficients for variables is explained in Section 4. 
Specific methods used to estimate each of the model’s coefficients are set forth in Section 5.  Section 6
presents the results of calibrating the model using base year 1995 data, and then discusses the implied
attribute values.  A spreadsheet model constructed for calibrating coefficients and testing the implications
for vehicle technology market shares is described in Section 7.
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2.  MODEL STRUCTURE

Sales shares are predicted by a NMNL function of relevant vehicle and fuel attributes, fuel and vehicle
prices, and other factors such as fuel availability and make and model diversity.  There are three levels of
nesting, illustrated in Figure 1.  The first (lowest) level nesting predicts the probability of choice of fuel
type for multi-fuel vehicles, given that a bifuel or flex-fuel vehicle has been chosen.  The purpose of this
level is to determine the expected fuel-related characteristics of vehicles capable of using more than one
fuel.  The second level nesting represents the choices among alternative vehicle technologies within sets
of technologies with similar characteristics, conditional on the choice of a particular technology set.  The
third level choice is among the technology sets.

Choices among vehicle technologies are made based on fuel and vehicle characteristics.  Fuel
characteristics include price, availability, and driving range using the fuel in question (given vehicle fuel
economy and tank size).  Vehicle characteristics include price, acceleration performance, capacity, the
costs of maintenance and battery replacement, the cost of fuel per vehicle mile, refueling options, and
make and model diversity.  For flexible and bi-fuel vehicles, acceleration is a function of the fuel type
chosen.  The variables included are listed in Table 1.  An argument can be made that other variables
should be considered.  For example, hybrid vehicles tend to be quieter and their higher voltage electrical
systems may offer a variety of benefits.

Table 1.  List of Variables Used in the Alternative Fuels and Vehicles Model

Variable Name Units

Vehicle Purchase Price PSPR 1990 $

Fuel Cost per Mile FLCOST cents per mile

Range VRNG 1/miles

Battery Replacement Cost BRC 1990 $

Acceleration, 0-60 mph ACCL seconds

Home Refueling for Evs HFUEL dummy

Maintenance Cost MAINT annual 1990 $

Luggage Space LUGG ratio to gasoline vehicle

Fuel Availability Coefficient 1 BETAFA multiplier for exp (k*fraction)

Fuel Availability Coefficient 2 BETAFA2 multiplier (k) for fraction of
stations offering fuel

Make/Model Availability MMAVAIL in (fraction of total gasoline
makes and models)

Vehicle Technology Nest
Generalized Cost Coefficient

TSGC 1990 $

Fuel Choice Generalized Cost MFGC 1990 cents/mile
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TAFV Vehicle Choice Model Structure
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Figure 1.  Alternative Fuels and Vehicles Model Nested Choice Structure
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The following nested set structure has been implemented in the new NEMS AFVM module:

I. Conventional Liquid Fuel Capable Vehicles
 1. Conventional gasoline vehicle
 2. Flexible-fuel gasoline/E85

a. Expected use of gasoline v. ethanol
 3. Flexible-fuel gasoline/M85

b. Expected use of gasoline v. methanol
 4. Conventional diesel vehicle (TDI)

II.  Conventional Gaseous Fuel Capable Vehicles
 5. Bi-fuel CNG vehicle

Expected use of CNG v. Gasoline
 6. Bi-fuel LPG vehicle

Expected use of LPG v. Gasoline

III. Hybrid Vehicles
  7.  Mild hybrid gasoline
  8.  Full hybrid gasoline

   9.  Full hybrid diesel
10. Grid-connected hybrid gasoline

IV. Dedicated Alternative Fuel ICE Vehicles
11. Dedicated CNG
12. Dedicated LPG
13. Dedicated methanol
14. Dedicated ethanol

V. Fuel Cell Vehicles
15. Fuel cell vehicles reforming gasoline
16. Fuel cell vehicles reforming methanol
17. Hydrogen fuel cell vehicles

VI. Battery electric vehicles
18. Battery powered EV

An advantage of using a nested logit structure is that it allows for differences in the price sensitivities of
choices among different technology sets and thereby circumvents the independence of irrelevant
alternatives property of the un-nested logit model.  The NMNL structure is often misinterpreted as
implying that consumers actually do make their choices in the order of nesting (first decide on technology
set, then vehicle technology, then fuel type).  In fact, this is not necessarily implied by the nested
structure.  What is implied is that there is a structure to the price sensitivities of the choice decisions. 
Price sensitivity within a nest is the same for all alternatives in the nest.  Price slopes may differ across
nests at the same level, however.  The price sensitivity of choices in a lower nest must be greater than in
a higher nest.  In theory, nests contain alternatives that are similar with respect to their unobserved
attributes (attributes not explicitly included in the model).  At the lowest level of nesting, alternatives are
assumed to be most similar (fewest important unobserved attributes).  Choices among very similar
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alternatives will be most price sensitive, because the alternatives are close substitutes. This theoretical
requirement turns out to be helpful in calibrating an NMNL model.

In the remainder of this memorandum, the mathematical structure of the NMNL model is presented,
followed by an explanation of how the model can be calibrated based on fundamental assumptions about
economic behavior and evidence from published studies.  Each variable and the derivation of its
coefficient is then reviewed, in turn.



1Some variables, for example range and fuel availability, actually affect utility in a non-linear manner. 
However, as long as utility can be represented as a weighted sum of such non-linear functions, equation (1) is
appropriate.
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3.  MATHEMATICS OF THE NMNL MODEL

In the MNL model, the utility of a choice alternative is a function of its attributes and other variables. 
Denote these variables by xijk to indicate the ith variable for the jth AFV technology type, in the kth

technology set, and let the weight (or marginal utility) for the ith variable be :ik .  A simple functional form
for the utility, ujk , of the jth alternative in set k is the sum of weighted variables.1

u x cjk Pk ik ijk
i

I

Pk jk= =
=

∑µ α µ
1

(1)

The weight :Pk is the coefficient for vehicle price, P, in technology set k, and "ik = :ik / :Pk . 
Normalizing by dividing by :Pk implies that the "-weight for vehicle price equals 1, and that every other
variable’s weight represents the (negative) value of one unit of that attribute, in dollars.  The sum cjk

therefore represents a “generalized cost” for alternative j which, when multiplied by the price weight (or
slope) gives the utility of AFV technology j , since :Pk has units of utils per dollar.

For the jth vehicle technology in the kth technology set, the simple MNL model gives the probability that
the jth technology will be chosen (or equivalently the expected market share), conditional on a consumers’
decision to buy a technology in the kth set, as the following function of the utilities of all technologies in the
class.

s
e

e
j k

u j

ul

l

nk| =
∑
=1

(2)

In equation (2), l indexes all of the choice alternatives in technology set k and nk is the number of AFV
technologies in class k.  This probability is conditional on the consumer choosing set k. The next step is to
determine the choice probabilities for each of the k technology sets.

In the nested MNL (NMNL) model, the technology set shares may depend on set level variables, but they
also depend on the level of utility expected from the individual technology choices in the set.  The average
utility level within set k is given by the following function of the individual technology utilities.

c
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This term is referred to as an average generalized cost, since the logarithm of the sum of exponentiated
utilities is divided by the price slope (multiplying the generalized cost by the price slope yields a utility, as
shown in equation (1) above).  

Now the utility of the kth technology set can be computed using the AFV technology generalized costs
from equation (3), set-specific attributes (yik) and weights (:i), including the set price (or generalized
cost) slope, :P .  

sk
e P (Ck c )

e P (Cl cl )

l 1

N ; C y
k

k i ik
i 1

I

=

+

+

=
∑

=
=

∑
µ

µ
α                                       (4)

Note that the set-level price slope ( :P ) is the weight for the generalized cost variable c-bar, but is not, in
general, equal to :Pk .  Indeed, MNL theory requires that |:P| < |:Pk| for every k.  The :Pk need not, in
general, be equal.  It may also be that there are no new variables at the set level.  There need not even be
constant terms for each technology set. In this case, the sole purpose of the nesting would be to allow a
different price elasticity for technology set choice than for the AFV technology choices.  

