

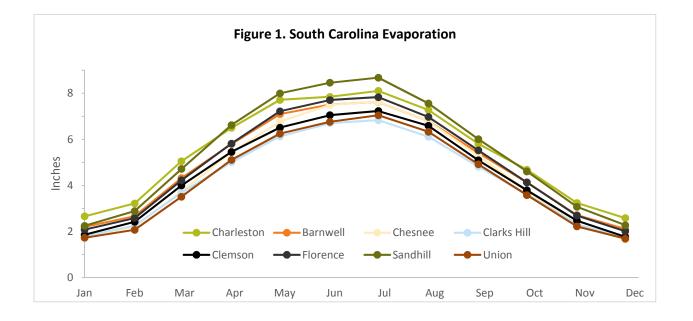
#### **Technical Memorandum**

| То:      | South Carolina Department of Natural Resources (DNR)<br>South Carolina Department of Health and Environmental Control (DHEC) |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| From:    | CDM Smith                                                                                                                    |
| Date:    | May 4, 2015                                                                                                                  |
| Subject: | Evaporation Data & Methodology (for Unimpairing Flows at Reservoirs)                                                         |

## **Evaporation Data**

CDM Smith prepared daily pan evaporation records for eight South Carolina locations from 1925 through 2014 based on pan evaporation measurements at 11 sites supplemented with temperature-based estimates for missing dates or outside the period of record.

## **Data Sources**


Pan evaporation measurements for 13 sites in South Carolina are available in the National Climatic Data Center's (NCDC) Global Historical Climatology Network (GHCN) database, as listed in **Table 1** and shown in **Figure 1** along with nearby sites in North Carolina and Georgia.

Long-term evaporation records were developed from these data through combining selected stations and through record extension and in-filling based on calibration of the Hargreaves (1985) reference evapotranspiration estimation method to pan evaporation measurements as discussed later in this section. Long-term records were developed from the following eight datasets:

- The Barnwell and Blackville (Clemson Edisto Research and Education Center) stations, which together have 46 years of record and are within nine miles of one another;
- Charleston International Airport, which has 44 years of record;
- The Chesnee, Rainbow Lake, and Simms WTP stations, which together have 49 years of record and are within one-half mile of one another;
- Clarks Hill, which has 46 years of record;
- Clemson University, which has 66 years of record;
- Florence, which has 30 years of record;

| СООР   | Location            | °N   | °W   | Elev. | Start | End  | Percent  | Years  | Years |
|--------|---------------------|------|------|-------|-------|------|----------|--------|-------|
| ID     |                     |      |      | (ft)  |       |      | Complete | (July) | (Jan) |
| 380490 | BARNWELL 5 ENE      | 33.3 | 81.2 | 245   | 2007  | 2014 | 88%      | 7      | 4     |
| 380764 | BLACKVILLE 3 W      | 33.4 | 81.3 | 324   | 1963  | 2002 | 90%      | 36     | 28    |
| 381544 | CHARLESTON INTL AP  | 32.9 | 80.0 | 40    | 1959  | 2002 | 85%      | 41     | 27    |
| 381625 | CHESNEE 7 WSW       | 35.1 | 82.0 | 748   | 1992  | 2014 | 51%      | 21     | 0     |
| 381726 | CLARKS HILL 1 W     | 33.7 | 82.2 | 380   | 1952  | 1998 | 86%      | 42     | 20    |
| 381770 | CLEMSON UNIV        | 34.7 | 82.8 | 824   | 1948  | 2014 | 91%      | 63     | 47    |
| 383111 | FLORENCE 8 NE       | 34.3 | 79.7 | 120   | 1979  | 2009 | 88%      | 29     | 18    |
| 387113 | RAINBOW LAKE        | 35.1 | 82.0 | 751   | 1965  | 1978 | 71%      | 14     | 2     |
| 387288 | RIDGEVILLE          | 33.1 | 80.3 | 70    | 1996  | 2004 | 57%      | 7      | 0     |
| 387666 | SANDHILL RSCH ELGIN | 34.1 | 80.9 | 440   | 1963  | 2014 | 71%      | 39     | 19    |
| 387885 | SIMMS WTP           | 35.1 | 82.0 | 751   | 1979  | 1991 | 59%      | 13     | 0     |
| 388786 | UNION 8 S           | 34.6 | 81.7 | 480   | 1949  | 1964 | 81%      | 14     | 6     |
|        | WINTHROP UNIV       | 34.9 | 81.0 | 690   | 1967  | 1968 | 37%      | 1      | 0     |

### Table 1. GHCN South Carolina Pan Evaporation Data



- Clemson's Sandhill Research and Education Center near Columbia, which has 51 years of record; and
- Union, which has 15 years of record.

