South Carolina Surface Water Quantity Modeling Project

Salkehatchie River Basin Meeting – Introduction to the Draft Model

John Boyer, PE, BCEE Nina Caraway

August 9, 2016

Presentation Outline

- Project background and status
- Introduction to SWAM
- Data collection and unimpaired flows
- Model framework and development
- Model calibration/verification
 - Calibration/verification philosophy and approach
 - Calibration results and discussion
- Baseline model and uses

Project Purpose

- Build surface water quantity models capable of:
 - Accounting for inflows and outflows from a basin
 - Accurately simulating streamflows and reservoir levels over the historical inflow record
 - Conducting "What if" scenarios to evaluate future water demands, management strategies and system performance.

Project Status – Salkehatchie Basin

Modeling Report and Other Documents

http://www.dnr.sc.gov/water/waterplan/surfacewater.html

	fe's Better	oogle" Custom Search Go					
	South Caroling Department of Natural Resources						
DNR Buy Boating	Education Fishing Hunting Land Maps Regulation	s Water Wildlife					
Information	Surface Water Modeling and Assessment	ts					
Contact Us	Effective water planning and management requires an accurate assessment of the location and quantity of the water resources of the State, and one of the most useful tools for evaluating management strategies is a computer model that simulates the surface water system throughout an entire watershed. To that end.						
News Other States							
Presentations	SCDNR and SCDHEC have begun the process of developing surface-water unantity models for each of the sight major watershade, or basing in South						
Surface Water Modeling	quantity models for each of the <u>eight major watersheds</u> , or basins, in South Carolina.						
Water Assessment	A more detailed discussion of the proposed surface water modeling can be found in the document Bacinwide Surface Water Modeling in South Carolina PDE and						
Water Plan	an overview of each of the eight basins for which the models will be developed						
(2004 Report)	can be round in the document <u>Major Basins of South Carolina PDF</u> .						
Water Plan Home	the state.						
Hydrology Section							
	Project Documents						
	For any questions regarding these reports and presentati Gellici by phone (803-734-6428) or <u>email</u> .	ons, please contact Joe					
	For information about stakeholder meetings, please visit	scwatermodels.com.					
	(Documents below are in <u>PDF</u> format.)						
	Show / Hide All Documents						
Monthly Progress Reports							
Legislative Quarterly Reports							
Technical Reports							
	Technical Memorandums						
Meeting Notes 🕥							
Presentations							
Videos							
	River Basins						

👕 Facebook 📉 RSS Feed 💽 Twitter 🔠 You Tube

South Carolina Department of Natural Resources - <u>Phone Numbers | Accessibility | FO</u> Rembert C. Dennis Building, 1000 Assembly Street, Columbia, SC 29201 © 2014 All rights reserved. <u>webmaster@dnr.sc.gov</u>

Simplified Water Allocation Model (SWAM)

- Developed in response to an increasing need for a desktop tool to facilitate regional and statewide water allocation analysis
- Calculates physically and legally available water, diversions, storage consumption and return flows at user-defined nodes
- Used to support large-scale planning studies in Colorado, Oklahoma, Arkansas and Texas

The Simplified Water Allocation Model is...

- a water accounting tool
- a WHAT-IF simulation model
- a network flow model that traces water through a natural stream network, simulating withdrawals, discharges, storage, and hydroelectric operations
- not precipitation-runoff model (e.g., HEC-HMS)
- not a hydraulic model (e.g. HEC-RAS)
- not a water quality model (e.g., QUAL2K)
- not an optimization model
- not a groundwater flow model (e.g., MODFLOW)

River Basin Flow and Operations Models

Similarities between SWAM, OASIS, CHEOPS, and RiverWare:

- Used in major river basin studies and/or statewide water plans
- Operating Rules of varying complexity
- Monthly and Daily Timesteps
- Visual Depiction of the River Network

Unique Features:

SWAM

- Familiar and adaptable environment: Visual Basic and Spreadsheets
- Built in functions for reservoirs, river operations, discharges, irrigation, return flows, etc.

OASIS

- Built in Probability Analysis for Real-Time Ops
- Optimization toward objectives in each timestep

CHEOPS

- Tailored specifically for hydropower
 - Energy Calculations
 - Reservoir Tracking
- Familiar Visual Basic programming

RiverWare

- Fully linked graphical network development
- 3 modes:
 - Pure simulation
 - Rules-based simulation
 - Optimization

Simplified Water Allocation Model (SWAM)

- Object-oriented tool in which a river basin and all of its influences can be linked into a network with user defined priorities
- Resides within Microsoft Excel

HOME

INSERT

PAGELAYOUT

FORMULAS

Simplified Water Allocation Model (SWAM)

• Supports multiple layers of complexity for development of a range of systems, for example...