For flexible-fuel vehicles and for gaseous fuel bi-fuel vehicles, the full set of vehicle characteristics cannot
be determined without first deciding on which fuels the vehicles will use.  For example, the range of a bi-
fuel CNG vehicle will be different using CNG than using gasoline, and similarly for an FFV using M85
versus gasoline.  Fortunately, the NMNL model provides a solution to this problem.  By nesting a
conditional fuel choice decision within the conditional vehicle choice decision, a generalized (or expected)
cost for the fuel type choice can be passed forward to the vehicle choice level.  While this nested fuel
choice decision cannot be used to predict the fuel choices for vehicles on the road, it does represent the
expected value of the fuel choice at the time of vehicle purchase.  At least three variables must be
included in the fuel choice nest: (1) fuel cost per mile (pf ), (2) range (r), and (3) fuel availability (xa).  The
utility of choice of fuel type f, for vehicle technology type j in technology set k, is given by the following.

( )u p
1

r
Aefjk pjk f rjk ajk

bx= + +µ µ (5)

In equation (5), range is represented by its inverse, since the time cost of refueling can be shown to
decrease with the inverse of range.  This is proven in Section 5.  Fuel availability is represented by an
exponentially declining function of the percent of stations offering the fuel, based on an empirical study by
Greene (1998).  The logsum term passed forward to the choice of multi-fuel vehicle technology is
computed analogously to equation (3).

c ejk
Pjk

u

f

fjk=










=
∑1

1

2

µ
ln (6)

The summation assumes no vehicle will be able to use more than two fuel types, although any number
could be included.  The fuel choice price slope , :Pjk, must be greater (in absolute value) than the vehicle
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technology choice price slope, :Pk, which, in turn, must be greater (in absolute value) than the technology
set choice slope :P.  Of course, when this generalized cost is passed forward to the vehicle technology
choice level, the relevant fuel attributes (fuel cost, range and availability) are replaced by the generalized
cost variable, which is then multiplied by the vehicle technology price slope, :pk , in computing the utility
of the jth vehicle technology type.
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4.  METHOD OF CALIBRATING COEFFICIENTS

The NMNL model is well suited to the deductive estimation of coefficients.   Shares of alternative fuel
vehicles (AFVs) depend on a measure of the expected utility, Uj , of each vehicle technology, j.  Utility is
represented by a weighted sum of relevant vehicle attributes, xij .  The coefficients, :i , are therefore the
marginal utilities of each attribute.  One of the attributes is the retail price, Pj , of the vehicle type.  The
weight for price is therefore the marginal utility of $1 of cost, present value, or the negative of $1 of
income.  Thus, if we can deduce the marginal, present value, Vi , of a 1-unit change in a certain
characteristic i, we can calculate its marginal utility coefficient, :i , by multiplying by the negative of the
coefficient of vehicle price, :P .  

The price slope of the utility function is, therefore, a pivotal parameter, since it is used in estimating every
other coefficient in the utility function.  It is convenient to calculate a logit price slope parameter from an
elasticity.  For example, suppose that the price elasticity of carline choice within the subcompact class is
known to be -4.  In the logit model, the elasticity of the share of alternative j with respect to variable i is
$ij is equal to the product of the variable slope coefficient, :ij, the value of the variable, and one minus the
market share.  In the case of price, the formula for the price slope as a function of the price elasticity is
as follows.

µ
β

P
Pj

j jP s
=

−( )1
(7)

  

Other coefficients in the utility function (with the exception of calibration constants) are estimated by
computing a dollar value per unit of the attribute, and then multiplying that dollar value by the negative of
the purchase price coefficient.

µ µx P
xunit

= − 





$
(8)

This method is derived from the relationship between the marginal utilities of attributes and the marginal
utility of the purchase price (which is the marginal utility of one present value dollar).  Using the linear
utility function shown in equation (1), its partial derivative with respect to a variable x, is the coefficient, or
slope, of x.  Note that if x appears in the utility function in a non-linear form, as in equation (5), then its
partial derivative will be more complex.  Taking the ratio of marginal utilities and noting that the Mu terms
will cancel, we obtain the result in equation (9), below.

∂
∂

µ
∂
∂

µ
∂
∂

µ µ
u
x

u
P

P
xx P P x= = − ⇒ − =( ) (9)

The derivative of P with respect to x is value of one unit of x in present value (purchase price) dollars. 
Thus, the coefficient of x is the negative of the price coefficient, times the dollar value of one unit of x, as
shown in equation (11).  Therefore, by choosing plausible dollar values for each attribute, and by deriving
the price slope from a plausible price elasticity, one can insure that the NMNL model will always make
plausible predictions.
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5.  DEDUCTIVE ESTIMATION OF AFV MODEL COEFFICIENTS

The approach used to estimate coefficients for the AFV model is to derive (or deduce) them from basic
economic assumptions, or to use consensus estimates of the marginal values of attributes based on the
existing, published literature.  Most AFV discrete choice models have inferred their coefficient estimates
by applying statistical techniques to stated preference survey data (e.g., Bunch et al., 1993).  Predictions
based on these surveys generally do not corresponded well with historical AFV market shares.  While
stated preference surveys can be very valuable in eliciting consumers’ preferences for new commodities
for which there is no historical record of revealed preference, they suffer from several well-known
shortcomings.  Most significant among these are the tendency for respondents to underestimate their true
sensitivity to market prices, and the inability of respondents to consistently make trade-offs among a large
number of attributes.  The former leads to much lower price elasticities than obtained using revealed
preference data.  The latter may result in inconsistent valuation of attributes.  Since neither of these
properties is acceptable in a model used for policy analysis or technology forecasting, an alternative
approach is used here.

Calibrating coefficients using basic economic assumptions and a consensus of estimates from the
published literature allows AFV model coefficients to be made more consistent with other assumptions of
the TAFV Module, thereby imposing logical consistency in factors such as implied discount rates and
annual vehicle usage rates.

Purchase Price Elasticity.  The most important coefficient in a vehicle choice model is the marginal
utility of purchase price.  In effect, the price coefficient serves as a scaling factor for all other variables in
the model.  In a multinomial logit model, the price elasticity of market share, $p , is not constant, but
depends on the current market share, s, and on the price level, P as follows: $p = :P(1-s).  Thus, price
elasticity will approach a maximum of :P as s nears 0 and approach 0 as s nears 1.  For this reason, price
elasticities of different models should be compared at constant price and market share.

In theory, the demand for types of vehicles should be much more price elastic than the demand for
vehicles as a whole.  Empirical evidence supports economic theory on this point.  The overall price
elasticity of demand for automobiles is generally agreed to be in the vicinity of -1.0 (see, e.g., Kleit, 1990;
McCarthy, 1996).  A survey of a dozen econometric studies of vehicle make and model choice produced
a much larger consensus price elasticity estimate of -2.8 at 50 percent market share (Greene, 1994). 
Lave and Train’s (1979) seminal study of automobile choice implies a price elasticity of make and model
choice of -3 at 50 percent share.  Recent studies have confirmed that choices among makes and models
of cars are highly price elastic.  Bordley (1993) concluded that while own price elasticities of demand for
car classes (e.g., compact, midsize, luxury) ranged from -1.7 to -3.4, average elasticities for makes and
models within segments ranged from -2.4 to -4.7.  Berry et al. (1995) estimated own price elasticities of
1990 carlines ranging from -3.1 to -6.7.  These latter estimates apply at the market shares of individual
carlines which are much smaller than 50 percent.

A key question is whether choice among AFVs is more or less elastic than choice among carlines.  In
theory, this depends on the extent to which consumers consider the alternative fuel technologies to be
close or distant substitutes.  Choices among close substitutes should be highly price elastic.  Greene’s
(1986) revealed preference study suggests that when the choice is between gasoline and diesel engines
for an otherwise identical carline, the choice is more elastic, about -10 (at 50 percent market share). 
Greene’s (1998) stated preference study of the value of fuel availability implied a price elasticity of about
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-50 for vehicles described as otherwise identical, except for the ability of an engine to use a different fuel. 
This would seem to be an upper bound on the price elasticity for choices among alternative fuel
technologies.  On the other hand, the choice between very different AFVs, such as a flex-fuel gasoline-
alcohol vehicle and a battery-electric vehicle, should be less price elastic because of significant other
design differences between the vehicles.

At present, the TAFV model represents only one vehicle class, a typical passenger car.  In the future,
four vehicle classes will be represented: (1) small car, (2) large car, (3) small light truck, and (4) large
light truck.  Alternative fuel and advanced technology choices will be made within each of the four
vehicle classes.  The NMNL model has been constructed so that there may be different coefficients for
each class of vehicle.  For illustrative purposes, we will use values for a large passenger car in this
section.   Assuming a price elasticity of -8.0 at a 50 percent market share and a purchase price of $19,500
implies a price coefficient of -0.00082.  The coefficient values presented for illustration below depend on
this price coefficient and the specific characteristics of intermediate-size cars.