The Ridgeville station was not used as its record mostly coincides with the nearby longer record at Charleston. The Winthrop University station was not used due to its record length of just one year. The only station outside South Carolina that is significantly closer to any part of the state than one of the in-state stations is Savannah. However, the Charleston station was considered adequately representative of South Carolina's coastal plain, so Savannah data were not considered in this assessment.

# **Record extension methodology**

All the evaporation records needed extension and in-filling to obtain complete 90 year records. Daily potential evapotranspiration (PET) was estimated using the Hargreaves-Samani temperaturebased method. PET (equivalent to open water evaporation) was converted to pan evaporation estimates through scaling according to a multiplier determined for each evaporation dataset based on minimization of least squares error for all dates with pan evaporation measurements. A single scale factor was adopted for each site; no attempt was made to distinguish monthly factors or factors specific to temperature data sources in cases where more than one climate station was used.

The Hargreaves method was chosen due to its ease of calculation via the USEPA SWMM model. This method is also incorporated into USDA's SWAT watershed model. While Lu et al. (2005) found that Hamon's method (Hamon, 1963) yielded better monthly PET estimates for the southeastern United States, that distinction was not considered relevant for this assessment, as the goal was estimation of daily pan evaporation rates, and modeled PET estimates were scaled based on calibration to observed pan rates.

#### **Temperature data sources**

Daily PET estimates using Hargreaves method require daily temperature data. To obtain complete 90-year temperature datasets, nearby GHCN meteorological stations were matched to each evaporation dataset. For each site, **Table 2** identifies a primary station that has at least 50 years of record through the present. **Table 3** identifies secondary stations with data beginning 1925 or earlier and extending until the beginning of the primary dataset. Table 3 also lists a supplemental station used to fill gaps of up to one year in the temperature records for most sites.

| Evaporation | Temperature | NCDC ID | Distance | Elevation | Period     | Coverage |
|-------------|-------------|---------|----------|-----------|------------|----------|
| Station     | Station     |         | (mi)     | (ft)      |            |          |
| Sandhill    | Columbia    | WBAN    | 19 SW    | 231       | 1948-      | 100%     |
|             |             | 13883   |          |           | present    |          |
| Charleston  | Charleston  | WBAN    | 0        | 40        | 1938-      | 100%     |
|             |             | 13880   |          |           | present    |          |
| Barnwell    | Orangeburg  | COOP    | 27 NE    | 180       | 1953-      | 99%      |
|             |             | 386527  |          |           | present    |          |
| Chesnee     | Greer       | WBAN    | 20 SW    | 940       | 1962-      | 100%     |
|             |             | 03870   |          |           | present    |          |
| Clarks Hill | Clarks Hill | COOP    | 0        | 380       | 1952-      | 97%      |
|             |             | 381726  |          |           | present    |          |
| Clemson     | Clemson     | COOP    | 0        | 824       | 1930-      | 100%     |
|             |             | 381770  |          |           | present    |          |
| Florence    | Florence    | COOP    | 0        | 120       | 1942-March | 95%      |
|             |             | 383111  |          |           | 2014       |          |
| Union       | Union       | СООР    | 0        | 480       | 1949-      | 96%      |
|             |             | 388786  |          |           | present    |          |

### Table 2. Primary Temperature Stations

| Evap.      | Temp.      | NCDC   | Distance | Elv. | Period  | Coverage | Supplemental Data  |
|------------|------------|--------|----------|------|---------|----------|--------------------|
| Station    | Station    | ID     | (mi)     | (ft) |         |          |                    |
| Sandhill   | Camden     | COOP   | 14 NE    | 140  | 1849-   | 78%      | not needed         |
|            |            | 381310 |          |      | 2001    |          |                    |
| Charleston | Charleston | WBAN   | 10 SE    | 10   | 1893-   | 100%     | not needed         |
|            | City       | 13782  |          |      | present |          |                    |
| Barnwell   | Aiken      | COOP   | 31 NW    | 492  | 1893-   | 91%      | May 1947, Sep      |
|            |            | 380074 |          |      | 2008    |          | 1952: Augusta      |
|            |            |        |          |      |         |          | (WBAN 03820; 42    |
|            |            |        |          |      |         |          | mi W)              |
| Chesnee    | Caroleen   | COOP   | 15 NE    | 810  | 1900-   | 99%      | Nov 1926 - Jan     |
|            | NC         | 311479 |          |      | 1974    |          | 1927 and Oct 1940: |
|            |            |        |          |      |         |          | Landrum (COOP      |
|            |            |        |          |      |         |          | 384936; 13 mi NW)  |
|            |            |        |          |      |         |          |                    |