A Reservoir Object can include:

- 1. Basic hydrology dependent calculations
- 2. Operational rules of varying complexity such as prescribed releases, conditional releases, or hydrology dependent releases.

	Reservoir
49	

Reservoir			×
Main			
Reservoir Name:	Storage Capacity (AF) Node	Initial Storage (AF) © Offline © Online	
Evaporation	e C Input Timeseries	Reservoir Releases Receiving Stream: Advanced Release Legation (m)	
Monthly Rates	Area-Capacity Table Simple Detailed	User Defined Releases	
Month Evap. Rates (in./day) Jan (in./day) Feb (in./day) Mar (in./day) Mar (in./day) Mar (in./day) Jun (in./day) Jun (in./day) Jun (in./day) Jul (in./day) Aug (in./day) Sep (in./day)	Volume Area (AF) (ac) (ac) (ac) (ac) (ac) (ac) (ac) (ac	Month Min. Release (AFM) (CFS) Jan	

Salkehatchie River Basin MODELING DATA REQUIREMENTS

Data Collected for Model Development

- USGS daily flow records
- Historical Operational Data
 - Withdrawals (municipal, industrial, agricultural, golf courses)
 - Discharges
- Subbasin characteristics (GIS)
 - Drainage area
 - Land use

Salkehatchie River Basin UNIMPAIRED FLOWS (UIF)

UIF Definition and Uses

- **Definition:** Estimate of natural <u>historic</u> streamflow in the absence of human intervention in the river channel:
 - Storage
 - Withdrawals
 - Discharges and Return Flow

• Unimpaired Flow =

Measured Gage Flow + River Withdrawals + Reservoir Withdrawals – Discharge to Reservoirs – Return Flow + Reservoir Surface Evaporation – Reservoir Surface Precipitation + Upstream change in Reservoir Storage + Runoff from Previously Unsubmerged Area

- Fundamental input to the model at headwater nodes and tributary nodes
- **Comparative basis** for model results

Four Steps in UIF Calculation Process

- Step 1: UIFs for USGS Gages for individual periods of record
 - Involves extension of operational data
- Step 2: Extension of UIFs for USGS Gages through the LONGEST period of record
- **Step 3**: Correlation between ungaged basins and gaged basins
- Step 4: UIFs for ungaged basins

How UIFs are Used in SWAM

Salkehatchie River Basin

OVERVIEW OF MODEL FRAMEWORK

Salkehatchie Basin – Model Tributaries

Agriculture Surface Water Withdrawals

Discharges to Surface Water

Salkehatchie Basin – SWAM Framework

Salkehatchie River Basin MODEL SETUP

Tributary Input Form

Water User Input Form – Main

Object Palette

Main Water Usage	Source Water Return Flows	Input Summaries and Outputting Node Node Reservoir Output Specs
Supplemental Si Cons Reca Ag T	Main Water Usage Source Water Return Flows Monthly User Distribution Annual Baseline Usage Input Format Manual Total Uso Government Main Water Usage Source Water Return Flows Manthly Baseline Usage Main Water Usage Source Water Type Month Month Usage Source Stream: © Direct River Downstream P Month Usage Jan © Groundwater Ditch Capacity Permit Limit Seasonal Permit Jun Jul (AFM) (AFM) Storage Withdrawal Permit	Priority Date 1/1/2008 Save Close
	Storage (AF) (AFY) W Reservoir Name: Storage Capacity Image: C	Vater Year Start Mo. (1 - 12) 1

Agricultural Water User Input Forms

Object Palette

Main Source Water Return Flows	_		Input Summaries and Outputting
User Name: Delete Node	Agricultural Water User Main Water Usage Source Water Return Flows		Specs
Supplemental Supply/Demand Alternatives –	Blaney Criddle ET Irrigated Ditch Lose Original 0 10	IrrigationElevationEfficiency (%)(ft absl)900	Latitude (degr) , CFS □m3, m3/d, r 40 40
Comments:	Crops Edit Coeffs % of Total Start Acreage Month 0 5 0 5	Climate Temp. (F) Jan 30 Feb 355 Mar 45 Apr 555 May 75 Jun 80	Precip. (in.) 0.5 0.6 1.2 1.6 2.3 1.6
		Jul 80 Aug 80 Sep 65 Oct 50 Nov 45 Dec 40	1.9 1.4 1.1 1.0 0.8 0.5
	Calculated River Headgate Demand Jan Feb Mar Apr May Jun Jul Aug 0 0 0 0 0 0 0 0 0 (AFM) 0 0 0 0 0 0 0 0	Sep Oct Nov Dec Tot. 0 0 0 0 0 0	
	Calculated Potential Consumptive Use of Irrigation Water Jan Feb Mar Apr May Jun Jul Aug 0 0 0 0 0 0 0 0 0 0 (AFM)	Sep Oct Nov Dec Tot. 0 0 0 0 0 0	Save / Calculate
Nevame			