Fuel Cost per Mile.  Like maintenance costs, fuel costs can be viewed as a stream of payments
extending over the vehicle’s lifetime.  Thus, the fuel cost coefficient can be related to the coefficient of
vehicle price through a discounting of future fuel costs.  A dollar of discounted present value of future
fuel costs should have the same effect on technology choice as a dollar of vehicle price.  The present
value of fuel costs depends on future fuel prices, Pt, fuel economy, the consumer’s discount rate r, and
the number of miles the vehicle will be driven in future years, Mt.  More precisely, the present value of
future fuel costs is given by equation (10).

V
M P

MPG r

P

MPG

M

rF
t t

t
t

t t
t

t

L

t

L

=
+

=
−

+==
∑∑ ( ) ( )1 111

(10)

Assuming that fuel economy (MPG) will remain roughly constant over a vehicle’s lifetime and that
consumers use the current fuel price as the value for future fuel prices, the present value of fuel costs
equals the current fuel cost per mile times discounted future vehicle miles of travel.  Thus, the coefficient
for fuel cost per mile is equal to discounted miles times the retail price coefficient, b.  Assuming a new
vehicle is driven 15,640 miles initially, with usage declining at 4 percent per year, a 14-year vehicle life
and an annual discount rate of 12 percent, yields 85,500 lifetime discounted miles.  Multiplying by
b = -0.00082, and dividing by 100 to convert to cents gives fuel cost (in cents) per mile of -0.702.  Note
that the value of this coefficient does not depend on the current price of fuel, or on the fuel economy of
the vehicle in question, since these are accounted for in the fuel cost per mile variable itself.

 Maintenance Cost.  Maintenance costs are represented by an annual dollar expenditure for each
vehicle type.  Economically rational consumers would respond equally to a dollar increase in the present
value of maintenance costs and a dollar increase in the retail price of a vehicle.  Thus, the coefficient for
annual maintenance expenditures should equal the coefficient for retail price, multiplied by the ratio of the
present value of maintenance costs, Vm , to annual maintenance costs, m.  If we assume that annual
maintenance costs are constant over a vehicle’s life, an assumption which should probably be
reconsidered, then the present value ratio will be the sum of the discounting factors over the vehicle’s
lifetime, L.
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Given the discounting assumptions used above, equation (11) is equal to 5.468.  Thus, the coefficient of
maintenance cost should be -0.00082 x 5.468 = -0.00449.  Note that the value of this coefficient is not
dependent on other vehicle attributes, but only on the discount rate and retail price coefficient.

Battery Replacement Cost.  Like maintenance, battery replacement is a future cost of vehicle
ownership.  Represented as present value, it would have the same effect on utility, and thus the same
coefficient as purchase price.  Therefore, the coefficient of battery replacement costs is the ratio of the
present value of those costs to their future value, multiplied by the coefficient of purchase price.  Let
battery replacement be required after y years, at a cost of Cb .  Then the coefficient of battery
replacement costs, :b , is given by equation (12).

Battery replacement timing and cost are heavily dependent on battery technology.  Assuming replacement
after six years gives a present cost to future cost ration of 0.506, assuming a 12 percent annual discount
rate.  Multiplying by -0.00082 produces a coefficient estimate of -0.00042.
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The Value of Range.  If one assumes that the value of increased range is the present value of avoided
refueling time, then the proper representation of range and an estimate of its coefficient can be readily
deduced.

Range, R, is defined as the typical (not maximum) distance a vehicle travels between refuelings.  If the
typical driver uses 80 percent of a tank full before refueling, then range is tank size (S, in gallons), times
0.8, times average on-road miles per gallon, times test-cycle MPG, times the ratio of on-road to test-cycle
fuel economy, 0.85.

Total refueling cost per year, is equal to the miles driven per year, M, divided by range (which gives the
number of refuelings), multiplied by the time required per refueling, H (in hours), and by the value of time,
w (in $/hour).  The present value of refueling cost will be the discounted sum of costs over the vehicle’s
lifetime.  However, if we assume that range is constant over a vehicle’s life, then the value of range is
equal to a constant divided by R.

V
wHM

R r R

wHM

r
K

RR
i

i
i
i

i

L

i

L
=

+
=

+
=∑∑

== ( ) ( )1

1

1

1
11

(13)

If the discounting were computed continuously by integration, the result would be the same.  Also, even if
the value of time and the amount of time for refueling were to change over time, the value (or cost) of
refueling would still equal a constant divided by R, so long as R remains constant over time.  This is likely,
because vehicle fuel economy deteriorates very little with vehicle age (see, e.g., Murrell, 1980).
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The present value of range will be a function of both fuel economy and vehicle tank size.  The average
EPA MPG of a new intermediate passenger car sold in the United States in 1998 was 25.5 MPG, with a
tank size of 17.6 gallons.  This gives a nominal range of 449 miles, but after discounting MPG by 15
percent for in-use fuel economy performance and discounting the tank size by 20 percent to account for
maintaining a reserve at refueling, a more practical range of 305 miles is estimated.  Additional
assumptions about vehicle use and lifetime, and discount rate result in a total value for K (representing the
value of a 1-unit change in 1/R) of $285,041.  This would be, in theory, the value of increasing range from
1 mile to never having to refuel over the life of the car.  Of course, half of that value would accrue in
increasing range from 1 to 2 miles.  The coefficient of 1/range is equal to K times the coefficient of
vehicle retail price.  If we take the price coefficient to be b = -0.00082, then the coefficient of the inverse
of range is -233.9. 

The value of range for multi-fuel capable vehicles is handled by nesting the fuel choice decision within the
vehicle technology choice decision.  The logsum term carried forward from the fuel choice decision
represents an expected value for the two fuels characteristics, and takes into account the added value of
having a choice of fuels.  However, battery-powered electric vehicles and grid-connected hybrid vehicles
present special problems.  If the range of a grid-connected hybrid on electricity alone versus its range on
gasoline are used to represent the ranges for those fuels, electricity is likely never to be chosen.  On the
other hand, cost minimizing behavior might dictate that the vehicle be charged whenever a convenient
charging source were available and the vehicle were parked for an extended period of time.  Methods for
estimating the value of home-base refueling of grid-connectable electric vehicles are presented in the
following section.

Value of Home-Based Recharging.  The value of home-based recharging should be related to the cost
of refueling, in general.  Since we have defined the value of range to be the present value of the cost of
refueling as a function of range, we can use the value of range to estimate the value of avoiding
commercial refueling by recharging at home. To the extent that home recharging is faster or more
convenient, it should reduce the overall cost of refueling.  In other words, the value of home-based
recharging is the value of not having to refuel away from home, minus the cost of home recharging.  A
particularly simple approach is to assume that the time cost of home refueling is a certain fraction of that
of conventional, retail station refueling, and that a given percent of refueling is done at home.  

Electric vehicles that can be charged from the grid may be recharged while operating in the field or at
their home base.  How much of a vehicles services (vehicle miles) will be provided by each (or by
gasoline in the case of the grid-connected hybrid) will depend not only on average daily use, but also on
how travel varies from day to day.  The two modes of recharging have very different implications for the
cost of refueling, and therefore the value of increased range.  To the extent that recharging in the field
detracts from operating time, time spent recharging should have a substantial opportunity cost.  To the
extent that recharging at the home base can be scheduled during slack periods, it should have essentially
zero time cost.  Simplifying assumptions must be made in order to derive workable yet plausible methods
of estimating the value of range and the value of the opportunity to recharge at home.

Battery-Powered Electric Vehicles.  Recharging of battery electric vehicles may take place at the
vehicle’s home base during slack periods or on the road.  For the two modes of recharging, the time
required, H, and the value of time, w, spent recharging may differ.  We assume that a constant fraction, f,
of the energy services of the vehicle will be produced using home recharging.  The total cost of
recharging is given in equation (14).
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The total benefit of home recharging is the total cost of recharging on the road minus VR
* .  Let Z

represent discounted lifetime vehicle miles.  
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The savings (negative costs) from home recharging, V*-V, is given by equation (16).
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Thus, home recharging for battery-powered electric vehicles can be represented either by introducing the
variable 1/R a second time with the coefficient K* , or equivalently by using the coefficient (K+K* ) for
the inverse range variable.  The former method is used.