| Evap.       | Temp.        | NCDC   | Distance | Elv. | Period  | Coverage | Supplemental Data |
|-------------|--------------|--------|----------|------|---------|----------|-------------------|
| Station     | Station      | ID     | (mi)     | (ft) |         |          |                   |
| Clarks Hill | Aiken        | COOP   | 31 SE    | 492  | 1893-   | 91%      | May 1947: Augusta |
|             |              | 380074 |          |      | 2008    |          | (WBAN 03820 24    |
|             |              |        |          |      |         |          | mi SE)            |
| Clamaan     | Andorragio   | COOD   | 12.55    | 200  | 1000    | 0.0%     | wat waadad        |
| Clemson     | Anderson     | COOP   | 13 SE    | 800  | 1892-   | 96%      | not needed        |
|             |              | 380165 |          |      | present |          |                   |
| Florence    | Society Hill | COOP   | 11 NW    | 141  | 1893-   | 96%      | Sep 1931 and Apr- |
|             |              | 388114 |          |      | 1959    |          | Dec 2014:         |
|             |              |        |          |      |         |          | Darlington (COOP  |
|             |              |        |          |      |         |          | 382260; 8 mi W)   |
| Union       | Santuck      | СООР   | 8 NE     | 520  | 1893-   | 98%      | Feb 1928 and Mar  |
|             |              | 387722 |          |      | present |          | 1938: Laurens     |
|             |              |        |          |      |         |          | (COOP 385017; 22  |
|             |              |        |          |      |         |          | mi SW)            |
|             |              |        |          |      |         |          |                   |

# **Station Data Statistics and Quality Control**

The eight evaporation stations collectively include 287 station-years of daily pan measurements. Quality control was conducted to screen out questionable data. Twenty measurements at Chesnee with negative evaporation were rejected. Among the rest of the data, 99.5% of measurements were less than 0.5 inches/day (in/d), 0.4% were between 0.5 and 1 in/d, and 0.1% were greater than 1 in/d. The 106 measurements 1 in/d and larger were excluded from the final database; most of these data were from Charleston (high readings throughout January 1963) and Blackville (high readings throughout August 1995).

**Table 4** shows period-of-record average monthly pan evaporation for the 11 stations used in this assessment. Values in Table 4 are generally within 5 percent of those reported by the South Carolina State Climatology Office (Purvis, 2006). The Table 4 values differ from the Climatology Office statistics, as that analysis was limited to data through 2002, and included infilling with modeled values for dates with missing readings.

| Inches          | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year  | April-<br>Oct |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---------------|
| Charleston      | 2.91 | 3.52 | 5.55 | 6.89 | 7.85 | 7.79 | 8.06 | 7.14 | 5.73 | 4.83 | 3.38 | 2.79 | 66.44 | 48.28         |
| Barnwell        | 3.72 | 3.65 | 5.54 | 6.61 | 7.81 | 8.53 | 8.69 | 7.34 | 6.22 | 4.80 | 3.25 | 2.90 | 69.05 | 49.99         |
| Blackville      | 2.18 | 2.68 | 4.34 | 5.86 | 6.92 | 7.35 | 7.45 | 6.46 | 5.12 | 3.97 | 2.61 | 2.07 | 57.02 | 43.14         |
| Chesnee         |      |      |      | 5.92 | 6.73 | 7.44 | 7.50 | 6.65 | 5.29 | 3.51 |      |      |       | 43.03         |
| Clarks Hill     | 1.84 | 2.37 | 3.78 | 5.10 | 6.09 | 6.83 | 6.94 | 6.11 | 4.85 | 3.58 | 2.28 | 1.63 | 51.41 | 39.51         |
| Clemson         | 1.92 | 2.53 | 4.12 | 5.51 | 6.38 | 6.87 | 7.13 | 6.56 | 4.94 | 3.73 | 2.48 | 1.79 | 53.97 | 41.12         |
| Florence        | 2.41 | 2.84 | 4.71 | 6.13 | 7.33 | 7.72 | 7.85 | 6.78 | 5.08 | 3.84 | 2.68 | 2.25 | 59.61 | 44.72         |
| Rainbow<br>Lake | 1.29 | 2.12 | 3.94 | 5.23 | 5.81 | 6.51 | 6.69 | 6.10 | 4.59 | 3.35 | 2.08 | 1.45 | 49.15 | 38.27         |
| Sandhill        | 2.26 | 3.11 | 5.02 | 7.01 | 7.88 | 8.31 | 8.52 | 7.03 | 5.79 | 4.52 | 3.12 | 2.40 | 64.95 | 49.05         |
| Simms           |      |      |      | 5.16 | 6.09 | 6.99 | 7.22 | 6.21 | 4.75 | 3.53 |      |      |       | 39.96         |
| Union           | 3.07 | 2.07 | 3.70 | 6.17 | 6.23 | 6.62 | 6.92 | 6.33 | 4.83 | 3.47 | 2.20 | 2.56 | 54.17 | 40.57         |
| Average         | 2.40 | 2.77 | 4.52 | 5.96 | 6.83 | 7.36 | 7.54 | 6.61 | 5.20 | 3.92 | 2.67 | 2.20 | 57.99 | 43.42         |