Salkehatchie River Basin MODEL CALIBRATION/VALIDATION

Calibration Objectives

- Extend hydrologic inputs (headwater UIFs) spatially to adequately represent entire basin hydrology by parameterizing reach hydrologic inputs
- 2. Refine initial parameter estimates, as appropriate
 - E.g. reservoir operating rules, %Consumptive Use assumptions, return flow locations
- 3. Gain confidence in the model as a predictive tool by demonstrating its ability to adequately replicate past hydrologic conditions, operations, and water use
 - without being overly prescriptive

Calibration/Validation General Approach

- 1983 2013 hindcast period; monthly timestep
 - Includes droughts in both early and late 2000's
- Comparison to gaged (measured) flow data only
 - operations and impairments are implicit in that data
- Assess performance at (subject to gage data availability):
 - multiple mainstem locations
 - all tributary confluence locations
 - major reservoirs (where levels/storage are available)
- Multiple model performance metrics, including:
 - timeseries plots (monthly and daily variability)
 - annual and monthly means (water balance and seasonality)
 - percentile plots (extremes and frequency)

Potential Sources of Model Error and Uncertainty

- Gaged flow data (± 20%)
- Gaged reservoir levels (± ?%)
- Basin climate and hydrologic variability
- Reported withdrawal data
- Consumptive use percentages
- Return flow locations (outdoor use)
- Return flow lag times (if applicable, e.g. outdoor use)
- *Reservoir operations (operator decision making)*
- *Reach hydrology: gains, losses, local runoff and inflow*

Calibration/Validation Locations

Calibration/Validation Locations

Monthly Flow Comparison

SLK02 (02175500) SALKEHATCHIE RIVER NEAR MILEY (CFS)

Annual Average Flow Comparison

Monthly Mean Flow Comparison

Monthly Flow Percentiles Comparison

SLK02 (02175500) SALKEHATCHIE RIVER NEAR MILEY Monthly Flow Percentiles (CFS)

Cumulative Flow Comparison

SLK02 (02175500) SALKEHATCHIE RIVER NEAR MILEY (CFS) Monthly Cumulative Flow (CFS) 120,000 - modeled (cumulative) ----- gaged (cumulative) -----100,000 -----80,000 ************** 60,000 40,000 20,000 0 Jan-83 Jul-88 Dec-93 Jun-99 Dec-04 Jun-10

Daily Flow Comparison

SLK02 (02175500) SALKEHATCHIE RIVER NEAR MILEY (CFS)

Annual 7 Day Low Flows

Calibration/Validation Locations

Monthly Flow Comparison

SLK04 (02176000) COMBAHEE RIVER NEAR YEMASSEE (CFS)

SWAM Calibration/Validation Summary

• For most sites, modeled mean flow values, averaged over the full period of record, are within 1% of measured mean flows

		Modeled	Measured	%	Years to		
ID	Station	(cfs)	(cfs)	Difference	Compare		
	SALKEHATCHIE RIVER						
SLK02	NEAR MILEY	278	287	-3.2%	31	5	5% or less diff.
	COOSAWHATCHIE RIVER						
SLK05	NEAR HAMPTON	138	139	-0.5%	12		1% or less
	SAVANNAH CREEK AT					$\left(\right)$	difference
SLK01	EHRHARDT	4	4	-0.1%	21	ノ	
	COOSAWHATCHIE RIVER						
SLK06	NR EARLY BRANCH	409	399	2.4%	31		5% or loss diff
	COMBAHEE RIVER NEAR					7	
SLK04	YEMASSEE	493	471	4.5%	7		

Salkehatchie River Basin BASELINE MODEL AND USES

Calibration vs. Baseline Model

Calibration Model

- Purpose: Confirm models ability to accurately simulate river basin flows and storage amounts
- Uses recent withdrawal, discharge and flow records

Baseline Model

- Purpose: Evaluate water availability under future conditions
- Uses entire record of flow and most current withdrawals and discharges

The Models Can Be Used To...

- Determine surface-water availability
- Predict where and when future water shortages would occur
- Test alternative water management strategies, new operating rules, and "what-if" scenarios
- Consolidate hydrologic data
- Evaluate the impacts of future withdrawals on instream flow needs
- Evaluate interbasin transfers
- Support development of Drought Management Plans
- Compare managed flows to natural flows

Demonstrations and Q&A

• Station 1 (John)

Evaluate an increase in Ag User demands

• Station 2 (Nina)

Evaluate a proposed new municipal water supply withdrawal

Salkehatchie River Basin
THANK YOU