Assuming that home base recharging is done during slack periods, the value of time would be zero. 
However, some time would still be required to connect and disconnect the recharging equipment.  Time
spent in connecting and disconnecting should probably be valued at the same rate as other refueling time
(for lack of evidence to the contrary).  In this case, wh = w , but Hh is defined to be only the
connect/disconnect time, not the entire time required for recharging.

Assuming 85,512 discounted lifetime miles for a large car, that home recharging supplies 80 percent of the
energy for a battery-powered electric vehicle, a value of time of $20 per hour, and that connecting and
disconnecting requires 1 minute versus 10 minutes for external recharging, then K=$205,229 and the
coefficient of 1/R is K*(-0.00082)=168.4 .

Grid-Connected Hybrid Vehicles.  Grid-connected hybrid-electric vehicles have the added
complication of being able to recharge themselves while operating.  Depending on how recharging
algorithms are designed and how vehicles are driven, there may be substantial or very limited opportunity
to recharge vehicles from the grid.  The key issue is at what state of charge the grid-connected hybrid
would automatically recharge its batteries.  For example, if the system is designed never to allow the
batteries to fall below a 20 percent charge, and if self-recharging is set to cut off at 95 percent charge,
the maximum capacity available to be recharged from the grid would be 75 percent.

The NMNL model as formulated here presumes that all vehicle purchasers are identical, except for a
random utility factor.  The random utility component is drawn from the same distribution for each
individual, but its realization is different.  Such a formulation may or may not adequately capture the
differences in vehicle utilization patterns that could define a niche market for grid-connected vehicles.

For grid connected hybrids, the key recharging parameters are the states of charge at which self-
recharging will start and cut off.  It is assumed that the midpoint between these two values will be
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available for home-base recharging.  If the points are 20 percent and 95 percent, as in the example above,
the midpoint would be a 57.5 percent state of charge, and 37.5 percent of the battery capacity would be
assumed to be available for home-base recharging.  The next step is to determine what range (in miles)
the vehicle could achieve on a 37.5 percent charge.  Of course, it is unlikely that the grid hybrid would be
operated solely under battery power for the entire range, nonetheless, if the efficiency of electric energy
use is approximately constant regardless of how it is used, then it is reasonable to assume that the entire
charge could be translated into travel at battery-only operating efficiency.  The vehicle services a 37.5
percent charge could supply are then just the total energy storage capacity of the battery pack, times
0.375, times the vehicle’s fuel economy (in miles per unit of electrical energy).

The next step is to determine the fraction of total annual travel the energy supplied by home recharging
could produce. This requires a knowledge of the daily travel distribution, since it is assumed that
recharging occurs at the home base, at the most once per day.  The daily travel distribution is specified by
three parameters:  (1) the fraction of days on which no travel occurs (zero-mile days), (2) the average
daily travel for days on which travel does occur, and (3) the standard deviation of daily travel (using only
non-zero travel days).  It is assumed that the distribution of travel on non-zero travel days follows a
lognormal distribution.  The parameters of the lognormal distribution can be computed from its mean (:)
and standard deviation (F), as can the parameters of the associated normal distribution (let the expected
value of the normal distribution be represented by . and the variance by T2 ).  The formulas below are
derived from Johnson, Kotz and Balakrishnan (vol. 1, Ch. 3, 1994).
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With these parameters, the estimated daily range available from home recharging, X, can be transformed
into a standard normal variate, x, by taking the logarithm, subtracting . , and dividing by T.  
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(18)

The fraction of daily travel that could be satisfied by this range, f, can the be calculated by looking up the
cumulative normal probability density corresponding to x.

The present value of savings, PVS, derived from home recharging under the above assumptions can be
readily calculated.  It is the difference between the time costs of refueling with gasoline for the fraction of
miles that can be achieved with home refueling and the time costs of home refueling.  Let the time
required for home recharging be He , and the range achievable with a home recharge be Re .  The savings
due to home recharging are as shown in equation (19).
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Since it is assumed here that the value of time is the same (wn = w), only the active time required to
connect and disconnect the home recharging is counted (for example, one minute as opposed to 10
minutes for refueling with gasoline at a retail filling station).  Note that if the range using gasoline is
sufficiently large relative to the range on electricity from home recharging, the savings from home
recharging could actually be negative.

Assuming that a large passenger car travels 15,640 miles in its first year of operation, and that it has non-
zero mileage on 80 percent of the days in a year, then its average miles per day is 53.6.  Further assuming
that the standard deviation of the lognormal distribution is twice its mean (107.2), then the expected value
and standard deviation of the corresponding normal distribution are 3.176 and 1.269, respectively.  A grid-
connected hybrid with lower and upper charging points of 20 percent and 95 percent of capacity would be
able to charge, on average, 37.5 percent of its energy storage capacity at the home base.  Given a battery
pack size of 45 gallons, and taking into account the relative energy density and fuel economy of battery-
powered electric transportation, the grid-hybrid could achieve a range of 36.4 miles on the average home-
based recharge.  Taking the log of 36.4, and looking up the corresponding cumulative probability for a
normal distribution with mean=3.176 and standard deviation = 1.269, produces the result that 63 percent of
the vehicle’s mileage could be powered by grid electricity. Given this value for f , and the same other
parameters as for battery-electric vehicles, the present value of home recharging savings for a large
passenger car is only $95, which produces a coefficient of 0.0777 for the home refueling dummy variable. 
It may seem surprising that the value of home recharging is so small, given that it could conceivably
replace enough energy to supply 63 percent of the vehicle’s energy services.  The explanation lies in the
frequency of home recharging required to achieve this benefit: 8 out of 10 days.  Although connecting and
disconnecting for recharging requires only one minute, it must be done every day.  This erases most of its
advantage relative to refueling with gasoline, which is required only every week or so.

Acceleration Performance.  Estimates for the value of performance based on consumer survey data
vary widely.  Greene and Liu (1988) settled on a value of $450 (1990 $) per 10 percent increase in
horsepower to weight ratio.  Greene (1994) chose $25 per 1 percent increase, arguing that the marginal
utility of performance should decrease with increasing performance.  McConville and Cooke (1996) found
that consumers’ valuation of performance seemed to correlate with the log of the acceleration force. 
Donndenlinger and Cooke (1997) report an estimate of $270 (1997$) for a 10 percent reduction in
acceleration time from 0-60 mpg.  This would be $225 in 1990 $.  The NEMS model variable is 0-30 mph
acceleration time, however, we assume an equivalent value for a 10 percent reduction.  Given that a
typical 0-30 mph acceleration time is about 3.5 seconds, $225-$250/0.35 seconds, gives a range of value
of $643-$714 per second.  We will use $700/second, which translates into a coefficient of -0.35.

The coefficient for 0-60 mpg acceleration time (in seconds) is derived from estimates of the value of
horsepower.  Given a value per horsepower, the increase in horsepower is then translated into a reduction
in acceleration time, using the following relationship between the ratio of horsepower to weight and 0-60
acceleration time, derived from data on U.S. passenger cars provided by the U.S. EPA (Heavenrich and
Hellman, 1999, table 2).
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Using equation (20), the change in horsepower to weight resulting from a 10 hp increase for a typical 174
hp, 3,422 lb. large U.S. passenger car would be -0.43 seconds.  Using a value of $12.50 per horsepower,
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results in an estimated value of $294 per 1 second reduction in acceleration time.  Multiplying this by the
coefficient of price gives a coefficient estimate of -0.2408.  Given that the average acceleration time for a
1999 model year U.S. passenger car is 10.5 seconds, this estimate is very close to Donndenlinger and
Cooke’s (1997) estimate of $270 per 10 percent reduction in 0-60 time, discussed below.

Luggage Space.  The coefficient of luggage space is calculated from an assumed average value per
cubic foot, A, and an average luggage volume, v.  The value of luggage space per cubic foot is estimated
based on other studies.  Multiplying the value per cubic foot times the average size (in cubic feet) gives
the total present value of luggage space.  Since luggage space is represented as a ratio to the luggage
space of a conventional vehicle, a change of one unit in the ratio is equal in value to the present value of
luggage space for a conventional vehicle.  Thus, the coefficient of the luggage space ratio is the present
value (average value per cubic foot, times average volume), multiplied by the price coefficient.