#### Table 4. Average Monthly Pan Evaporation

# **Extension/Infilling Methodology**

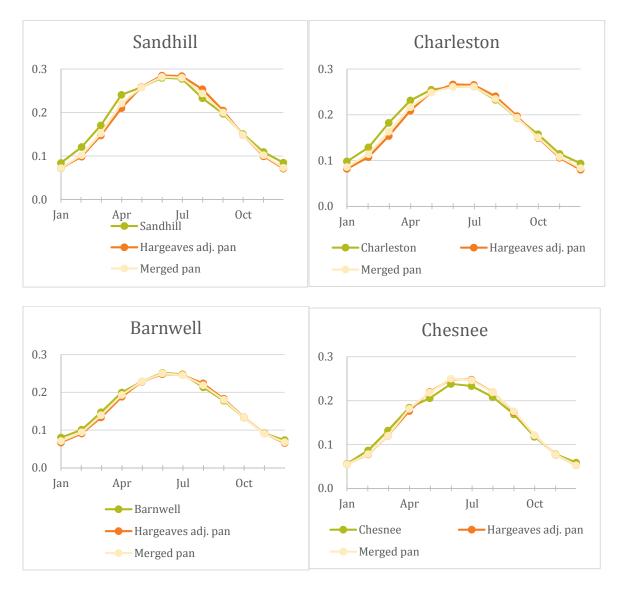
The eight long-term datasets use pan data on all dates where pan data are available and were not censored due to quality control issues. For dates without pan data, pan evaporation was modeled from modified daily Hargreaves PET estimates (**Table 5**).

Hargreaves PET was computed using EPA SWMM (Rossman, 2010). SWMM input files were prepared with daily temperature data for each site along with site latitude. Output time series of PET computed by the software was transferred to a spreadsheet. A PET-to-pan evaporation coefficient was calculated for each site by minimizing least squares error for all dates with pan data

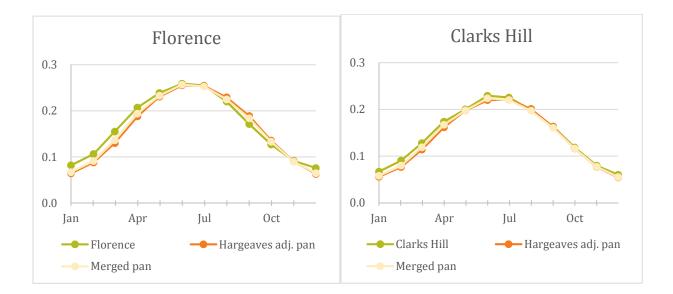
| Pan data<br>source                               | Sandhill | Charleston | Barnwell        | Chesnee                    | Clarks<br>Hill | Clemson | Florence | Union |
|--------------------------------------------------|----------|------------|-----------------|----------------------------|----------------|---------|----------|-------|
| Temperature<br>source                            | Columbia | Charleston | Orange-<br>burg | Greenville-<br>Spartanburg | Clarks<br>Hill | Clemson | Florence | Union |
| Hargreaves -<br>> pan<br>coefficient             | 1.22     | 1.27       | 1.07            | 1.07                       | 0.93           | 1.03    | 1.11     | 0.96  |
| Pan average<br>(in)                              | 0.20     | 0.20       | 0.17            | 0.20                       | 0.15           | 0.16    | 0.17     | 0.16  |
| Adjusted<br>Hargreaves<br>matching<br>dates (in) | 0.19     | 0.19       | 0.16            | 0.19                       | 0.15           | 0.15    | 0.17     | 0.15  |
| Adjusted<br>Hargreaves<br>all dates (in)         | 0.18     | 0.18       | 0.16            | 0.15                       | 0.14           | 0.15    | 0.16     | 0.14  |