( )µ µL P Av= (21)

Several estimates of the value of luggage space can be found in the literature.  It is important to keep in
mind that the estimates derived from econometric estimates of discrete choice models represent marginal
utilities, which are likely to be lower than the average utility in which we are interested.  Greene (1994)
cited three studies that had reported values for luggage space ranging from $92 to $670 (1990 $) per
cubic foot.  Greene discounted these estimates, noting that Greene and Liu had found a range of estimates
for interior volume of $32 to $192 per cubic foot.  They argued that luggage space should be valued at
less than passenger space and chose a value of $31.  Donndenlinger and Cooke (1997) take issue with
Greene’s reasoning, arguing that the marginal values of interior room and luggage room should be the
same when competition between the two spaces is optimally balanced.  They suggest a best estimate of
$150 (1990 $).  This argument assumes that the production functions for luggage space and interior
volume are the same because, if the cost of producing luggage space differed from that of producing
interior volume, then there is no reason why the marginal costs should be equal in the optimal design. 
Optimal design requires that the marginal cost of producing another unit of luggage space equal its
marginal utility to the consumer, and the same for interior space.  We think it is likely that the cost
function for producing luggage space differs from that for interior space and suspect that the marginal
utilities differ as well.  However, given that the preponderance of the empirical evidence is much closer to
Donndenlinger and Cooke’s estimate of $150, we will use their value, which translates into a coefficient
of 1.72 for the ratio variable for large cars.

Fuel Availability.  Lack of availability of fuel is probably the most salient feature of alternative fuel
vehicles, at least until they achieve market success and develop a widespread fuel retailing network. 
There are few empirical studies of the value of fuel availability.  Surveys of diesel vehicle owners
suggested that at station densities of 10 percent to 20 percent, fuel availability went from a major concern
to a minor one (Sperling and Kitamura, 1986; Sperling and Kurani, 1987).  Stated preference surveys
conducted in California suggest very high values for fuel availability, in the tens of thousands of dollars per
vehicle for full versus negligible fuel availability (Brownstone et al., 1995).  A recent nationwide stated
preference survey, focused exclusively on fuel availability and alternative fuel choice concluded that an
increase from 1 percent to 100 percent availability was worth $1,000 to $3,500 to motorists, depending on
the context of the choice and functional form used to represent value as a function of percent of stations
offering the fuel (Greene, 1998).  However, Greene (1998) acknowledged that his analysis was not
accurate close to zero, and that he was unable to statistically distinguish between functional forms
implying very different values at zero availability.  We use here a value of $7,500 for full versus 0 percent
fuel availability.  The function takes on values of $2,750 at about 5 percent availability and $1,000 at 10
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percent, reasonably consistent with Greene’s recent study.  This is implemented as an exponential
function of the fraction of stations, s, offering the fuel, as shown in equation (6).

V CeA
bs= (22)

Assuming a value of availability of -$7,500 at 0 percent and -$1,000 at 10 percent, and converting to utils
by multiplying by the coefficient of purchase price, one can solve for C = -6.154 and b = -20.149.  The
resulting cost of fuel availability function is shown in Figure 2.  

Figure 2.  Cost of Fuel Availability

Make and Model Availability.  Diversity of choice itself has value to consumers. If a vehicle
technology is offered on many different makes and models, it will attain a greater market share than if it is
available on only one, all else equal.  In the theory of the MNL model, this is because each make and
model offers some attributes not included in our variable list (e.g., a particular style, optional feature,
mechanical reliability), whose values vary from consumer to consumer.  If a vehicle technology is
available on only one make and model, it is unlikely that that particular make and model will be any given
consumer’s favorite (in terms of unobserved attributes).  As the number of makes and models offering
the option increases, the chances that it will be available on each consumer’s “favorite” make and model,
increases.

Let nj be the number of makes and models offering technology j, and N be the total number of makes and
models of conventional technology vehicles.  The value of diversity of choice is given by the logarithm of
the ratio (nj /N).  Assume a simple MNL model (not nested), in which the market share of vehicle
technology j is given by the usual formula.  (Although K has been used previously to index technology
sets, it is used for convenience in equations 23–25 as a dummy index to sum over technologies within a
set.)
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Now suppose that each vehicle technology j, is offered on nj makes and models, and further that the
expected utility of each make and model is the same, namely Uj .  The share of technology j will be the
sum of the shares of the makes and models offering it.  Using this fact, and noting that multiplying both
the numerator and denominator of the logit equation by a constant (in this case we choose the constant to
be e-ln(N) , where N is the number of makes and models of gasoline vehicles), we derive the desired result. 
The added utility of additional make and model choices is exactly ln(nj /N).  Note that this derivation
assumes equal expected utility for the makes and models.  While this does not necessarily imply that they
are identical, it does imply that they would achieve equal market shares.
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The same result can be obtained for the NMNL model, when we assume that the make and model
choices are nested within the vehicle technology choices.  The NMNL formula for the market share of
technology j is the following.
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If all makes and models have the same expected utility, then the coefficient of the log of the ratio (call it
() would be 1, as shown in equations (25) and (26).  In reality, certain vehicles appear to be more likely
to be consumers’ favorites (have higher than average expected utilities), then the coefficient would be
less than 1.  Leiby and Rubin (1998) suggest a value of 0.37, based on the distribution of car sales among
makes and models in the United States.  The cost of lack of diversity can be computed by dividing by the
coefficient of vehicle price.
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A curve illustrating the cost of lack of diversity for (= 0.67 is shown in Figure 3.  Diversity turns out to be
an extremely important factor in the attractiveness of alternative fuel vehicles.  Even if 40 percent of all
makes and models offer a particular technology, the cost of lack of diversity is substantial, almost $500.
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Figure 3.  Value of Diversity in Choice Among Makes and Models 
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6.  CALIBRATION OF NEMS AFV MODEL COEFFICIENTS

6.1  PRICE ELASTICITIES

Because of their role in calculating all other coefficients, and because they thereby determine the overall
sensitivity of choices to changes in utility, price slopes are the most critical parameters of the NMNL
model.  Three price slopes must be determined:  (1) a fuel-type choice price slope for flexible and bi-fuel
vehicles, (2) the alternative fuel technology price slope, and (3) the technology set price slope.  Theory
requires that the price slopes (which are negative) have the following relationship :1, < :2 < :3.  That is,
sensitivity to price should decrease as one goes from choice of fuel type for the same vehicle, to choice
between technology sets (e.g., conventional fuel engines versus battery electric vehicles).  Theory also
indicates that the price elasticity of choice among technology sets should be less elastic than the overall
price elasticity of demand for automobiles.  There is a broad consensus in the econometric literature that
the price elasticity of demand for automobiles is approximately -1.0 (e.g., Kleit, 1990; McCarthy, 1996;
Bordley, 1994).

Because of the relative scarcity of alternative fuel vehicles, there are almost no revealed preference
(based on actual market behavior) econometric estimates of the price elasticity of choices among classes
of alternative fuel technologies.  Greene’s (1986) analysis of the choice between gasoline and diesel
engines for the same model line of vehicles is an exception.  Using carline monthly sales data for 1979-
1983, Greene estimated price slopes in the vicinity of -0.002 (for price in 1983 dollars), implying price
elasticities of diesel market share in the vicinity of -10 (Greene, 1994).

Several stated preference (based on survey responses) studies of choice of alternative fuel vehicles in
California have been published since 1990.  Stated preference studies tend to produce lower estimates of
price sensitivity than revealed preference studies, perhaps because respondents pay greater attention to
other attributes when money does not actually change hands.  In a similarly structured national survey,
Tompkins et al. (1998) estimated price slopes ranging from -0.000056 for large cars to -0.000107 for
small cars.  With car prices at about $14,000, this indicates a range of elasticities at a 50 percent market
share from -0.4 to -0.75, lower even than the price elasticity of demand for automobiles.

Analyses of choices among makes and models of vehicles can provide useful reference points.  In theory,
when technologies are similar, the choice of technology type for a given make and model should be
somewhat more price sensitive than choices among makes and models.  If one assumes that alternative
fuel technologies are made available as alternatives to gasoline engines on a particular make and model,
then make and model choice elasticities should be a lower bound on AF technology choice elasticity.  An
example of very similar technologies would be the choice between an FFV and conventional gasoline
engine for a particular brand of minivan.  Less similar technologies would be the choice between gasoline
and CNG bi-fuel vehicles.  Even in this case, the vehicles can always be operated on gasoline, in which
case the differences would be limited to the effects of the additional CNG storage tank.  

Three U.S. studies have estimated detailed own and cross price elasticities for makes and models of
vehicles.  Using make and model data for 1968-75, Irvine (1993) estimated own price elasticities ranging
from -4.59 to -16.99, with a mean of -10.42.  With data on 2217 carlines from 1971 to 1990, Berry et al.
(1995) estimates a complete set of own and cross price elasticities.  Elasticities for a sample of 1990 cars
ranged from -6.5 to -3.1, with price sensitivity generally decreasing as purchase price increased.  In a
similarly comprehensive analysis using a different method and data for 1986, Bordley (1994) found an
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average own price elasticity for product lines of -5.  The average elasticity Bordley found for seven broad
market segments (e.g., subcompact, sport, etc.) was -2.

Choice of fuel for a fuel-flexible or bi-fuel vehicle should be still more sensitive to price.  Studies of choice
among gasoline grades suggest that the choice of fuels for multi-fuel capable vehicles will be very price
elastic.  Greene (1989) estimated price elasticities at 50 percent market share of -15 to -20 for choice
among gasoline grades.  Phillips and Schutte (1988) estimated price elasticities of -35 to -40 for the choice
between full and self-service gasoline.  Both studies were based on revealed preference data.  Estimates
of choice among alternative fuels for bi-fuel and flex-fuel vehicles based on stated preference data have,
once again, produced much lower elasticities.  Results from Bunch et al. (1993) and Golob et al. (1992)
suggest that price elasticity would be about -3. 

The nested MNL model requires that choices within lower nests be more price-sensitive than choices
among higher nests.  Intuitively, this reflects the grouping of alternatives into increasingly similar sets as
one moves from technology sets to types within a set to choices among fuels for the same vehicle.  At all
levels, it is important to remember that the model, as it has been structured, assumes that choices among
technologies apply to a given make and model of vehicle.  That is, the consumer is not assumed to be
choosing among, for example, an SUV electric vehicle, a two-seater hybrid, full-size gaseous, and
intermediate FFV, but rather among, for example, a Ford Taurus version of each.  Thus the vehicles will
be similar or identical with respect to most attributes not explicitly represented in the choice model (style,
comfort, etc.).

Given that choices among technology types apply to the same carline, it is assumed that these choices will
be at least as price-sensitive as choices among carlines.  This implies that the price elasticity of the choice
among technology types (at 50 percent market share) should be at least -5 and probably closer to -10. 
Plausible choices are elasticities of -8 for large cars and trucks and -10 for smaller cars and trucks.  For
large cars, this implies a price slope of -0.00082, assuming a price of $19,498 and a 50 percent market
share.  Choices among technology sets should be less sensitive to price on the grounds that unobserved
attributes differ more among choices involving e.g., gaseous fuels versus battery power.  An assumed
elasticity of -4 implies a price slope of -0.00041, half as price-responsive as the technology type choice. 
Fuel choice should be most price-sensitive of all.  Assuming a cost-per-mile elasticity of -15 at 50 percent
market share implies a cost-per-mile (in cents) slope of -5.93.  Converting this to an equivalent slope for
present value miles (85,512) implies a price (in $) slope of -0.00693.  These assumed price slopes satisfy
the theoretical requirement of increasing price sensitivity as one goes from technology sets (-0.00041) to
technology types (-0.00082) to fuel types (-0.00693).

Using the above elasticities, equation (7) and the base year prices of each vehicle class, price slopes can
be computed for fuel type choice, vehicle technology choice (by size class), and technology set choice. 
The calculations for vehicle technology choice are shown in Table 2.

6.2  ANALYSIS OF IMPLIED ATTRIBUTE VALUES

The reasonableness of coefficient estimates can be checked by calculating the values they imply for a
one-unit change in the variable in question.  This is done for the coefficients for the large car class in
Table 3.  The value of a one-unit change in a particular variable is obtained by dividing the variable’s
coefficient by the coefficient of vehicle price, then multiplying by -1.  Thus, the value of a one unit change
in price is exactly $1.  
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Table 2.  Estimate of Price Slopes Using Assumed Elasticities

Small Cars Large Cars
Small Light

Trucks
Large Light

Trucks

Average Price $15,285 $19,498 $17,175 $17,766

Elasticity -10 -8 -10 -8

Market Share 50.0% 50.0% 50.0% 50.0%

Price Slope -0.0013 -0.00082 -0.00093 -0.00113

In assessing the values implied by coefficients, it is important to consider carefully what a one-unit change
in a variable means.  In the case of fuel costs measured in cents per mile, a one-unit change is one cent
per mile.  A change from three cents per mile to four, would therefore be worth $855, present value to a
consumer.  Consider that a consumer driving 15,000 miles per year would save $150 per year for each
one cent change in fuel cost per mile. 

Table 3.  Value (1990$) of a One-Unit Change in Vehicle Characteristics for a Small Car

Variable Name Units
Value

 (Small Car) Small Car
Constant

Vehicle Purchase Price PSPR 1990 $ -$1.00 -0.00131
Fuel Cost per Mile FLCOST cents per mile -$855.12 -1.11893
Range VRNG 1/miles -$285,040.52 -37297539
Battery Replacement Cost BRC 1990 $ -$0.51 -0.0007
Acceleration, 0-60 mph ACCL seconds -$217.67 -0.28482
Home Refueling for Evs HFUEL 1/miles $205,229.17 268.54228
Annual Maintenance Cost MAINT annual 1990 $ -$5.47 -0.00715
Luggage Space LUGG ratio to conv. $1,800.00 2.3553
Fuel Availability Coefficient 1 BETAFA exp(k*fraction) -$7,500.00 -9.81375
Fuel Availability Coefficient 2 BETAFA2 fraction n.a. -20.14903
Make/Model Availability MMAVAIL ln(fraction) $509.49 0.66667
Vehicle Technology Nest Generalized Cost TSGC 1990 $ n.a. -0.0007
Fuel Choice Net Generalized Cost MFGC 1990 cents/mile n.a. -7.19542

A one unit change in the inverse of range, on the other hand, is an enormous quantity, representing the
difference between a car with a range of only one mile and a car with an infinite range (1/1 versus 0). 
Such a comparison is not particularly meaningful.  Consider instead a change in range from 400 to 500
miles, or in terms of 1/range, from .0025 to .0020, or .0005.  This would be worth $285,040 (0.0005) =
$142, a relatively modest sum.  In fact, this may seem too low, but it follows directly from the following
assumptions: refueling time of 10 minutes, value of time of $20/hr., 15,640 annual miles driven declining at
4 percent/yr., discount rate of 12 percent, and assumed vehicle lifetime of 14 years.  It can be argued that
refueling has a nuisance value and should be valued at more than the average value of travel time, but
unfortunately we have no information upon which to evaluate this possibility.
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A dollar of battery replacement cost should be worth less than a dollar of vehicle price, since the
replacement will take place several years in the future.  We assume that advanced lead-acid batteries will
last six years.  Given the discount rate of 12 percent, one dollar of expenditure six years from now is
worth about $0.51 in the present.  For modern nickel-metal-hydride batteries a lifetime of 10 years or
approximately 120,000 to 130,000 miles is more appropriate.  This would reduce the present value of a
dollar of battery replacement cost.

Zero-to-sixty miles per hour acceleration time is valued at over $200 per second, based on an assumed
value of $125 per 10 horsepower.

Home refueling for electric vehicles is range dependent.  Assuming that each home refueling event takes
1 minute, time is valued at $20 per hour, and that 80 percent of refueling is done at home, the ability to
recharge conveniently at a home base eliminates about 70 percent of the cost of the EV’s limited range.

Each dollar of annual maintenance cost is valued at just over $5, based on the discounted present value of
the full stream of annual maintenance costs over the vehicle’s lifetime.  No attempt is made here to
accurately reflect patterns of maintenance cost over time.  Manufacturers may offer a number of initial
years of free maintenance in order to encourage customers to purchase new, unfamiliar technologies,
such as hybrid vehicles.  A possibly useful enhancement to the model might therefore be to allow patterns
of maintenance costs over time to be explicitly represented.

Luggage space is expressed as a ratio to a conventional vehicle’s luggage space.  Thus the value of
$1,800 applies to the total luggage space of a typical conventional vehicle.  This is based on an average
(not marginal) value of $150 per cubic foot, and a 12 cubic foot luggage compartment for small cars, 14
for large cars and light trucks.  Pick-ups are assigned a nominal luggage capacity of 14 cubic feet.