#### Table 5. Hargreaves PET to pan evaporation

## **Summary statistics**


Resulting monthly average adjusted pan estimates are shown in **Table 6**. The composited estimates average 0.2 inches per month less than the actual pan data for November through April, and 0.1 inches per month greater than the pan data for May through October. These differences occur because of limitations of the estimation method, the reduced number of pan measurements during winter, and climatic variations among years with and without pan data . Thirty-eight percent of the composite dataset is comprised of actual pan measurements, ranging from 13% of total dates over 90 years at Union to 66% at Clemson.

| Inches      | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year  | Apr-<br>Oct |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------------|
| Charleston  | 2.66 | 3.22 | 5.06 | 6.50 | 7.72 | 7.85 | 8.11 | 7.28 | 5.80 | 4.68 | 3.24 | 2.59 | 64.72 | 47.95       |
| Barnwell    | 2.20 | 2.67 | 4.32 | 5.80 | 7.10 | 7.52 | 7.63 | 6.79 | 5.41 | 4.14 | 2.71 | 2.11 | 58.40 | 44.39       |
| Chesnee     | 1.71 | 2.22 | 3.74 | 5.45 | 6.77 | 7.50 | 7.63 | 6.80 | 5.28 | 3.77 | 2.31 | 1.65 | 54.82 | 43.20       |
| Clarks Hill | 1.80 | 2.26 | 3.69 | 5.01 | 6.13 | 6.71 | 6.83 | 6.12 | 4.82 | 3.61 | 2.32 | 1.72 | 51.03 | 39.24       |
| Clemson     | 1.86 | 2.42 | 4.01 | 5.46 | 6.52 | 7.05 | 7.24 | 6.59 | 5.10 | 3.79 | 2.47 | 1.78 | 54.29 | 41.75       |
| Florence    | 2.09 | 2.59 | 4.23 | 5.82 | 7.22 | 7.71 | 7.83 | 6.98 | 5.52 | 4.14 | 2.70 | 2.02 | 58.84 | 45.22       |
| Sandhill    | 2.25 | 2.89 | 4.72 | 6.63 | 8.00 | 8.46 | 8.68 | 7.56 | 6.01 | 4.61 | 3.08 | 2.28 | 65.17 | 49.96       |
| Union       | 1.73 | 2.08 | 3.51 | 5.11 | 6.25 | 6.77 | 7.05 | 6.33 | 4.92 | 3.58 | 2.23 | 1.69 | 51.26 | 40.02       |
| Average     | 2.04 | 2.54 | 4.16 | 5.72 | 6.96 | 7.45 | 7.63 | 6.81 | 5.36 | 4.04 | 2.63 | 1.98 | 57.32 | 43.96       |


Table 6. Monthly composite pan evaporation estimates

**Figure 1** shows the values from Table 6. **Figures 2** through **9** show average daily pan evaporation by month for each station, with traces shown for the raw pan data, pan estimates derived from Hargreaves PET, and the final merged dataset. The figures show generally good agreement yearround at each site, with measured pan values somewhat higher than the Hargreaves estimates and final dataset averages in winter primarily at Sandhill, Charleston, and Florence. The Union figure shows inconsistent pan readings in the winter months due to the small size of its dataset.


Overall, the method for obtaining daily evaporation estimates used here has the advantage of using available pan evaporation data in combination with modeled estimates calibrated to the measured datasets. The method was not rigorously checked to ensure consistency in variability between the measured and modeled values, and may also introduce variance due to the use of multiple temperature stations, and, in two cases, combination of data from different evaporation sites.



Figures 2, 3, 4, and 5 - Average Daily Pan Evaporation by Month







## References

Hamon, W.R., 1961. Estimating potential evapotranspiration: Journal of Hydraulics Division, Proceedings of the American Society of Civil Engineers, v. 87, p. 107–120.

Hargreaves, G.H. and Z.A. Samani, 1985. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture 1(2):96-99. doi:10.13031/2013.26773

Lu, Jianbiao, Ge Sun, Steven McNulty, and Devendra M. Amatya, 2005. A Comparison of Six Potential Evapotranspiration Methods for Regional Use in the Southeastern United States. Journal of the American Water Resources Association 41(3):621-633. doi:10.1111/j.1752-1688.2005.tb03759.x

Purvis, J. C. 2006. Pan evaporation records for the South Carolina area. Department of Natural Resources, South Carolina State Climatology Office, www.dnr.sc.gov/climate/sco/Publications/pan\_evap\_records.php

Rossman, Lewis A., 2010. Storm Water Management Model User's Manual, EPA/600/R-05/040, U.S. Environmental Protection Agency, Cincinnati, OH. www2.epa.gov/water-research/storm-water-