Fuel availability, measured as the fraction of stations offering a fuel, has a value of $7,500 per unit.  Thus,
the difference between 100 percent availability and 0 percent availability is $7,500, close to the cost of
retrofitting an engine.  Just as important as the total value of fuel availability is the shape of the curve
(see, Figure 3) which indicates that the cost of availability drops below $500 before 20 percent of stations
offer a fuel.

Diversity of choice is measured by the logarithm of the ratio of the number of makes and models offering
the alternative fuel technology to the total number of conventional makes and models.  The value of
diversity of choice is just over $500 per unit.  In going from a ratio of 1.0 to 0.5 (available on 100 percent
of makes and models to 50 percent), the logarithm decreases from 0 to -0.69, an implied cost of $350 per
car.  But costs increase rapidly as market share decreases.  The implied costs per car for availability on
only 1 percent of makes and models versus 50 percent is almost $2,000.  
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7.  SPREADSHEET MODEL DESCRIPTION

A TAFV.ChoiceMNL.xls spreadsheet workbook has been constructed in Excel™ for three purposes:
(1) calculating model coefficients based on available evidence on attribute values and the modeler’s
judgment, (2) calibrating the NMNL choice model to a base year set of market shares, and (3) testing the
sensitivity of the resulting model to input variables. 

The spreadsheet produces two tables of coefficients: one contains variable coefficients for each of four
vehicle classes and another contains calibration constants by vehicle technology type, separately for
passenger cars and light trucks. 

The workbook is comprised of 12 sheets: 4 individual sheets, and two sets of 4 vehicle class-specific
sheets.  The first sheet “Coefficients”, performs all the calculations necessary for calculating NMNL
variable coefficients, and contains the tables of coefficients and calibration constants.  The second sheet,
“LDV Shares Summary” combines predicted vehicle technology shares for each of the twelve vehicle
types to produce a table of summary shares for passenger cars, light trucks, and all light-duty vehicles
combined.  LDV Shares Summary is also where calibration constants are calculated.  A third individual
sheet, “M&M Availability” is where base year data on numbers of makes and models of alternative fuel
vehicles, by vehicle technology type and size class are entered.  The fourth individual sheet, “Fuel
Characteristics” contains information on alternative fuels that is common to all vehicle technology types
and size classes.

The next four sheets contain NMNL model calculations for each of the four vehicle classes.  Little data
must be entered in any of these spreadsheets.  The final four sheets contain additional data on vehicle
technologies, and translate those data into values for variables in the NMNL model. 

Each sheet and its functions are discussed in turn below.

7.1  COEFFICIENTS

Coefficients are displayed and can be separately computed for each of the four vehicle classes, shown in
Table 4.

Table 4.  Vehicle Class Groupings for Coefficient Estimation

Vehicle Group NHTSA Classes

Small Cars 2-seaters, minicompact, subcompact, compact

Large Cars intermediate, large

Small light trucks compact SUV, compact pick-up, compact van

Large light trucks large SUV, large pick-up, large van

.
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The spreadsheet permits different assumptions to be made about factors such as annual miles of use, in-
use MPG, and vehicle lifetime, for each vehicle group.

The values of the coefficients for every variable of the NMNL model are found in the Coefficients by
Vehicle Class table in the range G9..K21.  Constant terms for calibrating the model to a set of base year
technology type shares are found in the Calibration Coefficients by Technology Type table, and the actual
coefficient values are in the range X9..Y24.  Above them, in cell W5 is a zero/one indicator variable that
turns the calibration constants on or off.  If the cell is set to zero, all of the calibration constants are zero. 
If it is one, they are the values calculated in the LDV Shares Summary spreadsheet (see below).  No
values other than zero or one should be put in this cell.

Key assumptions and base year data must be entered in the Coefficients sheet.  Beginning at row 25,
data describing the usage and ownership patterns of each vehicle group must be entered in the 1995 Base
Vehicle Use and Ownership Assumptions table.  Among these, only the discount rate and price of
gasoline do not vary across vehicle groups.  Annual miles of travel, the rate of decrease in annual travel
with vehicle age, vehicle lifetime, and the ratio of in-use to EPA test MPG must be entered for each
vehicle type.

Immediately to the right, beginning in column F, vehicle characteristics data must be entered for each of
the four vehicle classes in the table labeled “Price Slopes and Selected Vehicle Characteristics by Class.” 
Data that must be entered are annual sales by class, purchase price, horsepower, weight, MPG, tank size
and annual maintenance cost.  The sales are used to calculate weighted averages of these variables for
each of the five groups.

Price elasticity.  Immediately below the vehicle characteristics table, an assumed purchase price
elasticity and the market share at which it applies must be entered for each of the five groups.  These
inputs plus the calculated group average prices are used to calculate the purchase price slopes for each
group.

Vehicle range.  Beginning at cell A60, the coefficient for the inverse of vehicle range is calculated.  Key
assumptions that must be entered are the average value of time in dollars per hour, and the average time
required per refueling, in minutes.  Also entered is the typical tank level at which vehicles are refueled, in
terms of percent empty.  This latter number is not used to compute the value of range, since it determines
the range achieved, not its value.

Fuel availability.  Calculation of the value of fuel availability begins at cell A109.  An exponential curve
is fitted to two, user-supplied points.  While any points on the fuel availability cost curve can be supplied, it
is recommended that the total cost at 0 percent availability (the origin) and 10 percent or 20 percent
availability be supplied.  The general consensus of studies in the literature conclude that fuel availability
becomes a minor consideration when the percent of stations which offer the fuel moves above the range
of 10 percent to 20 percent.  An embedded graph illustrates the shape of the resulting curve.  

Home charging.  The value of home charging for electric vehicles is calculated beginning in cell A137. 
The user must supply:  (1) the amount of time required to set up and disconnect home charging
(presumably this will be less than refueling at a commercial outlet), and (2) the percent of charging that
will be done at home, on average.  The value of home refueling is then calculated as the avoided cost of
service station refueling, net of the time cost of home recharging.  For grid-connected hybrid vehicles
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additional data must be supplied: (1) upper and lower charging points, (2) percent of days that the vehicle
is used, and (3) the ratio of the standard deviation of the log normal distribution of miles to its mean.

Maintenance.  Beginning at cell A150, annual maintenance costs are used to calculate the present value
of maintenance costs.  Discounting assumptions are taken from the Base Vehicle Ownership and Usage
Assumptions in rows 25 to 56.

Battery replacement.  The coefficient for battery replacement costs is computed next in rows 160
through 169.  The user must enter the number of years a new battery pack can be expected to last.  The
value of the battery pack is used to calculate its present value for illustrative purposes.

Make and model diversity.  The value of make and model diversity is computed in rows 175 to 190 for
illustration purposes.  The user must input the coefficient itself; all the spreadsheet does is draw a graph
illustrating the implications of the chosen coefficient for the dollar cost of limited availability. 

Fuel cost.  No additional data need be input to calculate the coefficient for fuel cost (cell A194) because
it can be directly calculated from data in the Base Vehicle Use and Ownership table.  Those data are
used to compute a discounted lifetime miles of travel.  The fuel cost per mile coefficient is equal to the
coefficient of vehicle purchase price times the discounted miles divided by 100 (to convert from dollars to
cents).

Luggage (cargo) space.  Luggage space is measured relative to the luggage space of a conventional
gasoline vehicle.  Thus, a unit change in luggage space should have the same value as the entire luggage
space of a conventional vehicle.  The calculation of the luggage space coefficient, beginning in cell A204,
requires the user to input the average value per cubic foot and the total cubic feet of space.  Of course,
pick-up trucks, SUVs and cargo vans have qualitatively different cargo space from passenger cars.  This
same method will work if one has an estimate of the total quantity and value per cubic foot.  

Acceleration time, 0–60 mph.  Finally, the coefficient for acceleration is calculated beginning in cell
A215.  The calculation is based on the marginal value of ten horsepower, which must be input by the user. 
A typical value is about $125 per ten horsepower.  Then, using the vehicle class horsepower and weight
which has already been entered in the table of Price Slopes and Selected Vehicle Characteristics by
Class, the reduction in 0-60 acceleration time which could be achieved by 10 horsepower is then
computed.  This value is then divided into the value of ten horsepower to obtain the value of a one-second
reduction in acceleration time.

7.2  LDV SHARES SUMMARY

The next worksheet contains a summary of the NMNL spreadsheet model predictions.  Base year market
shares by vehicle class are shown in the range B8..B22 (taken from the Coefficients worksheet).  The
Vehicle Technology Type table, in range F9..H25, summarizes the NMNL model’s predicted market
shares by technology type for passenger cars and light trucks, and light-duty vehicles combined.  Below
these tables, in rows 28 through 72, the predicted shares are shown by vehicle class.

To the right of the Vehicle Technology Type table is a table of shares to which the model may be
calibrated in the base year.  In the range J10..K24, the user may enter base year shares for all technology
types, except gasoline, for passenger cars and light trucks.  The gasoline share is computed as one minus
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the sum of the other shares, to insure that the shares always sum to exactly one (the user is responsible
for insuring that the sum of shares for other technologies is less than one).  Calibration constants that
insure that the model will fit these base shares can be calculated using the Solver function of Excel.  The
calibration constants will appear in cells N9 through O24, and are then transferred to the Coefficients
worksheet.  To the right of the constants in the range Q4..R26, are scaled, squared deviations of the
desired shares from the predicted shares, used by the solver to find calibration constants.

To compute the calibration constants, one must first enter the desired shares in range J10..K24.  Next, the
calibration constants indicator in the coefficients worksheet must be set to 1.  The indicator is displayed
for information only in cell N9 of the LDV Shares Summary Worksheet, but must be changed in the
Coefficients worksheet (cell W5).  The Solver is then invoked by clicking on Tools in the Menu Bar,
and then clicking on Solver.  Constants for passenger cars and light trucks must be computed separately. 
For passenger cars, the Set Target Cell box should contain the address $Q$27, while the By Changing
Cells box should contain N10..N25.  For light trucks, the target cell is $R$27, while the cells to be changed
are O10..O25.  The Equal to: option must be set to Min.  Clicking on the solve button will invoke the
solver.  In general, determining an adequately precise set of coefficients will require invoking the solver
two or three times. This could also be accomplished by changing the solver’s default settings to allow
more iterations.  When restarting the solver for a new set of desired shares, it is recommended that the
By Changing cells be reinitialized by setting them all to zero.

Care should be exercised in the use of calibration constants, because the constants may strongly affect
market shares throughout a forecast.  If base year shares are thought to be due to initial conditions that
will not persist over time, the use of calibration constants should be avoided.

7.3  MAKE AND MODEL AVAILABILITY

The Make and Model Availability worksheet has two functions:  (1) it calculates base year availability
ratios based on the user’s inputs of numbers of makes and models offering advanced technologies by
vehicle class (in range C7..U27), and (2) it allows the user to input a default value for the make and model
ratio in the case of zero availability (cell B31).  When there are no makes and models of a particular
technology type available, the ratio to total makes and models will obviously be zero.  However, taking the
logarithm of zero, as required by the diversity measure, is mathematically undefined and will cause an
error.  Thus, some very small fraction (such as 0.000001) must be used instead.  Base year make and
model counts have been taken from the National Highway Traffic Safety Administration’s 1999
Corporate Average Fuel Economy Data Base.  Counts for 1999 were used instead of 1995 due to the
greater number of alternative fuel technologies available in 1999.

The resulting diversity index ratios are shown below in the range D33..U38.  These values are used in the
shares model worksheets.

7.4  FUEL CHARACTERISTICS

The fuel characteristics worksheet contains data on alternative fuels and vehicles that do not vary by
vehicle class.  The first table, beginning in A4, contains data on the Btu content and prices of fuels, listed
by vehicle technology.  These are then converted to prices per energy equivalent of a gallon of gasoline. 
Numbers of refueling sites for each vehicle technology follows (Alt. Fuels Data Center, 6/19/00, taken
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from the website at, http://www.afdc.nrel.gov/refuel/state_tot.shtml ).  The number of gasoline stations,
95,847, was obtained from the County Business Patterns 1994-97, U. S. Bureau of the Census, found at
http://www.census.gov/prod/www/abs/cbptotal.html .  Diesel was assumed to be available at 25 percent
of gasoline refueling stations.  Fuel availability is then calculated as the percent of total stations offering
each fuel type.  Although a single station may offer more than one fuel type, the total number of stations
is computed by summing the station counts for gasoline stations and alternative fuel stations of each fuel
type (except diesel, which is included in the gasoline total).  While this may over-count stations to some
extent, it will not result in substantial errors in the estimated frequencies of alternative fuel sites, due to the
predominance of gasoline refueling stations.

Beginning in cell A27 is a table of data on the relative performance and cost of alternative fuel
technologies, supplied by Energy and Environmental Analysis, Inc. (personal communication, Dan Mezler,
EEA, June, 2000).  Most data are expressed in terms of a fractional change relative to a conventional
gasoline vehicle.  These variables include: (1) change in horsepower, (2) range, (3) fuel economy, and (4)
weight.  Other data are tank size, incremental retail price at low and high volume, maintenance costs,
relative luggage space, battery replacement costs and the home recharging dummy variables.  Both low-
volume and high-volume price increments are provided for each technology, but only the high volume
increments are used in the spreadsheet NMNL model.  These relative attributes represent average
changes for all vehicle types and are not broken down by vehicle class.  Since some of these data do vary
by vehicle class in the reality, this may be a fruitful area for future improvements to the model.

7.5  SHARES MODEL WORKSHEETS

Four worksheets are used to calculate vehicle technology shares for each of the four vehicle classes.  All
the worksheets have exactly the same structure.  Beginning in cell A4, a table summarizes the predicted
shares by fuel and technology type for the vehicle class in question.  To the right of this table, in the range
M4..M20 are the calibration constants which may or may not have been used to compute the shares.  An
indicator in cell G18 is 1 if the constants were used, and zero if not. 

Market shares are calculated in five sub-tables starting in row 26 and ending in row 149.  The first covers
Conventional Liquid Fuel Capable Vehicles, which comprise gasoline, diesel and flex-fuel vehicles.  All
the NMNL vehicle technology tables have the same structure, but the number of alternatives varies.  First
the variable names and units are listed, followed by the coefficient values taken from the Coefficients
worksheet.  Then for each alternative, the attribute values (values of the variables) are shown, followed
by the product of each attribute value and its respective coefficient.  These products are summed in a cell
below the column, to give the indirect utility index for that vehicle technology.  The exponentiated indirect
utility is shown in the cell below that, and beneath the exponentiated utility is the conditional share for the
vehicle technology in question.  

The conditional share is a vehicle technology’s share of the sales within the technology set to which it
belongs (e.g., conventional gasoline vehicle’s share of the conventional liquid fuels set is shown in cell
G42).  To get its overall market share, the conditional share must be multiplied by the technology set’s
market share, which is calculated in column B at the bottom of the table.  First, the exponentiated utility
indexes for all choices in the technology set are summed (e.g., in cell B41).  Next the logarithm of the
sum is taken in cell B42.  This is then multiplied by the technology set price slope to obtain the utility index
for the technology set in cell B43.  Finally the technology set share is shown in cell B44.
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To the right of this table, beginning in cell R26, is a  table for calculating the nested choices of fuels for
the FFV vehicles.  At present, the Conventional Liquid and Gaseous Fuel Capable Vehicle sets are the
only technology sets that have fuel choice nests.  These nests determine the expected value (or
generalized costs) of the fuel-related characteristics of multi-fuel vehicles.  Two parameters must be
entered in each of the two fuel choice tables.  The assumed price elasticity of fuel choice must be entered
in cell S46 and the market share at which that elasticity is assumed to apply must be entered in cell S48.

The variables appearing in the fuel choice nest are fuel cost, range, acceleration and fuel availability. 
Consequently, these variables do not appear in the vehicle technology choice table for the multi-fuel
vehicles, with the exception of fuel cost, which now represents the expected value of all three fuel
attributes and not only fuel price divided by MPG.

7.6  AFV CHARACTERISTICS WORKSHEETS

Finally, there are twelve worksheets containing the characteristics of vehicle technologies for each of the
twelve vehicle classes.  For each of the five technology sets there are two tables.  The main table
beginning in column A contains the values for each variable in the vehicle technology choice equations. 
Flex and bi-fuel vehicles have two columns of data, reflecting their different attributes when using
different fuels.  To the right of this table is a table of relative attribute values, drawn from the fuel
characteristics worksheet and used in calculating the attribute values in the main table.  The table includes
incremental retail price, and relative MPG, range, luggage space, and maintenance costs.
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